opm-simulators/opm/autodiff/SimulatorFullyImplicitBlackoilEbos.hpp
2017-10-12 13:39:58 +02:00

1048 lines
49 KiB
C++

/*
Copyright 2013, 2015 SINTEF ICT, Applied Mathematics.
Copyright 2015 Andreas Lauser
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_SIMULATORFULLYIMPLICITBLACKOILEBOS_HEADER_INCLUDED
#define OPM_SIMULATORFULLYIMPLICITBLACKOILEBOS_HEADER_INCLUDED
#include <opm/autodiff/SimulatorFullyImplicitBlackoilOutput.hpp>
#include <opm/autodiff/IterationReport.hpp>
#include <opm/autodiff/NonlinearSolver.hpp>
#include <opm/autodiff/BlackoilModelEbos.hpp>
#include <opm/autodiff/BlackoilModelParameters.hpp>
#include <opm/autodiff/WellStateFullyImplicitBlackoil.hpp>
#include <opm/autodiff/BlackoilWellModel.hpp>
#include <opm/autodiff/RateConverter.hpp>
#include <opm/autodiff/SimFIBODetails.hpp>
#include <opm/autodiff/moduleVersion.hpp>
#include <opm/simulators/timestepping/AdaptiveTimeStepping.hpp>
#include <opm/core/utility/initHydroCarbonState.hpp>
#include <opm/core/utility/StopWatch.hpp>
#include <opm/common/Exceptions.hpp>
#include <opm/common/ErrorMacros.hpp>
#include <dune/common/unused.hh>
namespace Opm {
/// a simulator for the blackoil model
template<class TypeTag>
class SimulatorFullyImplicitBlackoilEbos
{
public:
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename GET_PROP_TYPE(TypeTag, Grid) Grid;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, Indices) BlackoilIndices;
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
typedef typename GET_PROP_TYPE(TypeTag, SolutionVector) SolutionVector ;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLawParams) MaterialLawParams;
typedef Ewoms::BlackOilPolymerModule<TypeTag> PolymerModule;
typedef WellStateFullyImplicitBlackoil WellState;
typedef BlackoilState ReservoirState;
typedef BlackoilOutputWriter OutputWriter;
typedef BlackoilModelEbos<TypeTag> Model;
typedef BlackoilModelParameters ModelParameters;
typedef NonlinearSolver<Model> Solver;
typedef BlackoilWellModel<TypeTag> WellModel;
typedef RateConverter::SurfaceToReservoirVoidage<FluidSystem, std::vector<int> > RateConverterType;
/// Initialise from parameters and objects to observe.
/// \param[in] param parameters, this class accepts the following:
/// parameter (default) effect
/// -----------------------------------------------------------
/// output (true) write output to files?
/// output_dir ("output") output directoty
/// output_interval (1) output every nth step
/// nl_pressure_residual_tolerance (0.0) pressure solver residual tolerance (in Pascal)
/// nl_pressure_change_tolerance (1.0) pressure solver change tolerance (in Pascal)
/// nl_pressure_maxiter (10) max nonlinear iterations in pressure
/// nl_maxiter (30) max nonlinear iterations in transport
/// nl_tolerance (1e-9) transport solver absolute residual tolerance
/// num_transport_substeps (1) number of transport steps per pressure step
/// use_segregation_split (false) solve for gravity segregation (if false,
/// segregation is ignored).
///
/// \param[in] props fluid and rock properties
/// \param[in] linsolver linear solver
/// \param[in] has_disgas true for dissolved gas option
/// \param[in] has_vapoil true for vaporized oil option
/// \param[in] eclipse_state the object which represents an internalized ECL deck
/// \param[in] output_writer
/// \param[in] threshold_pressures_by_face if nonempty, threshold pressures that inhibit flow
SimulatorFullyImplicitBlackoilEbos(Simulator& ebosSimulator,
const ParameterGroup& param,
NewtonIterationBlackoilInterface& linsolver,
const bool has_disgas,
const bool has_vapoil,
const EclipseState& /* eclState */,
OutputWriter& output_writer,
const std::unordered_set<std::string>& defunct_well_names)
: ebosSimulator_(ebosSimulator),
param_(param),
model_param_(param),
solver_param_(param),
solver_(linsolver),
phaseUsage_(phaseUsageFromDeck(eclState())),
has_disgas_(has_disgas),
has_vapoil_(has_vapoil),
terminal_output_(param.getDefault("output_terminal", true)),
output_writer_(output_writer),
rateConverter_(createRateConverter_()),
defunct_well_names_( defunct_well_names ),
is_parallel_run_( false )
{
#if HAVE_MPI
if ( solver_.parallelInformation().type() == typeid(ParallelISTLInformation) )
{
const ParallelISTLInformation& info =
boost::any_cast<const ParallelISTLInformation&>(solver_.parallelInformation());
// Only rank 0 does print to std::cout
terminal_output_ = terminal_output_ && ( info.communicator().rank() == 0 );
is_parallel_run_ = ( info.communicator().size() > 1 );
}
#endif
}
/// Run the simulation.
/// This will run succesive timesteps until timer.done() is true. It will
/// modify the reservoir and well states.
/// \param[in,out] timer governs the requested reporting timesteps
/// \param[in,out] state state of reservoir: pressure, fluxes
/// \return simulation report, with timing data
SimulatorReport run(SimulatorTimer& timer,
ReservoirState& state)
{
WellState prev_well_state;
ExtraData extra;
failureReport_ = SimulatorReport();
extractLegacyDepth_();
// communicate the initial solution to ebos
if (timer.initialStep()) {
convertInput(/*iterationIdx=*/0, state, ebosSimulator_ );
ebosSimulator_.model().invalidateIntensiveQuantitiesCache(/*timeIdx=*/0);
}
if (output_writer_.isRestart()) {
// This is a restart, populate WellState and ReservoirState state objects from restart file
output_writer_.initFromRestartFile(phaseUsage_, grid(), state, prev_well_state, extra);
initHydroCarbonState(state, phaseUsage_, Opm::UgGridHelpers::numCells(grid()), has_disgas_, has_vapoil_);
initHysteresisParams(state);
// communicate the restart solution to ebos
convertInput(/*iterationIdx=*/0, state, ebosSimulator_ );
ebosSimulator_.model().invalidateIntensiveQuantitiesCache(/*timeIdx=*/0);
}
// Sync the overlap region of the inital solution. It was generated
// from the ReservoirState which has wrong values in the ghost region
// for some models (SPE9, Norne, Model 2)
ebosSimulator_.model().syncOverlap();
// Create timers and file for writing timing info.
Opm::time::StopWatch solver_timer;
Opm::time::StopWatch step_timer;
Opm::time::StopWatch total_timer;
total_timer.start();
std::string tstep_filename = output_writer_.outputDirectory() + "/step_timing.txt";
std::ofstream tstep_os;
if ( output_writer_.output() && output_writer_.isIORank() )
{
tstep_os.open(tstep_filename.c_str());
}
const auto& schedule = eclState().getSchedule();
// adaptive time stepping
const auto& events = schedule.getEvents();
std::unique_ptr< AdaptiveTimeStepping > adaptiveTimeStepping;
if( param_.getDefault("timestep.adaptive", true ) )
{
if (param_.getDefault("use_TUNING", false)) {
adaptiveTimeStepping.reset( new AdaptiveTimeStepping( schedule.getTuning(), timer.currentStepNum(), param_, terminal_output_ ) );
} else {
adaptiveTimeStepping.reset( new AdaptiveTimeStepping( param_, terminal_output_ ) );
}
if (output_writer_.isRestart()) {
if (extra.suggested_step > 0.0) {
adaptiveTimeStepping->setSuggestedNextStep(extra.suggested_step);
}
}
}
std::string restorefilename = param_.getDefault("restorefile", std::string("") );
if( ! restorefilename.empty() )
{
// -1 means that we'll take the last report step that was written
const int desiredRestoreStep = param_.getDefault("restorestep", int(-1) );
output_writer_.restore( timer,
state,
prev_well_state,
restorefilename,
desiredRestoreStep );
initHydroCarbonState(state, phaseUsage_, Opm::UgGridHelpers::numCells(grid()), has_disgas_, has_vapoil_);
initHysteresisParams(state);
// communicate the restart solution to ebos
convertInput(0, state, ebosSimulator_);
ebosSimulator_.model().invalidateIntensiveQuantitiesCache(/*timeIdx=*/0);
}
DynamicListEconLimited dynamic_list_econ_limited;
SimulatorReport report;
SimulatorReport stepReport;
std::vector<int> fipnum_global = eclState().get3DProperties().getIntGridProperty("FIPNUM").getData();
//Get compressed cell fipnum.
std::vector<int> fipnum(Opm::UgGridHelpers::numCells(grid()));
if (fipnum_global.empty()) {
std::fill(fipnum.begin(), fipnum.end(), 0);
} else {
for (size_t c = 0; c < fipnum.size(); ++c) {
fipnum[c] = fipnum_global[Opm::UgGridHelpers::globalCell(grid())[c]];
}
}
std::vector<std::vector<double>> originalFluidInPlace;
std::vector<double> originalFluidInPlaceTotals;
// Main simulation loop.
while (!timer.done()) {
// Report timestep.
step_timer.start();
if ( terminal_output_ )
{
std::ostringstream ss;
timer.report(ss);
OpmLog::note(ss.str());
}
// Create wells and well state.
WellsManager wells_manager(eclState(),
timer.currentStepNum(),
Opm::UgGridHelpers::numCells(grid()),
Opm::UgGridHelpers::globalCell(grid()),
Opm::UgGridHelpers::cartDims(grid()),
Opm::UgGridHelpers::dimensions(grid()),
Opm::UgGridHelpers::cell2Faces(grid()),
Opm::UgGridHelpers::beginFaceCentroids(grid()),
dynamic_list_econ_limited,
is_parallel_run_,
defunct_well_names_ );
const Wells* wells = wells_manager.c_wells();
WellState well_state;
// The well state initialize bhp with the cell pressure in the top cell.
// We must therefore provide it with updated cell pressures
size_t nc = Opm::UgGridHelpers::numCells(grid());
std::vector<double> cellPressures(nc, 0.0);
const auto& gridView = ebosSimulator_.gridManager().gridView();
ElementContext elemCtx(ebosSimulator_);
const auto& elemEndIt = gridView.template end</*codim=*/0>();
for (auto elemIt = gridView.template begin</*codim=*/0>();
elemIt != elemEndIt;
++elemIt)
{
const auto& elem = *elemIt;
if (elem.partitionType() != Dune::InteriorEntity) {
continue;
}
elemCtx.updatePrimaryStencil(elem);
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
const unsigned cellIdx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
const auto& intQuants = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
const auto& fs = intQuants.fluidState();
const double p = fs.pressure(FluidSystem::oilPhaseIdx).value();
cellPressures[cellIdx] = p;
}
well_state.init(wells, cellPressures, prev_well_state, phaseUsage_);
// give the polymer and surfactant simulators the chance to do their stuff
handleAdditionalWellInflow(timer, wells_manager, well_state, wells);
// Compute reservoir volumes for RESV controls.
computeRESV(timer.currentStepNum(), wells, well_state);
// Run a multiple steps of the solver depending on the time step control.
solver_timer.start();
const auto& wells_ecl = eclState().getSchedule().getWells(timer.currentStepNum());
extractLegacyCellPvtRegionIndex_();
// handling MS well related
if (model_param_.use_multisegment_well_) { // if we use MultisegmentWell model
for (const auto& well : wells_ecl) {
if (well->isMultiSegment(timer.currentStepNum()) ) { // there is one well is MS well
well_state.initWellStateMSWell(wells, wells_ecl, timer.currentStepNum(), phaseUsage_, prev_well_state);
break;
}
}
}
WellModel well_model(wells, &(wells_manager.wellCollection()), wells_ecl, model_param_,
rateConverter_, terminal_output_, timer.currentStepNum(), legacyCellPvtRegionIdx_);
auto solver = createSolver(well_model);
std::vector<std::vector<double>> currentFluidInPlace;
std::vector<double> currentFluidInPlaceTotals;
// Compute orignal fluid in place if this has not been done yet
if (originalFluidInPlace.empty()) {
originalFluidInPlace = solver->computeFluidInPlace(fipnum);
originalFluidInPlaceTotals = FIPTotals(originalFluidInPlace);
FIPUnitConvert(eclState().getUnits(), originalFluidInPlace);
FIPUnitConvert(eclState().getUnits(), originalFluidInPlaceTotals);
currentFluidInPlace = originalFluidInPlace;
currentFluidInPlaceTotals = originalFluidInPlaceTotals;
}
// write the inital state at the report stage
if (timer.initialStep()) {
Dune::Timer perfTimer;
perfTimer.start();
if (terminal_output_) {
outputFluidInPlace(originalFluidInPlaceTotals, currentFluidInPlaceTotals,eclState().getUnits(), 0);
for (size_t reg = 0; reg < originalFluidInPlace.size(); ++reg) {
outputFluidInPlace(originalFluidInPlace[reg], currentFluidInPlace[reg], eclState().getUnits(), reg+1);
}
}
// No per cell data is written for initial step, but will be
// for subsequent steps, when we have started simulating
output_writer_.writeTimeStep( timer, state, well_state, solver->model() );
report.output_write_time += perfTimer.stop();
}
if( terminal_output_ )
{
std::ostringstream step_msg;
boost::posix_time::time_facet* facet = new boost::posix_time::time_facet("%d-%b-%Y");
step_msg.imbue(std::locale(std::locale::classic(), facet));
step_msg << "\nTime step " << std::setw(4) <<timer.currentStepNum()
<< " at day " << (double)unit::convert::to(timer.simulationTimeElapsed(), unit::day)
<< "/" << (double)unit::convert::to(timer.totalTime(), unit::day)
<< ", date = " << timer.currentDateTime();
OpmLog::info(step_msg.str());
}
solver->model().beginReportStep();
// If sub stepping is enabled allow the solver to sub cycle
// in case the report steps are too large for the solver to converge
//
// \Note: The report steps are met in any case
// \Note: The sub stepping will require a copy of the state variables
if( adaptiveTimeStepping ) {
bool event = events.hasEvent(ScheduleEvents::NEW_WELL, timer.currentStepNum()) ||
events.hasEvent(ScheduleEvents::PRODUCTION_UPDATE, timer.currentStepNum()) ||
events.hasEvent(ScheduleEvents::INJECTION_UPDATE, timer.currentStepNum()) ||
events.hasEvent(ScheduleEvents::WELL_STATUS_CHANGE, timer.currentStepNum());
stepReport = adaptiveTimeStepping->step( timer, *solver, state, well_state, event, output_writer_,
output_writer_.requireFIPNUM() ? &fipnum : nullptr );
report += stepReport;
failureReport_ += adaptiveTimeStepping->failureReport();
}
else {
// solve for complete report step
stepReport = solver->step(timer, state, well_state);
report += stepReport;
failureReport_ += solver->failureReport();
if( terminal_output_ )
{
//stepReport.briefReport();
std::ostringstream iter_msg;
iter_msg << "Stepsize " << (double)unit::convert::to(timer.currentStepLength(), unit::day);
if (solver->wellIterations() != 0) {
iter_msg << " days well iterations = " << solver->wellIterations() << ", ";
}
iter_msg << "non-linear iterations = " << solver->nonlinearIterations()
<< ", total linear iterations = " << solver->linearIterations()
<< "\n";
OpmLog::info(iter_msg.str());
}
}
solver->model().endReportStep();
// take time that was used to solve system for this reportStep
solver_timer.stop();
// update timing.
report.solver_time += solver_timer.secsSinceStart();
if ( output_writer_.output() && output_writer_.isIORank() )
{
stepReport.reportParam(tstep_os);
}
// We don't need the reservoir state anymore. It is just passed around to avoid
// code duplication. Pass empty state instead.
if (timer.initialStep()) {
ReservoirState stateTrivial(0,0,0);
state = stateTrivial;
}
// Increment timer, remember well state.
++timer;
// Compute current fluid in place.
currentFluidInPlace = solver->computeFluidInPlace(fipnum);
currentFluidInPlaceTotals = FIPTotals(currentFluidInPlace);
const std::string version = moduleVersionName();
FIPUnitConvert(eclState().getUnits(), currentFluidInPlace);
FIPUnitConvert(eclState().getUnits(), currentFluidInPlaceTotals);
if (terminal_output_ )
{
outputTimestampFIP(timer, version);
outputFluidInPlace(originalFluidInPlaceTotals, currentFluidInPlaceTotals,eclState().getUnits(), 0);
for (size_t reg = 0; reg < originalFluidInPlace.size(); ++reg) {
outputFluidInPlace(originalFluidInPlace[reg], currentFluidInPlace[reg], eclState().getUnits(), reg+1);
}
std::string msg;
msg =
"Time step took " + std::to_string(solver_timer.secsSinceStart()) + " seconds; "
"total solver time " + std::to_string(report.solver_time) + " seconds.";
OpmLog::note(msg);
}
// write simulation state at the report stage
Dune::Timer perfTimer;
perfTimer.start();
const double nextstep = adaptiveTimeStepping ? adaptiveTimeStepping->suggestedNextStep() : -1.0;
output_writer_.writeTimeStep( timer, state, well_state, solver->model(), false, nextstep, report);
report.output_write_time += perfTimer.stop();
prev_well_state = well_state;
updateListEconLimited(solver, eclState().getSchedule(), timer.currentStepNum(), wells,
well_state, dynamic_list_econ_limited);
}
// Stop timer and create timing report
total_timer.stop();
report.total_time = total_timer.secsSinceStart();
report.converged = true;
return report;
}
/** \brief Returns the simulator report for the failed substeps of the simulation.
*/
const SimulatorReport& failureReport() const { return failureReport_; };
const Grid& grid() const
{ return ebosSimulator_.gridManager().grid(); }
protected:
void handleAdditionalWellInflow(SimulatorTimer& /*timer*/,
WellsManager& /* wells_manager */,
WellState& /* well_state */,
const Wells* /* wells */)
{
}
std::unique_ptr<Solver> createSolver(WellModel& well_model)
{
const auto& gridView = ebosSimulator_.gridView();
const PhaseUsage& phaseUsage = phaseUsage_;
const std::vector<bool> activePhases = detail::activePhases(phaseUsage);
const double gravity = ebosSimulator_.problem().gravity()[2];
// calculate the number of elements of the compressed sequential grid. this needs
// to be done in two steps because the dune communicator expects a reference as
// argument for sum()
int globalNumCells = gridView.size(/*codim=*/0);
globalNumCells = gridView.comm().sum(globalNumCells);
well_model.init(phaseUsage,
activePhases,
gravity,
legacyDepth_,
globalNumCells,
grid());
auto model = std::unique_ptr<Model>(new Model(ebosSimulator_,
model_param_,
well_model,
rateConverter_,
solver_,
terminal_output_));
return std::unique_ptr<Solver>(new Solver(solver_param_, std::move(model)));
}
void computeRESV(const std::size_t step,
const Wells* wells,
WellState& xw)
{
typedef SimFIBODetails::WellMap WellMap;
const auto w_ecl = eclState().getSchedule().getWells(step);
const WellMap& wmap = SimFIBODetails::mapWells(w_ecl);
const std::vector<int>& resv_wells = SimFIBODetails::resvWells(wells, step, wmap);
const std::size_t number_resv_wells = resv_wells.size();
std::size_t global_number_resv_wells = number_resv_wells;
#if HAVE_MPI
if ( solver_.parallelInformation().type() == typeid(ParallelISTLInformation) )
{
const auto& info =
boost::any_cast<const ParallelISTLInformation&>(solver_.parallelInformation());
global_number_resv_wells = info.communicator().sum(global_number_resv_wells);
if ( global_number_resv_wells )
{
// At least one process has resv wells. Therefore rate converter needs
// to calculate averages over regions that might cross process
// borders. This needs to be done by all processes and therefore
// outside of the next if statement.
rateConverter_.template defineState<ElementContext>(ebosSimulator_);
}
}
else
#endif
{
if ( global_number_resv_wells )
{
rateConverter_.template defineState<ElementContext>(ebosSimulator_);
}
}
if (! resv_wells.empty()) {
const PhaseUsage& pu = phaseUsage_;
const std::vector<double>::size_type np = phaseUsage_.num_phases;
std::vector<double> distr (np);
std::vector<double> hrates(np);
std::vector<double> prates(np);
for (std::vector<int>::const_iterator
rp = resv_wells.begin(), e = resv_wells.end();
rp != e; ++rp)
{
WellControls* ctrl = wells->ctrls[*rp];
const bool is_producer = wells->type[*rp] == PRODUCER;
const int well_cell_top = wells->well_cells[wells->well_connpos[*rp]];
const auto& eclProblem = ebosSimulator_.problem();
const int pvtreg = eclProblem.pvtRegionIndex(well_cell_top);
// RESV control mode, all wells
{
const int rctrl = SimFIBODetails::resv_control(ctrl);
if (0 <= rctrl) {
const std::vector<double>::size_type off = (*rp) * np;
if (is_producer) {
// Convert to positive rates to avoid issues
// in coefficient calculations.
std::transform(xw.wellRates().begin() + (off + 0*np),
xw.wellRates().begin() + (off + 1*np),
prates.begin(), std::negate<double>());
} else {
std::copy(xw.wellRates().begin() + (off + 0*np),
xw.wellRates().begin() + (off + 1*np),
prates.begin());
}
const int fipreg = 0; // Hack. Ignore FIP regions.
rateConverter_.calcCoeff(fipreg, pvtreg, distr);
well_controls_iset_distr(ctrl, rctrl, & distr[0]);
}
}
// RESV control, WCONHIST wells. A bit of duplicate
// work, regrettably.
if (is_producer && wells->name[*rp] != 0) {
WellMap::const_iterator i = wmap.find(wells->name[*rp]);
if (i != wmap.end()) {
const auto* wp = i->second;
const WellProductionProperties& p =
wp->getProductionProperties(step);
if (! p.predictionMode) {
// History matching (WCONHIST/RESV)
SimFIBODetails::historyRates(pu, p, hrates);
const int fipreg = 0; // Hack. Ignore FIP regions.
rateConverter_.calcCoeff(fipreg, pvtreg, distr);
// WCONHIST/RESV target is sum of all
// observed phase rates translated to
// reservoir conditions. Recall sign
// convention: Negative for producers.
const double target =
- std::inner_product(distr.begin(), distr.end(),
hrates.begin(), 0.0);
well_controls_clear(ctrl);
well_controls_assert_number_of_phases(ctrl, int(np));
static const double invalid_alq = -std::numeric_limits<double>::max();
static const int invalid_vfp = -std::numeric_limits<int>::max();
const int ok_resv =
well_controls_add_new(RESERVOIR_RATE, target,
invalid_alq, invalid_vfp,
& distr[0], ctrl);
// For WCONHIST the BHP limit is set to 1 atm.
// or a value specified using WELTARG
double bhp_limit = (p.BHPLimit > 0) ? p.BHPLimit : unit::convert::from(1.0, unit::atm);
const int ok_bhp =
well_controls_add_new(BHP, bhp_limit,
invalid_alq, invalid_vfp,
NULL, ctrl);
if (ok_resv != 0 && ok_bhp != 0) {
xw.currentControls()[*rp] = 0;
well_controls_set_current(ctrl, 0);
}
}
}
}
}
}
if( wells )
{
for (int w = 0, nw = wells->number_of_wells; w < nw; ++w) {
WellControls* ctrl = wells->ctrls[w];
const bool is_producer = wells->type[w] == PRODUCER;
if (!is_producer && wells->name[w] != 0) {
WellMap::const_iterator i = wmap.find(wells->name[w]);
if (i != wmap.end()) {
const auto* wp = i->second;
const WellInjectionProperties& injector = wp->getInjectionProperties(step);
if (!injector.predictionMode) {
//History matching WCONINJEH
static const double invalid_alq = -std::numeric_limits<double>::max();
static const int invalid_vfp = -std::numeric_limits<int>::max();
// For WCONINJEH the BHP limit is set to a large number
// or a value specified using WELTARG
double bhp_limit = (injector.BHPLimit > 0) ? injector.BHPLimit : std::numeric_limits<double>::max();
const int ok_bhp =
well_controls_add_new(BHP, bhp_limit,
invalid_alq, invalid_vfp,
NULL, ctrl);
if (!ok_bhp) {
OPM_THROW(std::runtime_error, "Failed to add well control.");
}
}
}
}
}
}
}
void updateListEconLimited(const std::unique_ptr<Solver>& solver,
const Schedule& schedule,
const int current_step,
const Wells* wells,
const WellState& well_state,
DynamicListEconLimited& list_econ_limited) const
{
solver->model().wellModel().updateListEconLimited(schedule, current_step, wells,
well_state, list_econ_limited);
}
void FIPUnitConvert(const UnitSystem& units,
std::vector<std::vector<double>>& fip)
{
for (size_t i = 0; i < fip.size(); ++i) {
FIPUnitConvert(units, fip[i]);
}
}
void FIPUnitConvert(const UnitSystem& units,
std::vector<double>& fip)
{
if (units.getType() == UnitSystem::UnitType::UNIT_TYPE_FIELD) {
fip[0] = unit::convert::to(fip[0], unit::stb);
fip[1] = unit::convert::to(fip[1], unit::stb);
fip[2] = unit::convert::to(fip[2], 1000*unit::cubic(unit::feet));
fip[3] = unit::convert::to(fip[3], 1000*unit::cubic(unit::feet));
fip[4] = unit::convert::to(fip[4], unit::stb);
fip[5] = unit::convert::to(fip[5], unit::stb);
fip[6] = unit::convert::to(fip[6], unit::psia);
}
else if (units.getType() == UnitSystem::UnitType::UNIT_TYPE_METRIC) {
fip[6] = unit::convert::to(fip[6], unit::barsa);
}
else {
OPM_THROW(std::runtime_error, "Unsupported unit type for fluid in place output.");
}
}
std::vector<double> FIPTotals(const std::vector<std::vector<double>>& fip)
{
std::vector<double> totals(7,0.0);
for (int i = 0; i < 5; ++i) {
for (size_t reg = 0; reg < fip.size(); ++reg) {
totals[i] += fip[reg][i];
}
}
const auto& gridView = ebosSimulator_.gridManager().gridView();
const auto& comm = gridView.comm();
double pv_hydrocarbon_sum = 0.0;
double p_pv_hydrocarbon_sum = 0.0;
ElementContext elemCtx(ebosSimulator_);
const auto& elemEndIt = gridView.template end</*codim=*/0>();
for (auto elemIt = gridView.template begin</*codim=*/0>();
elemIt != elemEndIt;
++elemIt)
{
const auto& elem = *elemIt;
if (elem.partitionType() != Dune::InteriorEntity) {
continue;
}
elemCtx.updatePrimaryStencil(elem);
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
const unsigned cellIdx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
const auto& intQuants = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
const auto& fs = intQuants.fluidState();
const double p = fs.pressure(FluidSystem::oilPhaseIdx).value();
const double hydrocarbon = fs.saturation(FluidSystem::oilPhaseIdx).value() + fs.saturation(FluidSystem::gasPhaseIdx).value();
// calculate the pore volume of the current cell. Note that the
// porosity returned by the intensive quantities is defined as the
// ratio of pore space to total cell volume and includes all pressure
// dependent (-> rock compressibility) and static modifiers (MULTPV,
// MULTREGP, NTG, PORV, MINPV and friends). Also note that because of
// this, the porosity returned by the intensive quantities can be
// outside of the physical range [0, 1] in pathetic cases.
const double pv =
ebosSimulator_.model().dofTotalVolume(cellIdx)
* intQuants.porosity().value();
totals[5] += pv;
pv_hydrocarbon_sum += pv*hydrocarbon;
p_pv_hydrocarbon_sum += p*pv*hydrocarbon;
}
pv_hydrocarbon_sum = comm.sum(pv_hydrocarbon_sum);
p_pv_hydrocarbon_sum = comm.sum(p_pv_hydrocarbon_sum);
totals[5] = comm.sum(totals[5]);
totals[6] = (p_pv_hydrocarbon_sum / pv_hydrocarbon_sum);
return totals;
}
void outputTimestampFIP(SimulatorTimer& timer, const std::string version)
{
std::ostringstream ss;
boost::posix_time::time_facet* facet = new boost::posix_time::time_facet("%d %b %Y");
ss.imbue(std::locale(std::locale::classic(), facet));
ss << "\n **************************************************************************\n"
<< " Balance at" << std::setw(10) << (double)unit::convert::to(timer.simulationTimeElapsed(), unit::day) << " Days"
<< " *" << std::setw(30) << eclState().getTitle() << " *\n"
<< " Report " << std::setw(4) << timer.reportStepNum() << " " << timer.currentDateTime()
<< " * Flow version " << std::setw(11) << version << " *\n"
<< " **************************************************************************\n";
OpmLog::note(ss.str());
}
void outputFluidInPlace(const std::vector<double>& oip, const std::vector<double>& cip, const UnitSystem& units, const int reg)
{
std::ostringstream ss;
if (!reg) {
ss << " ===================================================\n"
<< " : Field Totals :\n";
} else {
ss << " ===================================================\n"
<< " : FIPNUM report region "
<< std::setw(2) << reg << " :\n";
}
if (units.getType() == UnitSystem::UnitType::UNIT_TYPE_METRIC) {
ss << " : PAV =" << std::setw(14) << cip[6] << " BARSA :\n"
<< std::fixed << std::setprecision(0)
<< " : PORV =" << std::setw(14) << cip[5] << " RM3 :\n";
if (!reg) {
ss << " : Pressure is weighted by hydrocarbon pore volume :\n"
<< " : Porv volumes are taken at reference conditions :\n";
}
ss << " :--------------- Oil SM3 ---------------:-- Wat SM3 --:--------------- Gas SM3 ---------------:\n";
}
if (units.getType() == UnitSystem::UnitType::UNIT_TYPE_FIELD) {
ss << " : PAV =" << std::setw(14) << cip[6] << " PSIA :\n"
<< std::fixed << std::setprecision(0)
<< " : PORV =" << std::setw(14) << cip[5] << " RB :\n";
if (!reg) {
ss << " : Pressure is weighted by hydrocarbon pore volume :\n"
<< " : Pore volumes are taken at reference conditions :\n";
}
ss << " :--------------- Oil STB ---------------:-- Wat STB --:--------------- Gas MSCF ---------------:\n";
}
ss << " : Liquid Vapour Total : Total : Free Dissolved Total :" << "\n"
<< ":------------------------:------------------------------------------:----------------:------------------------------------------:" << "\n"
<< ":Currently in place :" << std::setw(14) << cip[1] << std::setw(14) << cip[4] << std::setw(14) << (cip[1]+cip[4]) << ":"
<< std::setw(13) << cip[0] << " :" << std::setw(14) << (cip[2]) << std::setw(14) << cip[3] << std::setw(14) << (cip[2] + cip[3]) << ":\n"
<< ":------------------------:------------------------------------------:----------------:------------------------------------------:\n"
<< ":Originally in place :" << std::setw(14) << oip[1] << std::setw(14) << oip[4] << std::setw(14) << (oip[1]+oip[4]) << ":"
<< std::setw(13) << oip[0] << " :" << std::setw(14) << oip[2] << std::setw(14) << oip[3] << std::setw(14) << (oip[2] + oip[3]) << ":\n"
<< ":========================:==========================================:================:==========================================:\n";
OpmLog::note(ss.str());
}
const EclipseState& eclState() const
{ return ebosSimulator_.gridManager().eclState(); }
void extractLegacyCellPvtRegionIndex_()
{
const auto& grid = ebosSimulator_.gridManager().grid();
const auto& eclProblem = ebosSimulator_.problem();
const unsigned numCells = grid.size(/*codim=*/0);
legacyCellPvtRegionIdx_.resize(numCells);
for (unsigned cellIdx = 0; cellIdx < numCells; ++cellIdx) {
legacyCellPvtRegionIdx_[cellIdx] =
eclProblem.pvtRegionIndex(cellIdx);
}
}
void initHysteresisParams(ReservoirState& state) {
const int num_cells = Opm::UgGridHelpers::numCells(grid());
typedef std::vector<double> VectorType;
const VectorType& somax = state.getCellData( "SOMAX" );
for (int cellIdx = 0; cellIdx < num_cells; ++cellIdx) {
ebosSimulator_.model().setMaxOilSaturation(somax[cellIdx], cellIdx);
}
if (ebosSimulator_.problem().materialLawManager()->enableHysteresis()) {
auto matLawManager = ebosSimulator_.problem().materialLawManager();
VectorType& pcSwMdc_ow = state.getCellData( "PCSWMDC_OW" );
VectorType& krnSwMdc_ow = state.getCellData( "KRNSWMDC_OW" );
VectorType& pcSwMdc_go = state.getCellData( "PCSWMDC_GO" );
VectorType& krnSwMdc_go = state.getCellData( "KRNSWMDC_GO" );
for (int cellIdx = 0; cellIdx < num_cells; ++cellIdx) {
matLawManager->setOilWaterHysteresisParams(
pcSwMdc_ow[cellIdx],
krnSwMdc_ow[cellIdx],
cellIdx);
matLawManager->setGasOilHysteresisParams(
pcSwMdc_go[cellIdx],
krnSwMdc_go[cellIdx],
cellIdx);
}
}
}
void extractLegacyDepth_()
{
const auto& grid = ebosSimulator_.gridManager().grid();
const unsigned numCells = grid.size(/*codim=*/0);
legacyDepth_.resize(numCells);
for (unsigned cellIdx = 0; cellIdx < numCells; ++cellIdx) {
legacyDepth_[cellIdx] =
grid.cellCenterDepth(cellIdx);
}
}
// Used to convert initial Reservoirstate to primary variables in the SolutionVector
void convertInput( const int iterationIdx,
const ReservoirState& reservoirState,
Simulator& simulator ) const
{
SolutionVector& solution = simulator.model().solution( 0 /* timeIdx */ );
const Opm::PhaseUsage pu = phaseUsage_;
const std::vector<bool> active = detail::activePhases(pu);
bool has_solvent = GET_PROP_VALUE(TypeTag, EnableSolvent);
bool has_polymer = GET_PROP_VALUE(TypeTag, EnablePolymer);
const int numCells = reservoirState.numCells();
const int numPhases = phaseUsage_.num_phases;
const auto& oilPressure = reservoirState.pressure();
const auto& saturations = reservoirState.saturation();
const auto& rs = reservoirState.gasoilratio();
const auto& rv = reservoirState.rv();
for( int cellIdx = 0; cellIdx<numCells; ++cellIdx )
{
// set non-switching primary variables
PrimaryVariables& cellPv = solution[ cellIdx ];
// set water saturation
if ( active[Water] ) {
cellPv[BlackoilIndices::waterSaturationIdx] = saturations[cellIdx*numPhases + pu.phase_pos[Water]];
}
if (has_solvent) {
cellPv[BlackoilIndices::solventSaturationIdx] = reservoirState.getCellData( reservoirState.SSOL )[cellIdx];
}
if (has_polymer) {
cellPv[BlackoilIndices::polymerConcentrationIdx] = reservoirState.getCellData( reservoirState.POLYMER )[cellIdx];
}
// set switching variable and interpretation
if ( active[Gas] ) {
if( reservoirState.hydroCarbonState()[cellIdx] == HydroCarbonState::OilOnly && has_disgas_ )
{
cellPv[BlackoilIndices::compositionSwitchIdx] = rs[cellIdx];
cellPv[BlackoilIndices::pressureSwitchIdx] = oilPressure[cellIdx];
cellPv.setPrimaryVarsMeaning( PrimaryVariables::Sw_po_Rs );
}
else if( reservoirState.hydroCarbonState()[cellIdx] == HydroCarbonState::GasOnly && has_vapoil_ )
{
// this case (-> gas only with vaporized oil in the gas) is
// relatively expensive as it requires to compute the capillary
// pressure in order to get the gas phase pressure. (the reason why
// ebos uses the gas pressure here is that it makes the common case
// of the primary variable switching code fast because to determine
// whether the oil phase appears one needs to compute the Rv value
// for the saturated gas phase and if this is not available as a
// primary variable, it needs to be computed.) luckily for here, the
// gas-only case is not too common, so the performance impact of this
// is limited.
typedef Opm::SimpleModularFluidState<double,
/*numPhases=*/3,
/*numComponents=*/3,
FluidSystem,
/*storePressure=*/false,
/*storeTemperature=*/false,
/*storeComposition=*/false,
/*storeFugacity=*/false,
/*storeSaturation=*/true,
/*storeDensity=*/false,
/*storeViscosity=*/false,
/*storeEnthalpy=*/false> SatOnlyFluidState;
SatOnlyFluidState fluidState;
if ( active[Water] ) {
fluidState.setSaturation(FluidSystem::waterPhaseIdx, saturations[cellIdx*numPhases + pu.phase_pos[Water]]);
}
else {
fluidState.setSaturation(FluidSystem::waterPhaseIdx, 0.0);
}
fluidState.setSaturation(FluidSystem::oilPhaseIdx, saturations[cellIdx*numPhases + pu.phase_pos[Oil]]);
fluidState.setSaturation(FluidSystem::gasPhaseIdx, saturations[cellIdx*numPhases + pu.phase_pos[Gas]]);
double pC[/*numPhases=*/3] = { 0.0, 0.0, 0.0 };
const MaterialLawParams& matParams = simulator.problem().materialLawParams(cellIdx);
MaterialLaw::capillaryPressures(pC, matParams, fluidState);
double pg = oilPressure[cellIdx] + (pC[FluidSystem::gasPhaseIdx] - pC[FluidSystem::oilPhaseIdx]);
cellPv[BlackoilIndices::compositionSwitchIdx] = rv[cellIdx];
cellPv[BlackoilIndices::pressureSwitchIdx] = pg;
cellPv.setPrimaryVarsMeaning( PrimaryVariables::Sw_pg_Rv );
}
else
{
assert( reservoirState.hydroCarbonState()[cellIdx] == HydroCarbonState::GasAndOil);
cellPv[BlackoilIndices::compositionSwitchIdx] = saturations[cellIdx*numPhases + pu.phase_pos[Gas]];
cellPv[BlackoilIndices::pressureSwitchIdx] = oilPressure[ cellIdx ];
cellPv.setPrimaryVarsMeaning( PrimaryVariables::Sw_po_Sg );
}
} else {
// for oil-water case oil pressure should be used as primary variable
cellPv[BlackoilIndices::pressureSwitchIdx] = oilPressure[cellIdx];
}
}
// store the solution at the beginning of the time step
if( iterationIdx == 0 )
{
simulator.model().solution( 1 /* timeIdx */ ) = solution;
}
}
RateConverterType createRateConverter_() {
RateConverterType rate_converter(phaseUsage_,
std::vector<int>(AutoDiffGrid::numCells(grid()), 0)); // FIP = 0
return rate_converter;
}
// Data.
Simulator& ebosSimulator_;
std::vector<int> legacyCellPvtRegionIdx_;
std::vector<double> legacyDepth_;
typedef typename Solver::SolverParameters SolverParameters;
SimulatorReport failureReport_;
const ParameterGroup param_;
ModelParameters model_param_;
SolverParameters solver_param_;
// Observed objects.
NewtonIterationBlackoilInterface& solver_;
PhaseUsage phaseUsage_;
// Misc. data
const bool has_disgas_;
const bool has_vapoil_;
bool terminal_output_;
// output_writer
OutputWriter& output_writer_;
RateConverterType rateConverter_;
// The names of wells that should be defunct
// (e.g. in a parallel run when they are handeled by
// a different process)
std::unordered_set<std::string> defunct_well_names_;
// Whether this a parallel simulation or not
bool is_parallel_run_;
};
} // namespace Opm
#endif // OPM_SIMULATORFULLYIMPLICITBLACKOIL_HEADER_INCLUDED