mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-12-30 11:06:55 -06:00
fc06923c50
for a better naming.
1048 lines
49 KiB
C++
1048 lines
49 KiB
C++
/*
|
|
Copyright 2013, 2015 SINTEF ICT, Applied Mathematics.
|
|
Copyright 2015 Andreas Lauser
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifndef OPM_SIMULATORFULLYIMPLICITBLACKOILEBOS_HEADER_INCLUDED
|
|
#define OPM_SIMULATORFULLYIMPLICITBLACKOILEBOS_HEADER_INCLUDED
|
|
|
|
#include <opm/autodiff/SimulatorFullyImplicitBlackoilOutput.hpp>
|
|
#include <opm/autodiff/IterationReport.hpp>
|
|
#include <opm/autodiff/NonlinearSolver.hpp>
|
|
#include <opm/autodiff/BlackoilModelEbos.hpp>
|
|
#include <opm/autodiff/BlackoilModelParameters.hpp>
|
|
#include <opm/autodiff/WellStateFullyImplicitBlackoil.hpp>
|
|
#include <opm/autodiff/BlackoilWellModel.hpp>
|
|
#include <opm/autodiff/RateConverter.hpp>
|
|
#include <opm/autodiff/SimFIBODetails.hpp>
|
|
#include <opm/autodiff/moduleVersion.hpp>
|
|
#include <opm/simulators/timestepping/AdaptiveTimeStepping.hpp>
|
|
#include <opm/core/utility/initHydroCarbonState.hpp>
|
|
#include <opm/core/utility/StopWatch.hpp>
|
|
|
|
#include <opm/common/Exceptions.hpp>
|
|
#include <opm/common/ErrorMacros.hpp>
|
|
|
|
#include <dune/common/unused.hh>
|
|
|
|
namespace Opm {
|
|
|
|
|
|
/// a simulator for the blackoil model
|
|
template<class TypeTag>
|
|
class SimulatorFullyImplicitBlackoilEbos
|
|
{
|
|
public:
|
|
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
|
|
typedef typename GET_PROP_TYPE(TypeTag, Grid) Grid;
|
|
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
|
|
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
|
|
typedef typename GET_PROP_TYPE(TypeTag, Indices) BlackoilIndices;
|
|
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
|
|
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
|
|
typedef typename GET_PROP_TYPE(TypeTag, SolutionVector) SolutionVector ;
|
|
typedef typename GET_PROP_TYPE(TypeTag, MaterialLawParams) MaterialLawParams;
|
|
|
|
typedef Ewoms::BlackOilPolymerModule<TypeTag> PolymerModule;
|
|
|
|
typedef WellStateFullyImplicitBlackoil WellState;
|
|
typedef BlackoilState ReservoirState;
|
|
typedef BlackoilOutputWriter OutputWriter;
|
|
typedef BlackoilModelEbos<TypeTag> Model;
|
|
typedef BlackoilModelParameters ModelParameters;
|
|
typedef NonlinearSolver<Model> Solver;
|
|
typedef BlackoilWellModel<TypeTag> WellModel;
|
|
typedef RateConverter::SurfaceToReservoirVoidage<FluidSystem, std::vector<int> > RateConverterType;
|
|
|
|
|
|
/// Initialise from parameters and objects to observe.
|
|
/// \param[in] param parameters, this class accepts the following:
|
|
/// parameter (default) effect
|
|
/// -----------------------------------------------------------
|
|
/// output (true) write output to files?
|
|
/// output_dir ("output") output directoty
|
|
/// output_interval (1) output every nth step
|
|
/// nl_pressure_residual_tolerance (0.0) pressure solver residual tolerance (in Pascal)
|
|
/// nl_pressure_change_tolerance (1.0) pressure solver change tolerance (in Pascal)
|
|
/// nl_pressure_maxiter (10) max nonlinear iterations in pressure
|
|
/// nl_maxiter (30) max nonlinear iterations in transport
|
|
/// nl_tolerance (1e-9) transport solver absolute residual tolerance
|
|
/// num_transport_substeps (1) number of transport steps per pressure step
|
|
/// use_segregation_split (false) solve for gravity segregation (if false,
|
|
/// segregation is ignored).
|
|
///
|
|
/// \param[in] props fluid and rock properties
|
|
/// \param[in] linsolver linear solver
|
|
/// \param[in] has_disgas true for dissolved gas option
|
|
/// \param[in] has_vapoil true for vaporized oil option
|
|
/// \param[in] eclipse_state the object which represents an internalized ECL deck
|
|
/// \param[in] output_writer
|
|
/// \param[in] threshold_pressures_by_face if nonempty, threshold pressures that inhibit flow
|
|
SimulatorFullyImplicitBlackoilEbos(Simulator& ebosSimulator,
|
|
const ParameterGroup& param,
|
|
NewtonIterationBlackoilInterface& linsolver,
|
|
const bool has_disgas,
|
|
const bool has_vapoil,
|
|
const EclipseState& /* eclState */,
|
|
OutputWriter& output_writer,
|
|
const std::unordered_set<std::string>& defunct_well_names)
|
|
: ebosSimulator_(ebosSimulator),
|
|
param_(param),
|
|
model_param_(param),
|
|
solver_param_(param),
|
|
solver_(linsolver),
|
|
phaseUsage_(phaseUsageFromDeck(eclState())),
|
|
has_disgas_(has_disgas),
|
|
has_vapoil_(has_vapoil),
|
|
terminal_output_(param.getDefault("output_terminal", true)),
|
|
output_writer_(output_writer),
|
|
rateConverter_(createRateConverter_()),
|
|
defunct_well_names_( defunct_well_names ),
|
|
is_parallel_run_( false )
|
|
{
|
|
#if HAVE_MPI
|
|
if ( solver_.parallelInformation().type() == typeid(ParallelISTLInformation) )
|
|
{
|
|
const ParallelISTLInformation& info =
|
|
boost::any_cast<const ParallelISTLInformation&>(solver_.parallelInformation());
|
|
// Only rank 0 does print to std::cout
|
|
terminal_output_ = terminal_output_ && ( info.communicator().rank() == 0 );
|
|
is_parallel_run_ = ( info.communicator().size() > 1 );
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/// Run the simulation.
|
|
/// This will run succesive timesteps until timer.done() is true. It will
|
|
/// modify the reservoir and well states.
|
|
/// \param[in,out] timer governs the requested reporting timesteps
|
|
/// \param[in,out] state state of reservoir: pressure, fluxes
|
|
/// \return simulation report, with timing data
|
|
SimulatorReport run(SimulatorTimer& timer,
|
|
ReservoirState& state)
|
|
{
|
|
WellState prev_well_state;
|
|
|
|
ExtraData extra;
|
|
|
|
failureReport_ = SimulatorReport();
|
|
extractLegacyDepth_();
|
|
|
|
// communicate the initial solution to ebos
|
|
if (timer.initialStep()) {
|
|
convertInput(/*iterationIdx=*/0, state, ebosSimulator_ );
|
|
ebosSimulator_.model().invalidateIntensiveQuantitiesCache(/*timeIdx=*/0);
|
|
}
|
|
|
|
if (output_writer_.isRestart()) {
|
|
// This is a restart, populate WellState and ReservoirState state objects from restart file
|
|
output_writer_.initFromRestartFile(phaseUsage_, grid(), state, prev_well_state, extra);
|
|
initHydroCarbonState(state, phaseUsage_, Opm::UgGridHelpers::numCells(grid()), has_disgas_, has_vapoil_);
|
|
initHysteresisParams(state);
|
|
// communicate the restart solution to ebos
|
|
convertInput(/*iterationIdx=*/0, state, ebosSimulator_ );
|
|
ebosSimulator_.model().invalidateIntensiveQuantitiesCache(/*timeIdx=*/0);
|
|
}
|
|
|
|
// Sync the overlap region of the inital solution. It was generated
|
|
// from the ReservoirState which has wrong values in the ghost region
|
|
// for some models (SPE9, Norne, Model 2)
|
|
ebosSimulator_.model().syncOverlap();
|
|
|
|
// Create timers and file for writing timing info.
|
|
Opm::time::StopWatch solver_timer;
|
|
Opm::time::StopWatch step_timer;
|
|
Opm::time::StopWatch total_timer;
|
|
total_timer.start();
|
|
std::string tstep_filename = output_writer_.outputDirectory() + "/step_timing.txt";
|
|
std::ofstream tstep_os;
|
|
|
|
if ( output_writer_.output() && output_writer_.isIORank() )
|
|
{
|
|
tstep_os.open(tstep_filename.c_str());
|
|
}
|
|
|
|
const auto& schedule = eclState().getSchedule();
|
|
|
|
// adaptive time stepping
|
|
const auto& events = schedule.getEvents();
|
|
std::unique_ptr< AdaptiveTimeStepping > adaptiveTimeStepping;
|
|
if( param_.getDefault("timestep.adaptive", true ) )
|
|
{
|
|
|
|
if (param_.getDefault("use_TUNING", false)) {
|
|
adaptiveTimeStepping.reset( new AdaptiveTimeStepping( schedule.getTuning(), timer.currentStepNum(), param_, terminal_output_ ) );
|
|
} else {
|
|
adaptiveTimeStepping.reset( new AdaptiveTimeStepping( param_, terminal_output_ ) );
|
|
}
|
|
|
|
if (output_writer_.isRestart()) {
|
|
if (extra.suggested_step > 0.0) {
|
|
adaptiveTimeStepping->setSuggestedNextStep(extra.suggested_step);
|
|
}
|
|
}
|
|
}
|
|
|
|
std::string restorefilename = param_.getDefault("restorefile", std::string("") );
|
|
if( ! restorefilename.empty() )
|
|
{
|
|
// -1 means that we'll take the last report step that was written
|
|
const int desiredRestoreStep = param_.getDefault("restorestep", int(-1) );
|
|
|
|
output_writer_.restore( timer,
|
|
state,
|
|
prev_well_state,
|
|
restorefilename,
|
|
desiredRestoreStep );
|
|
initHydroCarbonState(state, phaseUsage_, Opm::UgGridHelpers::numCells(grid()), has_disgas_, has_vapoil_);
|
|
initHysteresisParams(state);
|
|
// communicate the restart solution to ebos
|
|
convertInput(0, state, ebosSimulator_);
|
|
ebosSimulator_.model().invalidateIntensiveQuantitiesCache(/*timeIdx=*/0);
|
|
}
|
|
|
|
DynamicListEconLimited dynamic_list_econ_limited;
|
|
SimulatorReport report;
|
|
SimulatorReport stepReport;
|
|
|
|
std::vector<int> fipnum_global = eclState().get3DProperties().getIntGridProperty("FIPNUM").getData();
|
|
//Get compressed cell fipnum.
|
|
std::vector<int> fipnum(Opm::UgGridHelpers::numCells(grid()));
|
|
if (fipnum_global.empty()) {
|
|
std::fill(fipnum.begin(), fipnum.end(), 0);
|
|
} else {
|
|
for (size_t c = 0; c < fipnum.size(); ++c) {
|
|
fipnum[c] = fipnum_global[Opm::UgGridHelpers::globalCell(grid())[c]];
|
|
}
|
|
}
|
|
std::vector<std::vector<double>> originalFluidInPlace;
|
|
std::vector<double> originalFluidInPlaceTotals;
|
|
|
|
// Main simulation loop.
|
|
while (!timer.done()) {
|
|
// Report timestep.
|
|
step_timer.start();
|
|
if ( terminal_output_ )
|
|
{
|
|
std::ostringstream ss;
|
|
timer.report(ss);
|
|
OpmLog::note(ss.str());
|
|
}
|
|
|
|
// Create wells and well state.
|
|
WellsManager wells_manager(eclState(),
|
|
timer.currentStepNum(),
|
|
Opm::UgGridHelpers::numCells(grid()),
|
|
Opm::UgGridHelpers::globalCell(grid()),
|
|
Opm::UgGridHelpers::cartDims(grid()),
|
|
Opm::UgGridHelpers::dimensions(grid()),
|
|
Opm::UgGridHelpers::cell2Faces(grid()),
|
|
Opm::UgGridHelpers::beginFaceCentroids(grid()),
|
|
dynamic_list_econ_limited,
|
|
is_parallel_run_,
|
|
defunct_well_names_ );
|
|
const Wells* wells = wells_manager.c_wells();
|
|
WellState well_state;
|
|
|
|
// The well state initialize bhp with the cell pressure in the top cell.
|
|
// We must therefore provide it with updated cell pressures
|
|
size_t nc = Opm::UgGridHelpers::numCells(grid());
|
|
std::vector<double> cellPressures(nc, 0.0);
|
|
const auto& gridView = ebosSimulator_.gridManager().gridView();
|
|
ElementContext elemCtx(ebosSimulator_);
|
|
const auto& elemEndIt = gridView.template end</*codim=*/0>();
|
|
for (auto elemIt = gridView.template begin</*codim=*/0>();
|
|
elemIt != elemEndIt;
|
|
++elemIt)
|
|
{
|
|
const auto& elem = *elemIt;
|
|
if (elem.partitionType() != Dune::InteriorEntity) {
|
|
continue;
|
|
}
|
|
|
|
elemCtx.updatePrimaryStencil(elem);
|
|
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
|
|
|
|
const unsigned cellIdx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
|
|
const auto& intQuants = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
|
|
const auto& fs = intQuants.fluidState();
|
|
|
|
const double p = fs.pressure(FluidSystem::oilPhaseIdx).value();
|
|
cellPressures[cellIdx] = p;
|
|
}
|
|
well_state.init(wells, cellPressures, prev_well_state, phaseUsage_);
|
|
|
|
// give the polymer and surfactant simulators the chance to do their stuff
|
|
handleAdditionalWellInflow(timer, wells_manager, well_state, wells);
|
|
|
|
// Compute reservoir volumes for RESV controls.
|
|
computeRESV(timer.currentStepNum(), wells, well_state);
|
|
|
|
// Run a multiple steps of the solver depending on the time step control.
|
|
solver_timer.start();
|
|
|
|
const auto& wells_ecl = eclState().getSchedule().getWells(timer.currentStepNum());
|
|
extractLegacyCellPvtRegionIndex_();
|
|
// handling MS well related
|
|
if (model_param_.use_multisegment_well_) { // if we use MultisegmentWell model
|
|
for (const auto& well : wells_ecl) {
|
|
if (well->isMultiSegment(timer.currentStepNum()) ) { // there is one well is MS well
|
|
well_state.initWellStateMSWell(wells, wells_ecl, timer.currentStepNum(), phaseUsage_, prev_well_state);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
WellModel well_model(wells, &(wells_manager.wellCollection()), wells_ecl, model_param_,
|
|
rateConverter_, terminal_output_, timer.currentStepNum(), legacyCellPvtRegionIdx_);
|
|
|
|
auto solver = createSolver(well_model);
|
|
|
|
std::vector<std::vector<double>> currentFluidInPlace;
|
|
std::vector<double> currentFluidInPlaceTotals;
|
|
|
|
// Compute orignal fluid in place if this has not been done yet
|
|
if (originalFluidInPlace.empty()) {
|
|
originalFluidInPlace = solver->computeFluidInPlace(fipnum);
|
|
originalFluidInPlaceTotals = FIPTotals(originalFluidInPlace);
|
|
FIPUnitConvert(eclState().getUnits(), originalFluidInPlace);
|
|
FIPUnitConvert(eclState().getUnits(), originalFluidInPlaceTotals);
|
|
|
|
currentFluidInPlace = originalFluidInPlace;
|
|
currentFluidInPlaceTotals = originalFluidInPlaceTotals;
|
|
}
|
|
|
|
// write the inital state at the report stage
|
|
if (timer.initialStep()) {
|
|
Dune::Timer perfTimer;
|
|
perfTimer.start();
|
|
|
|
if (terminal_output_) {
|
|
outputFluidInPlace(originalFluidInPlaceTotals, currentFluidInPlaceTotals,eclState().getUnits(), 0);
|
|
for (size_t reg = 0; reg < originalFluidInPlace.size(); ++reg) {
|
|
outputFluidInPlace(originalFluidInPlace[reg], currentFluidInPlace[reg], eclState().getUnits(), reg+1);
|
|
}
|
|
}
|
|
|
|
// No per cell data is written for initial step, but will be
|
|
// for subsequent steps, when we have started simulating
|
|
output_writer_.writeTimeStep( timer, state, well_state, solver->model() );
|
|
|
|
report.output_write_time += perfTimer.stop();
|
|
}
|
|
|
|
if( terminal_output_ )
|
|
{
|
|
std::ostringstream step_msg;
|
|
boost::posix_time::time_facet* facet = new boost::posix_time::time_facet("%d-%b-%Y");
|
|
step_msg.imbue(std::locale(std::locale::classic(), facet));
|
|
step_msg << "\nTime step " << std::setw(4) <<timer.currentStepNum()
|
|
<< " at day " << (double)unit::convert::to(timer.simulationTimeElapsed(), unit::day)
|
|
<< "/" << (double)unit::convert::to(timer.totalTime(), unit::day)
|
|
<< ", date = " << timer.currentDateTime();
|
|
OpmLog::info(step_msg.str());
|
|
}
|
|
|
|
solver->model().beginReportStep();
|
|
|
|
// If sub stepping is enabled allow the solver to sub cycle
|
|
// in case the report steps are too large for the solver to converge
|
|
//
|
|
// \Note: The report steps are met in any case
|
|
// \Note: The sub stepping will require a copy of the state variables
|
|
if( adaptiveTimeStepping ) {
|
|
bool event = events.hasEvent(ScheduleEvents::NEW_WELL, timer.currentStepNum()) ||
|
|
events.hasEvent(ScheduleEvents::PRODUCTION_UPDATE, timer.currentStepNum()) ||
|
|
events.hasEvent(ScheduleEvents::INJECTION_UPDATE, timer.currentStepNum()) ||
|
|
events.hasEvent(ScheduleEvents::WELL_STATUS_CHANGE, timer.currentStepNum());
|
|
stepReport = adaptiveTimeStepping->step( timer, *solver, state, well_state, event, output_writer_,
|
|
output_writer_.requireFIPNUM() ? &fipnum : nullptr );
|
|
report += stepReport;
|
|
failureReport_ += adaptiveTimeStepping->failureReport();
|
|
}
|
|
else {
|
|
// solve for complete report step
|
|
stepReport = solver->step(timer, state, well_state);
|
|
report += stepReport;
|
|
failureReport_ += solver->failureReport();
|
|
|
|
if( terminal_output_ )
|
|
{
|
|
//stepReport.briefReport();
|
|
std::ostringstream iter_msg;
|
|
iter_msg << "Stepsize " << (double)unit::convert::to(timer.currentStepLength(), unit::day);
|
|
if (solver->wellIterations() != 0) {
|
|
iter_msg << " days well iterations = " << solver->wellIterations() << ", ";
|
|
}
|
|
iter_msg << "non-linear iterations = " << solver->nonlinearIterations()
|
|
<< ", total linear iterations = " << solver->linearIterations()
|
|
<< "\n";
|
|
OpmLog::info(iter_msg.str());
|
|
}
|
|
}
|
|
|
|
solver->model().endReportStep();
|
|
|
|
// take time that was used to solve system for this reportStep
|
|
solver_timer.stop();
|
|
|
|
// update timing.
|
|
report.solver_time += solver_timer.secsSinceStart();
|
|
|
|
if ( output_writer_.output() && output_writer_.isIORank() )
|
|
{
|
|
stepReport.reportParam(tstep_os);
|
|
}
|
|
|
|
// We don't need the reservoir state anymore. It is just passed around to avoid
|
|
// code duplication. Pass empty state instead.
|
|
if (timer.initialStep()) {
|
|
ReservoirState stateTrivial(0,0,0);
|
|
state = stateTrivial;
|
|
}
|
|
|
|
// Increment timer, remember well state.
|
|
++timer;
|
|
|
|
// Compute current fluid in place.
|
|
currentFluidInPlace = solver->computeFluidInPlace(fipnum);
|
|
currentFluidInPlaceTotals = FIPTotals(currentFluidInPlace);
|
|
|
|
const std::string version = moduleVersionName();
|
|
|
|
FIPUnitConvert(eclState().getUnits(), currentFluidInPlace);
|
|
FIPUnitConvert(eclState().getUnits(), currentFluidInPlaceTotals);
|
|
|
|
if (terminal_output_ )
|
|
{
|
|
outputTimestampFIP(timer, version);
|
|
outputFluidInPlace(originalFluidInPlaceTotals, currentFluidInPlaceTotals,eclState().getUnits(), 0);
|
|
for (size_t reg = 0; reg < originalFluidInPlace.size(); ++reg) {
|
|
outputFluidInPlace(originalFluidInPlace[reg], currentFluidInPlace[reg], eclState().getUnits(), reg+1);
|
|
}
|
|
|
|
std::string msg;
|
|
msg =
|
|
"Time step took " + std::to_string(solver_timer.secsSinceStart()) + " seconds; "
|
|
"total solver time " + std::to_string(report.solver_time) + " seconds.";
|
|
OpmLog::note(msg);
|
|
}
|
|
|
|
// write simulation state at the report stage
|
|
Dune::Timer perfTimer;
|
|
perfTimer.start();
|
|
const double nextstep = adaptiveTimeStepping ? adaptiveTimeStepping->suggestedNextStep() : -1.0;
|
|
output_writer_.writeTimeStep( timer, state, well_state, solver->model(), false, nextstep, report);
|
|
report.output_write_time += perfTimer.stop();
|
|
|
|
prev_well_state = well_state;
|
|
|
|
updateListEconLimited(solver, eclState().getSchedule(), timer.currentStepNum(), wells,
|
|
well_state, dynamic_list_econ_limited);
|
|
}
|
|
|
|
// Stop timer and create timing report
|
|
total_timer.stop();
|
|
report.total_time = total_timer.secsSinceStart();
|
|
report.converged = true;
|
|
return report;
|
|
}
|
|
|
|
/** \brief Returns the simulator report for the failed substeps of the simulation.
|
|
*/
|
|
const SimulatorReport& failureReport() const { return failureReport_; };
|
|
|
|
const Grid& grid() const
|
|
{ return ebosSimulator_.gridManager().grid(); }
|
|
|
|
protected:
|
|
void handleAdditionalWellInflow(SimulatorTimer& /*timer*/,
|
|
WellsManager& /* wells_manager */,
|
|
WellState& /* well_state */,
|
|
const Wells* /* wells */)
|
|
{
|
|
}
|
|
|
|
std::unique_ptr<Solver> createSolver(WellModel& well_model)
|
|
{
|
|
const auto& gridView = ebosSimulator_.gridView();
|
|
const PhaseUsage& phaseUsage = phaseUsage_;
|
|
const std::vector<bool> activePhases = detail::activePhases(phaseUsage);
|
|
const double gravity = ebosSimulator_.problem().gravity()[2];
|
|
|
|
// calculate the number of elements of the compressed sequential grid. this needs
|
|
// to be done in two steps because the dune communicator expects a reference as
|
|
// argument for sum()
|
|
int globalNumCells = gridView.size(/*codim=*/0);
|
|
globalNumCells = gridView.comm().sum(globalNumCells);
|
|
|
|
well_model.init(phaseUsage,
|
|
activePhases,
|
|
gravity,
|
|
legacyDepth_,
|
|
globalNumCells,
|
|
grid());
|
|
auto model = std::unique_ptr<Model>(new Model(ebosSimulator_,
|
|
model_param_,
|
|
well_model,
|
|
rateConverter_,
|
|
solver_,
|
|
terminal_output_));
|
|
|
|
return std::unique_ptr<Solver>(new Solver(solver_param_, std::move(model)));
|
|
}
|
|
|
|
void computeRESV(const std::size_t step,
|
|
const Wells* wells,
|
|
WellState& xw)
|
|
{
|
|
typedef SimFIBODetails::WellMap WellMap;
|
|
|
|
const auto w_ecl = eclState().getSchedule().getWells(step);
|
|
const WellMap& wmap = SimFIBODetails::mapWells(w_ecl);
|
|
|
|
const std::vector<int>& resv_wells = SimFIBODetails::resvWells(wells, step, wmap);
|
|
|
|
const std::size_t number_resv_wells = resv_wells.size();
|
|
std::size_t global_number_resv_wells = number_resv_wells;
|
|
#if HAVE_MPI
|
|
if ( solver_.parallelInformation().type() == typeid(ParallelISTLInformation) )
|
|
{
|
|
const auto& info =
|
|
boost::any_cast<const ParallelISTLInformation&>(solver_.parallelInformation());
|
|
global_number_resv_wells = info.communicator().sum(global_number_resv_wells);
|
|
if ( global_number_resv_wells )
|
|
{
|
|
// At least one process has resv wells. Therefore rate converter needs
|
|
// to calculate averages over regions that might cross process
|
|
// borders. This needs to be done by all processes and therefore
|
|
// outside of the next if statement.
|
|
rateConverter_.template defineState<ElementContext>(ebosSimulator_);
|
|
}
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
if ( global_number_resv_wells )
|
|
{
|
|
rateConverter_.template defineState<ElementContext>(ebosSimulator_);
|
|
}
|
|
}
|
|
|
|
if (! resv_wells.empty()) {
|
|
const PhaseUsage& pu = phaseUsage_;
|
|
const std::vector<double>::size_type np = phaseUsage_.num_phases;
|
|
|
|
std::vector<double> distr (np);
|
|
std::vector<double> hrates(np);
|
|
std::vector<double> prates(np);
|
|
|
|
for (std::vector<int>::const_iterator
|
|
rp = resv_wells.begin(), e = resv_wells.end();
|
|
rp != e; ++rp)
|
|
{
|
|
WellControls* ctrl = wells->ctrls[*rp];
|
|
const bool is_producer = wells->type[*rp] == PRODUCER;
|
|
const int well_cell_top = wells->well_cells[wells->well_connpos[*rp]];
|
|
const auto& eclProblem = ebosSimulator_.problem();
|
|
const int pvtreg = eclProblem.pvtRegionIndex(well_cell_top);
|
|
|
|
// RESV control mode, all wells
|
|
{
|
|
const int rctrl = SimFIBODetails::resv_control(ctrl);
|
|
|
|
if (0 <= rctrl) {
|
|
const std::vector<double>::size_type off = (*rp) * np;
|
|
|
|
if (is_producer) {
|
|
// Convert to positive rates to avoid issues
|
|
// in coefficient calculations.
|
|
std::transform(xw.wellRates().begin() + (off + 0*np),
|
|
xw.wellRates().begin() + (off + 1*np),
|
|
prates.begin(), std::negate<double>());
|
|
} else {
|
|
std::copy(xw.wellRates().begin() + (off + 0*np),
|
|
xw.wellRates().begin() + (off + 1*np),
|
|
prates.begin());
|
|
}
|
|
|
|
const int fipreg = 0; // Hack. Ignore FIP regions.
|
|
rateConverter_.calcCoeff(fipreg, pvtreg, distr);
|
|
|
|
well_controls_iset_distr(ctrl, rctrl, & distr[0]);
|
|
}
|
|
}
|
|
|
|
// RESV control, WCONHIST wells. A bit of duplicate
|
|
// work, regrettably.
|
|
if (is_producer && wells->name[*rp] != 0) {
|
|
WellMap::const_iterator i = wmap.find(wells->name[*rp]);
|
|
|
|
if (i != wmap.end()) {
|
|
const auto* wp = i->second;
|
|
|
|
const WellProductionProperties& p =
|
|
wp->getProductionProperties(step);
|
|
|
|
if (! p.predictionMode) {
|
|
// History matching (WCONHIST/RESV)
|
|
SimFIBODetails::historyRates(pu, p, hrates);
|
|
|
|
const int fipreg = 0; // Hack. Ignore FIP regions.
|
|
rateConverter_.calcCoeff(fipreg, pvtreg, distr);
|
|
|
|
// WCONHIST/RESV target is sum of all
|
|
// observed phase rates translated to
|
|
// reservoir conditions. Recall sign
|
|
// convention: Negative for producers.
|
|
const double target =
|
|
- std::inner_product(distr.begin(), distr.end(),
|
|
hrates.begin(), 0.0);
|
|
|
|
well_controls_clear(ctrl);
|
|
well_controls_assert_number_of_phases(ctrl, int(np));
|
|
|
|
static const double invalid_alq = -std::numeric_limits<double>::max();
|
|
static const int invalid_vfp = -std::numeric_limits<int>::max();
|
|
|
|
const int ok_resv =
|
|
well_controls_add_new(RESERVOIR_RATE, target,
|
|
invalid_alq, invalid_vfp,
|
|
& distr[0], ctrl);
|
|
|
|
// For WCONHIST the BHP limit is set to 1 atm.
|
|
// or a value specified using WELTARG
|
|
double bhp_limit = (p.BHPLimit > 0) ? p.BHPLimit : unit::convert::from(1.0, unit::atm);
|
|
const int ok_bhp =
|
|
well_controls_add_new(BHP, bhp_limit,
|
|
invalid_alq, invalid_vfp,
|
|
NULL, ctrl);
|
|
|
|
if (ok_resv != 0 && ok_bhp != 0) {
|
|
xw.currentControls()[*rp] = 0;
|
|
well_controls_set_current(ctrl, 0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if( wells )
|
|
{
|
|
for (int w = 0, nw = wells->number_of_wells; w < nw; ++w) {
|
|
WellControls* ctrl = wells->ctrls[w];
|
|
const bool is_producer = wells->type[w] == PRODUCER;
|
|
if (!is_producer && wells->name[w] != 0) {
|
|
WellMap::const_iterator i = wmap.find(wells->name[w]);
|
|
if (i != wmap.end()) {
|
|
const auto* wp = i->second;
|
|
const WellInjectionProperties& injector = wp->getInjectionProperties(step);
|
|
if (!injector.predictionMode) {
|
|
//History matching WCONINJEH
|
|
static const double invalid_alq = -std::numeric_limits<double>::max();
|
|
static const int invalid_vfp = -std::numeric_limits<int>::max();
|
|
// For WCONINJEH the BHP limit is set to a large number
|
|
// or a value specified using WELTARG
|
|
double bhp_limit = (injector.BHPLimit > 0) ? injector.BHPLimit : std::numeric_limits<double>::max();
|
|
const int ok_bhp =
|
|
well_controls_add_new(BHP, bhp_limit,
|
|
invalid_alq, invalid_vfp,
|
|
NULL, ctrl);
|
|
if (!ok_bhp) {
|
|
OPM_THROW(std::runtime_error, "Failed to add well control.");
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
void updateListEconLimited(const std::unique_ptr<Solver>& solver,
|
|
const Schedule& schedule,
|
|
const int current_step,
|
|
const Wells* wells,
|
|
const WellState& well_state,
|
|
DynamicListEconLimited& list_econ_limited) const
|
|
{
|
|
solver->model().wellModel().updateListEconLimited(schedule, current_step, wells,
|
|
well_state, list_econ_limited);
|
|
}
|
|
|
|
void FIPUnitConvert(const UnitSystem& units,
|
|
std::vector<std::vector<double>>& fip)
|
|
{
|
|
for (size_t i = 0; i < fip.size(); ++i) {
|
|
FIPUnitConvert(units, fip[i]);
|
|
}
|
|
}
|
|
|
|
|
|
void FIPUnitConvert(const UnitSystem& units,
|
|
std::vector<double>& fip)
|
|
{
|
|
if (units.getType() == UnitSystem::UnitType::UNIT_TYPE_FIELD) {
|
|
fip[0] = unit::convert::to(fip[0], unit::stb);
|
|
fip[1] = unit::convert::to(fip[1], unit::stb);
|
|
fip[2] = unit::convert::to(fip[2], 1000*unit::cubic(unit::feet));
|
|
fip[3] = unit::convert::to(fip[3], 1000*unit::cubic(unit::feet));
|
|
fip[4] = unit::convert::to(fip[4], unit::stb);
|
|
fip[5] = unit::convert::to(fip[5], unit::stb);
|
|
fip[6] = unit::convert::to(fip[6], unit::psia);
|
|
}
|
|
else if (units.getType() == UnitSystem::UnitType::UNIT_TYPE_METRIC) {
|
|
fip[6] = unit::convert::to(fip[6], unit::barsa);
|
|
}
|
|
else {
|
|
OPM_THROW(std::runtime_error, "Unsupported unit type for fluid in place output.");
|
|
}
|
|
}
|
|
|
|
|
|
std::vector<double> FIPTotals(const std::vector<std::vector<double>>& fip)
|
|
{
|
|
std::vector<double> totals(7,0.0);
|
|
for (int i = 0; i < 5; ++i) {
|
|
for (size_t reg = 0; reg < fip.size(); ++reg) {
|
|
totals[i] += fip[reg][i];
|
|
}
|
|
}
|
|
|
|
const auto& gridView = ebosSimulator_.gridManager().gridView();
|
|
const auto& comm = gridView.comm();
|
|
double pv_hydrocarbon_sum = 0.0;
|
|
double p_pv_hydrocarbon_sum = 0.0;
|
|
|
|
ElementContext elemCtx(ebosSimulator_);
|
|
const auto& elemEndIt = gridView.template end</*codim=*/0>();
|
|
for (auto elemIt = gridView.template begin</*codim=*/0>();
|
|
elemIt != elemEndIt;
|
|
++elemIt)
|
|
{
|
|
const auto& elem = *elemIt;
|
|
if (elem.partitionType() != Dune::InteriorEntity) {
|
|
continue;
|
|
}
|
|
|
|
elemCtx.updatePrimaryStencil(elem);
|
|
elemCtx.updatePrimaryIntensiveQuantities(/*timeIdx=*/0);
|
|
|
|
const unsigned cellIdx = elemCtx.globalSpaceIndex(/*spaceIdx=*/0, /*timeIdx=*/0);
|
|
const auto& intQuants = elemCtx.intensiveQuantities(/*spaceIdx=*/0, /*timeIdx=*/0);
|
|
const auto& fs = intQuants.fluidState();
|
|
|
|
const double p = fs.pressure(FluidSystem::oilPhaseIdx).value();
|
|
const double hydrocarbon = fs.saturation(FluidSystem::oilPhaseIdx).value() + fs.saturation(FluidSystem::gasPhaseIdx).value();
|
|
|
|
// calculate the pore volume of the current cell. Note that the
|
|
// porosity returned by the intensive quantities is defined as the
|
|
// ratio of pore space to total cell volume and includes all pressure
|
|
// dependent (-> rock compressibility) and static modifiers (MULTPV,
|
|
// MULTREGP, NTG, PORV, MINPV and friends). Also note that because of
|
|
// this, the porosity returned by the intensive quantities can be
|
|
// outside of the physical range [0, 1] in pathetic cases.
|
|
const double pv =
|
|
ebosSimulator_.model().dofTotalVolume(cellIdx)
|
|
* intQuants.porosity().value();
|
|
|
|
totals[5] += pv;
|
|
pv_hydrocarbon_sum += pv*hydrocarbon;
|
|
p_pv_hydrocarbon_sum += p*pv*hydrocarbon;
|
|
}
|
|
|
|
pv_hydrocarbon_sum = comm.sum(pv_hydrocarbon_sum);
|
|
p_pv_hydrocarbon_sum = comm.sum(p_pv_hydrocarbon_sum);
|
|
totals[5] = comm.sum(totals[5]);
|
|
totals[6] = (p_pv_hydrocarbon_sum / pv_hydrocarbon_sum);
|
|
|
|
return totals;
|
|
}
|
|
|
|
|
|
void outputTimestampFIP(SimulatorTimer& timer, const std::string version)
|
|
{
|
|
std::ostringstream ss;
|
|
boost::posix_time::time_facet* facet = new boost::posix_time::time_facet("%d %b %Y");
|
|
ss.imbue(std::locale(std::locale::classic(), facet));
|
|
ss << "\n **************************************************************************\n"
|
|
<< " Balance at" << std::setw(10) << (double)unit::convert::to(timer.simulationTimeElapsed(), unit::day) << " Days"
|
|
<< " *" << std::setw(30) << eclState().getTitle() << " *\n"
|
|
<< " Report " << std::setw(4) << timer.reportStepNum() << " " << timer.currentDateTime()
|
|
<< " * Flow version " << std::setw(11) << version << " *\n"
|
|
<< " **************************************************************************\n";
|
|
OpmLog::note(ss.str());
|
|
}
|
|
|
|
|
|
void outputFluidInPlace(const std::vector<double>& oip, const std::vector<double>& cip, const UnitSystem& units, const int reg)
|
|
{
|
|
std::ostringstream ss;
|
|
if (!reg) {
|
|
ss << " ===================================================\n"
|
|
<< " : Field Totals :\n";
|
|
} else {
|
|
ss << " ===================================================\n"
|
|
<< " : FIPNUM report region "
|
|
<< std::setw(2) << reg << " :\n";
|
|
}
|
|
if (units.getType() == UnitSystem::UnitType::UNIT_TYPE_METRIC) {
|
|
ss << " : PAV =" << std::setw(14) << cip[6] << " BARSA :\n"
|
|
<< std::fixed << std::setprecision(0)
|
|
<< " : PORV =" << std::setw(14) << cip[5] << " RM3 :\n";
|
|
if (!reg) {
|
|
ss << " : Pressure is weighted by hydrocarbon pore volume :\n"
|
|
<< " : Porv volumes are taken at reference conditions :\n";
|
|
}
|
|
ss << " :--------------- Oil SM3 ---------------:-- Wat SM3 --:--------------- Gas SM3 ---------------:\n";
|
|
}
|
|
if (units.getType() == UnitSystem::UnitType::UNIT_TYPE_FIELD) {
|
|
ss << " : PAV =" << std::setw(14) << cip[6] << " PSIA :\n"
|
|
<< std::fixed << std::setprecision(0)
|
|
<< " : PORV =" << std::setw(14) << cip[5] << " RB :\n";
|
|
if (!reg) {
|
|
ss << " : Pressure is weighted by hydrocarbon pore volume :\n"
|
|
<< " : Pore volumes are taken at reference conditions :\n";
|
|
}
|
|
ss << " :--------------- Oil STB ---------------:-- Wat STB --:--------------- Gas MSCF ---------------:\n";
|
|
}
|
|
ss << " : Liquid Vapour Total : Total : Free Dissolved Total :" << "\n"
|
|
<< ":------------------------:------------------------------------------:----------------:------------------------------------------:" << "\n"
|
|
<< ":Currently in place :" << std::setw(14) << cip[1] << std::setw(14) << cip[4] << std::setw(14) << (cip[1]+cip[4]) << ":"
|
|
<< std::setw(13) << cip[0] << " :" << std::setw(14) << (cip[2]) << std::setw(14) << cip[3] << std::setw(14) << (cip[2] + cip[3]) << ":\n"
|
|
<< ":------------------------:------------------------------------------:----------------:------------------------------------------:\n"
|
|
<< ":Originally in place :" << std::setw(14) << oip[1] << std::setw(14) << oip[4] << std::setw(14) << (oip[1]+oip[4]) << ":"
|
|
<< std::setw(13) << oip[0] << " :" << std::setw(14) << oip[2] << std::setw(14) << oip[3] << std::setw(14) << (oip[2] + oip[3]) << ":\n"
|
|
<< ":========================:==========================================:================:==========================================:\n";
|
|
OpmLog::note(ss.str());
|
|
}
|
|
|
|
|
|
const EclipseState& eclState() const
|
|
{ return ebosSimulator_.gridManager().eclState(); }
|
|
|
|
void extractLegacyCellPvtRegionIndex_()
|
|
{
|
|
const auto& grid = ebosSimulator_.gridManager().grid();
|
|
const auto& eclProblem = ebosSimulator_.problem();
|
|
const unsigned numCells = grid.size(/*codim=*/0);
|
|
|
|
legacyCellPvtRegionIdx_.resize(numCells);
|
|
for (unsigned cellIdx = 0; cellIdx < numCells; ++cellIdx) {
|
|
legacyCellPvtRegionIdx_[cellIdx] =
|
|
eclProblem.pvtRegionIndex(cellIdx);
|
|
}
|
|
}
|
|
|
|
void initHysteresisParams(ReservoirState& state) {
|
|
const int num_cells = Opm::UgGridHelpers::numCells(grid());
|
|
|
|
typedef std::vector<double> VectorType;
|
|
|
|
const VectorType& somax = state.getCellData( "SOMAX" );
|
|
|
|
for (int cellIdx = 0; cellIdx < num_cells; ++cellIdx) {
|
|
ebosSimulator_.model().setMaxOilSaturation(somax[cellIdx], cellIdx);
|
|
}
|
|
|
|
if (ebosSimulator_.problem().materialLawManager()->enableHysteresis()) {
|
|
auto matLawManager = ebosSimulator_.problem().materialLawManager();
|
|
|
|
VectorType& pcSwMdc_ow = state.getCellData( "PCSWMDC_OW" );
|
|
VectorType& krnSwMdc_ow = state.getCellData( "KRNSWMDC_OW" );
|
|
|
|
VectorType& pcSwMdc_go = state.getCellData( "PCSWMDC_GO" );
|
|
VectorType& krnSwMdc_go = state.getCellData( "KRNSWMDC_GO" );
|
|
|
|
for (int cellIdx = 0; cellIdx < num_cells; ++cellIdx) {
|
|
matLawManager->setOilWaterHysteresisParams(
|
|
pcSwMdc_ow[cellIdx],
|
|
krnSwMdc_ow[cellIdx],
|
|
cellIdx);
|
|
matLawManager->setGasOilHysteresisParams(
|
|
pcSwMdc_go[cellIdx],
|
|
krnSwMdc_go[cellIdx],
|
|
cellIdx);
|
|
}
|
|
}
|
|
}
|
|
|
|
void extractLegacyDepth_()
|
|
{
|
|
const auto& grid = ebosSimulator_.gridManager().grid();
|
|
const unsigned numCells = grid.size(/*codim=*/0);
|
|
|
|
legacyDepth_.resize(numCells);
|
|
for (unsigned cellIdx = 0; cellIdx < numCells; ++cellIdx) {
|
|
legacyDepth_[cellIdx] =
|
|
grid.cellCenterDepth(cellIdx);
|
|
}
|
|
}
|
|
|
|
// Used to convert initial Reservoirstate to primary variables in the SolutionVector
|
|
void convertInput( const int iterationIdx,
|
|
const ReservoirState& reservoirState,
|
|
Simulator& simulator ) const
|
|
{
|
|
SolutionVector& solution = simulator.model().solution( 0 /* timeIdx */ );
|
|
const Opm::PhaseUsage pu = phaseUsage_;
|
|
|
|
const std::vector<bool> active = detail::activePhases(pu);
|
|
bool has_solvent = GET_PROP_VALUE(TypeTag, EnableSolvent);
|
|
bool has_polymer = GET_PROP_VALUE(TypeTag, EnablePolymer);
|
|
|
|
const int numCells = reservoirState.numCells();
|
|
const int numPhases = phaseUsage_.num_phases;
|
|
const auto& oilPressure = reservoirState.pressure();
|
|
const auto& saturations = reservoirState.saturation();
|
|
const auto& rs = reservoirState.gasoilratio();
|
|
const auto& rv = reservoirState.rv();
|
|
for( int cellIdx = 0; cellIdx<numCells; ++cellIdx )
|
|
{
|
|
// set non-switching primary variables
|
|
PrimaryVariables& cellPv = solution[ cellIdx ];
|
|
// set water saturation
|
|
if ( active[Water] ) {
|
|
cellPv[BlackoilIndices::waterSaturationIdx] = saturations[cellIdx*numPhases + pu.phase_pos[Water]];
|
|
}
|
|
|
|
if (has_solvent) {
|
|
cellPv[BlackoilIndices::solventSaturationIdx] = reservoirState.getCellData( reservoirState.SSOL )[cellIdx];
|
|
}
|
|
|
|
if (has_polymer) {
|
|
cellPv[BlackoilIndices::polymerConcentrationIdx] = reservoirState.getCellData( reservoirState.POLYMER )[cellIdx];
|
|
}
|
|
|
|
|
|
// set switching variable and interpretation
|
|
if ( active[Gas] ) {
|
|
if( reservoirState.hydroCarbonState()[cellIdx] == HydroCarbonState::OilOnly && has_disgas_ )
|
|
{
|
|
cellPv[BlackoilIndices::compositionSwitchIdx] = rs[cellIdx];
|
|
cellPv[BlackoilIndices::pressureSwitchIdx] = oilPressure[cellIdx];
|
|
cellPv.setPrimaryVarsMeaning( PrimaryVariables::Sw_po_Rs );
|
|
}
|
|
else if( reservoirState.hydroCarbonState()[cellIdx] == HydroCarbonState::GasOnly && has_vapoil_ )
|
|
{
|
|
// this case (-> gas only with vaporized oil in the gas) is
|
|
// relatively expensive as it requires to compute the capillary
|
|
// pressure in order to get the gas phase pressure. (the reason why
|
|
// ebos uses the gas pressure here is that it makes the common case
|
|
// of the primary variable switching code fast because to determine
|
|
// whether the oil phase appears one needs to compute the Rv value
|
|
// for the saturated gas phase and if this is not available as a
|
|
// primary variable, it needs to be computed.) luckily for here, the
|
|
// gas-only case is not too common, so the performance impact of this
|
|
// is limited.
|
|
typedef Opm::SimpleModularFluidState<double,
|
|
/*numPhases=*/3,
|
|
/*numComponents=*/3,
|
|
FluidSystem,
|
|
/*storePressure=*/false,
|
|
/*storeTemperature=*/false,
|
|
/*storeComposition=*/false,
|
|
/*storeFugacity=*/false,
|
|
/*storeSaturation=*/true,
|
|
/*storeDensity=*/false,
|
|
/*storeViscosity=*/false,
|
|
/*storeEnthalpy=*/false> SatOnlyFluidState;
|
|
SatOnlyFluidState fluidState;
|
|
if ( active[Water] ) {
|
|
fluidState.setSaturation(FluidSystem::waterPhaseIdx, saturations[cellIdx*numPhases + pu.phase_pos[Water]]);
|
|
}
|
|
else {
|
|
fluidState.setSaturation(FluidSystem::waterPhaseIdx, 0.0);
|
|
}
|
|
fluidState.setSaturation(FluidSystem::oilPhaseIdx, saturations[cellIdx*numPhases + pu.phase_pos[Oil]]);
|
|
fluidState.setSaturation(FluidSystem::gasPhaseIdx, saturations[cellIdx*numPhases + pu.phase_pos[Gas]]);
|
|
|
|
double pC[/*numPhases=*/3] = { 0.0, 0.0, 0.0 };
|
|
const MaterialLawParams& matParams = simulator.problem().materialLawParams(cellIdx);
|
|
MaterialLaw::capillaryPressures(pC, matParams, fluidState);
|
|
double pg = oilPressure[cellIdx] + (pC[FluidSystem::gasPhaseIdx] - pC[FluidSystem::oilPhaseIdx]);
|
|
|
|
cellPv[BlackoilIndices::compositionSwitchIdx] = rv[cellIdx];
|
|
cellPv[BlackoilIndices::pressureSwitchIdx] = pg;
|
|
cellPv.setPrimaryVarsMeaning( PrimaryVariables::Sw_pg_Rv );
|
|
}
|
|
else
|
|
{
|
|
assert( reservoirState.hydroCarbonState()[cellIdx] == HydroCarbonState::GasAndOil);
|
|
cellPv[BlackoilIndices::compositionSwitchIdx] = saturations[cellIdx*numPhases + pu.phase_pos[Gas]];
|
|
cellPv[BlackoilIndices::pressureSwitchIdx] = oilPressure[ cellIdx ];
|
|
cellPv.setPrimaryVarsMeaning( PrimaryVariables::Sw_po_Sg );
|
|
}
|
|
} else {
|
|
// for oil-water case oil pressure should be used as primary variable
|
|
cellPv[BlackoilIndices::pressureSwitchIdx] = oilPressure[cellIdx];
|
|
}
|
|
}
|
|
|
|
// store the solution at the beginning of the time step
|
|
if( iterationIdx == 0 )
|
|
{
|
|
simulator.model().solution( 1 /* timeIdx */ ) = solution;
|
|
}
|
|
}
|
|
|
|
RateConverterType createRateConverter_() {
|
|
RateConverterType rate_converter(phaseUsage_,
|
|
std::vector<int>(AutoDiffGrid::numCells(grid()), 0)); // FIP = 0
|
|
return rate_converter;
|
|
}
|
|
|
|
|
|
// Data.
|
|
Simulator& ebosSimulator_;
|
|
|
|
std::vector<int> legacyCellPvtRegionIdx_;
|
|
std::vector<double> legacyDepth_;
|
|
typedef typename Solver::SolverParameters SolverParameters;
|
|
|
|
SimulatorReport failureReport_;
|
|
|
|
const ParameterGroup param_;
|
|
ModelParameters model_param_;
|
|
SolverParameters solver_param_;
|
|
|
|
// Observed objects.
|
|
NewtonIterationBlackoilInterface& solver_;
|
|
PhaseUsage phaseUsage_;
|
|
// Misc. data
|
|
const bool has_disgas_;
|
|
const bool has_vapoil_;
|
|
bool terminal_output_;
|
|
// output_writer
|
|
OutputWriter& output_writer_;
|
|
RateConverterType rateConverter_;
|
|
// The names of wells that should be defunct
|
|
// (e.g. in a parallel run when they are handeled by
|
|
// a different process)
|
|
std::unordered_set<std::string> defunct_well_names_;
|
|
|
|
// Whether this a parallel simulation or not
|
|
bool is_parallel_run_;
|
|
|
|
};
|
|
|
|
} // namespace Opm
|
|
|
|
#endif // OPM_SIMULATORFULLYIMPLICITBLACKOIL_HEADER_INCLUDED
|