opm-simulators/opm/autodiff/BlackoilPropsAdFromDeck.cpp

1038 lines
42 KiB
C++

/*
Copyright 2013 SINTEF ICT, Applied Mathematics.
Copyright 2015 Dr. Blatt - HPC-Simulation-Software & Services.
Copyright 2015 NTNU.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <opm/autodiff/BlackoilPropsAdFromDeck.hpp>
#include <opm/autodiff/AutoDiffHelpers.hpp>
#include <opm/core/props/BlackoilPropertiesInterface.hpp>
#include <opm/core/props/BlackoilPhases.hpp>
#include <opm/parser/eclipse/Units/Units.hpp>
#include <opm/core/utility/extractPvtTableIndex.hpp>
#include <opm/material/fluidmatrixinteractions/EclMaterialLawManager.hpp>
#include <opm/parser/eclipse/Deck/Deck.hpp>
#include <opm/parser/eclipse/EclipseState/EclipseState.hpp>
#include <opm/common/ErrorMacros.hpp>
namespace Opm
{
// Making these typedef to make the code more readable.
typedef BlackoilPropsAdFromDeck::ADB ADB;
typedef BlackoilPropsAdFromDeck::V V;
typedef Eigen::Array<double, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor> Block;
/// Constructor wrapping an opm-core black oil interface.
BlackoilPropsAdFromDeck::BlackoilPropsAdFromDeck(const Opm::Deck& deck,
const Opm::EclipseState& eclState,
std::shared_ptr<MaterialLawManager> materialLawManager,
const UnstructuredGrid& grid,
const bool init_rock)
{
init(deck, eclState, materialLawManager, grid.number_of_cells, grid.global_cell, grid.cartdims,
init_rock);
}
#ifdef HAVE_OPM_GRID
/// Constructor wrapping an opm-core black oil interface.
BlackoilPropsAdFromDeck::BlackoilPropsAdFromDeck(const Opm::Deck& deck,
const Opm::EclipseState& eclState,
const Dune::CpGrid& grid,
const bool init_rock )
{
auto materialLawManager = std::make_shared<MaterialLawManager>();
unsigned number_of_cells = grid.size(0);
std::vector<int> compressedToCartesianIdx(number_of_cells);
for (unsigned cellIdx = 0; cellIdx < number_of_cells; ++cellIdx) {
compressedToCartesianIdx[cellIdx] = grid.globalCell()[cellIdx];
}
materialLawManager->initFromDeck(deck, eclState, compressedToCartesianIdx);
init(deck, eclState, materialLawManager, grid.numCells(), static_cast<const int*>(&grid.globalCell()[0]),
static_cast<const int*>(&grid.logicalCartesianSize()[0]),
init_rock);
}
#endif
/// Constructor wrapping an opm-core black oil interface.
BlackoilPropsAdFromDeck::BlackoilPropsAdFromDeck(const Opm::Deck& deck,
const Opm::EclipseState& eclState,
const UnstructuredGrid& grid,
const bool init_rock)
{
auto materialLawManager = std::make_shared<MaterialLawManager>();
std::vector<int> compressedToCartesianIdx(grid.number_of_cells);
for (int cellIdx = 0; cellIdx < grid.number_of_cells; ++cellIdx) {
if (grid.global_cell) {
compressedToCartesianIdx[cellIdx] = grid.global_cell[cellIdx];
}
else {
compressedToCartesianIdx[cellIdx] = cellIdx;
}
}
materialLawManager->initFromDeck(deck, eclState, compressedToCartesianIdx);
init(deck, eclState, materialLawManager, grid.number_of_cells, grid.global_cell, grid.cartdims,
init_rock);
}
#ifdef HAVE_OPM_GRID
/// Constructor wrapping an opm-core black oil interface.
BlackoilPropsAdFromDeck::BlackoilPropsAdFromDeck(const Opm::Deck& deck,
const Opm::EclipseState& eclState,
std::shared_ptr<MaterialLawManager> materialLawManager,
const Dune::CpGrid& grid,
const bool init_rock )
{
init(deck, eclState, materialLawManager, grid.numCells(), static_cast<const int*>(&grid.globalCell()[0]),
static_cast<const int*>(&grid.logicalCartesianSize()[0]),
init_rock);
}
#endif
/// Constructor for properties on a subgrid
BlackoilPropsAdFromDeck::BlackoilPropsAdFromDeck(const BlackoilPropsAdFromDeck& props,
std::shared_ptr<MaterialLawManager> materialLawManager,
const int number_of_cells)
: rock_(number_of_cells), satprops_(new SaturationPropsFromDeck())
{
const int original_size = props.cellPvtRegionIdx_.size();
if (number_of_cells > original_size) {
OPM_THROW(std::runtime_error, "The number of cells is larger than the one of the original grid!");
}
if (number_of_cells < 0) {
OPM_THROW(std::runtime_error, "The number of cells is has to be larger than 0.");
}
materialLawManager_ = materialLawManager;
// Copy properties that do not depend on the postion within the grid.
oilPvt_ = props.oilPvt_;
gasPvt_ = props.gasPvt_;
waterPvt_ = props.waterPvt_;
phase_usage_ = props.phase_usage_;
surfaceDensity_ = props.surfaceDensity_;
vap1_ = props.vap1_;
vap2_ = props.vap2_;
vap_satmax_guard_ = props.vap_satmax_guard_;
// For data that is dependant on the subgrid we simply allocate space
// and initialize with obviously bogus numbers.
cellPvtRegionIdx_.resize(number_of_cells, std::numeric_limits<int>::min());
satprops_->init(phase_usage_, materialLawManager_);
}
/// Initializes the properties.
void BlackoilPropsAdFromDeck::init(const Opm::Deck& deck,
const Opm::EclipseState& eclState,
std::shared_ptr<MaterialLawManager> materialLawManager,
int number_of_cells,
const int* global_cell,
const int* cart_dims,
const bool init_rock)
{
materialLawManager_ = materialLawManager;
// retrieve the cell specific PVT table index from the deck
// and using the grid...
extractPvtTableIndex(cellPvtRegionIdx_, eclState, number_of_cells, global_cell);
if (init_rock){
rock_.init(eclState, number_of_cells, global_cell, cart_dims);
}
phase_usage_ = phaseUsageFromDeck(deck);
gasPvt_ = std::make_shared<GasPvt>();
oilPvt_ = std::make_shared<OilPvt>();
waterPvt_ = std::make_shared<WaterPvt>();
gasPvt_->initFromDeck(deck, eclState);
oilPvt_->initFromDeck(deck, eclState);
waterPvt_->initFromDeck(deck, eclState);
// Surface densities. Accounting for different orders in eclipse and our code.
const auto& densityKeyword = deck.getKeyword("DENSITY");
int numRegions = densityKeyword.size();
auto tables = eclState.getTableManager();
surfaceDensity_.resize(numRegions);
for (int regionIdx = 0; regionIdx < numRegions; ++regionIdx) {
if (phase_usage_.phase_used[Liquid]) {
surfaceDensity_[regionIdx][phase_usage_.phase_pos[Liquid]]
= densityKeyword.getRecord(regionIdx).getItem("OIL").getSIDouble(0);
}
if (phase_usage_.phase_used[Aqua]) {
surfaceDensity_[regionIdx][phase_usage_.phase_pos[Aqua]]
= densityKeyword.getRecord(regionIdx).getItem("WATER").getSIDouble(0);
}
if (phase_usage_.phase_used[Vapour]) {
surfaceDensity_[regionIdx][phase_usage_.phase_pos[Vapour]]
= densityKeyword.getRecord(regionIdx).getItem("GAS").getSIDouble(0);
}
}
// Oil vaporization controls (kw VAPPARS)
vap1_ = vap2_ = 0.0;
if (deck.hasKeyword("VAPPARS") && deck.hasKeyword("VAPOIL") && deck.hasKeyword("DISGAS")) {
vap1_ = deck.getKeyword("VAPPARS").getRecord(0).getItem(0).get< double >(0);
vap2_ = deck.getKeyword("VAPPARS").getRecord(0).getItem(1).get< double >(0);
satOilMax_.resize(number_of_cells, 0.0);
} else if (deck.hasKeyword("VAPPARS")) {
OPM_THROW(std::runtime_error, "Input has VAPPARS, but missing VAPOIL and/or DISGAS\n");
}
SaturationPropsFromDeck* ptr
= new SaturationPropsFromDeck();
satprops_.reset(ptr);
ptr->init(deck, materialLawManager_);
if (phase_usage_.num_phases != satprops_->numPhases()) {
OPM_THROW(std::runtime_error, "BlackoilPropsAdFromDeck::BlackoilPropsAdFromDeck() - "
"Inconsistent number of phases in pvt data (" << phase_usage_.num_phases
<< ") and saturation-dependent function data (" << satprops_->numPhases() << ").");
}
vap_satmax_guard_ = 0.01;
}
////////////////////////////
// Rock interface //
////////////////////////////
/// \return D, the number of spatial dimensions.
int BlackoilPropsAdFromDeck::numDimensions() const
{
return rock_.numDimensions();
}
/// \return N, the number of cells.
int BlackoilPropsAdFromDeck::numCells() const
{
return rock_.numCells();
}
/// \return Array of N porosity values.
const double* BlackoilPropsAdFromDeck::porosity() const
{
return rock_.porosity();
}
/// \return Array of ND^2 permeability values.
/// The D^2 permeability values for a cell are organized as a matrix,
/// which is symmetric (so ordering does not matter).
const double* BlackoilPropsAdFromDeck::permeability() const
{
return rock_.permeability();
}
////////////////////////////
// Fluid interface //
////////////////////////////
/// \return Number of active phases (also the number of components).
int BlackoilPropsAdFromDeck::numPhases() const
{
return phase_usage_.num_phases;
}
/// \return Object describing the active phases.
PhaseUsage BlackoilPropsAdFromDeck::phaseUsage() const
{
return phase_usage_;
}
// ------ Density ------
/// Densities of stock components at surface conditions.
/// \param[in] phaseIdx
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n density values for phase given by phaseIdx.
V BlackoilPropsAdFromDeck::surfaceDensity(const int phaseIdx, const Cells& cells) const
{
assert( !(phaseIdx > numPhases()));
const int n = cells.size();
V rhos = V::Zero(n);
for (int cellIdx = 0; cellIdx < n; ++cellIdx) {
int pvtRegionIdx = cellPvtRegionIdx_[cellIdx];
const auto* rho = &surfaceDensity_[pvtRegionIdx][0];
rhos[cellIdx] = rho[phaseIdx];
}
return rhos;
}
// ------ Viscosity ------
/// Water viscosity.
/// \param[in] pw Array of n water pressure values.
/// \param[in] T Array of n temperature values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n viscosity values.
ADB BlackoilPropsAdFromDeck::muWat(const ADB& pw,
const ADB& T,
const Cells& cells) const
{
if (!phase_usage_.phase_used[Water]) {
OPM_THROW(std::runtime_error, "Cannot call muWat(): water phase not active.");
}
const int n = cells.size();
assert(pw.size() == n);
V mu(n);
V dmudp(n);
typedef Opm::DenseAd::Evaluation<double, /*size=*/1> Eval;
Eval pEval = 0.0;
Eval TEval = 0.0;
pEval.setDerivative(0, 1.0);
for (int i = 0; i < n; ++i) {
unsigned pvtRegionIdx = cellPvtRegionIdx_[cells[i]];
pEval.setValue(pw.value()[i]);
TEval.setValue(T.value()[i]);
const Eval& muEval = waterPvt_->viscosity(pvtRegionIdx, TEval, pEval);
mu[i] = muEval.value();
dmudp[i] = muEval.derivative(0);
}
if (pw.derivative().empty()) {
return ADB::constant(std::move(mu));
} else {
ADB::M dmudp_diag(dmudp.matrix().asDiagonal());
const int num_blocks = pw.numBlocks();
std::vector<ADB::M> jacs(num_blocks);
for (int block = 0; block < num_blocks; ++block) {
fastSparseProduct(dmudp_diag, pw.derivative()[block], jacs[block]);
}
return ADB::function(std::move(mu), std::move(jacs));
}
}
/// Oil viscosity.
/// \param[in] po Array of n oil pressure values.
/// \param[in] T Array of n temperature values.
/// \param[in] rs Array of n gas solution factor values.
/// \param[in] cond Array of n taxonomies classifying fluid condition.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n viscosity values.
ADB BlackoilPropsAdFromDeck::muOil(const ADB& po,
const ADB& T,
const ADB& rs,
const std::vector<PhasePresence>& cond,
const Cells& cells) const
{
if (!phase_usage_.phase_used[Oil]) {
OPM_THROW(std::runtime_error, "Cannot call muOil(): oil phase not active.");
}
const int n = cells.size();
assert(po.size() == n);
V mu(n);
V dmudp(n);
V dmudr(n);
typedef Opm::DenseAd::Evaluation<double, /*size=*/2> Eval;
Eval pEval = 0.0;
Eval TEval = 0.0;
Eval RsEval = 0.0;
pEval.setDerivative(0, 1.0);
RsEval.setDerivative(1, 1.0);
Eval muEval;
for (int i = 0; i < n; ++i) {
unsigned pvtRegionIdx = cellPvtRegionIdx_[cells[i]];
pEval.setValue(po.value()[i]);
TEval.setValue(T.value()[i]);
if (cond[i].hasFreeGas()) {
muEval = oilPvt_->saturatedViscosity(pvtRegionIdx, TEval, pEval);
}
else {
if (phase_usage_.phase_used[Gas]) {
RsEval.setValue(rs.value()[i]);
}
muEval = oilPvt_->viscosity(pvtRegionIdx, TEval, pEval, RsEval);
}
mu[i] = muEval.value();
dmudp[i] = muEval.derivative(0);
dmudr[i] = muEval.derivative(1);
}
ADB::M dmudp_diag(dmudp.matrix().asDiagonal());
ADB::M dmudr_diag(dmudr.matrix().asDiagonal());
const int num_blocks = po.numBlocks();
std::vector<ADB::M> jacs(num_blocks);
for (int block = 0; block < num_blocks; ++block) {
fastSparseProduct(dmudp_diag, po.derivative()[block], jacs[block]);
if (phase_usage_.phase_used[Gas]) {
ADB::M temp;
fastSparseProduct(dmudr_diag, rs.derivative()[block], temp);
jacs[block] += temp;
}
}
return ADB::function(std::move(mu), std::move(jacs));
}
/// Gas viscosity.
/// \param[in] pg Array of n gas pressure values.
/// \param[in] T Array of n temperature values.
/// \param[in] rv Array of n vapor oil/gas ratio
/// \param[in] cond Array of n taxonomies classifying fluid condition.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n viscosity values.
ADB BlackoilPropsAdFromDeck::muGas(const ADB& pg,
const ADB& T,
const ADB& rv,
const std::vector<PhasePresence>& cond,
const Cells& cells) const
{
if (!phase_usage_.phase_used[Gas]) {
OPM_THROW(std::runtime_error, "Cannot call muGas(): gas phase not active.");
}
const int n = cells.size();
assert(pg.value().size() == n);
V mu(n);
V dmudp(n);
V dmudr(n);
typedef Opm::DenseAd::Evaluation<double, /*size=*/2> Eval;
Eval pEval = 0.0;
Eval TEval = 0.0;
Eval RvEval = 0.0;
Eval muEval;
pEval.setDerivative(0, 1.0);
RvEval.setDerivative(1, 1.0);
for (int i = 0; i < n; ++i) {
unsigned pvtRegionIdx = cellPvtRegionIdx_[cells[i]];
pEval.setValue(pg.value()[i]);
TEval.setValue(T.value()[i]);
if (cond[i].hasFreeOil()) {
muEval = gasPvt_->saturatedViscosity(pvtRegionIdx, TEval, pEval);
}
else {
RvEval.setValue(rv.value()[i]);
muEval = gasPvt_->viscosity(pvtRegionIdx, TEval, pEval, RvEval);
}
mu[i] = muEval.value();
dmudp[i] = muEval.derivative(0);
dmudr[i] = muEval.derivative(1);
}
ADB::M dmudp_diag(dmudp.matrix().asDiagonal());
ADB::M dmudr_diag(dmudr.matrix().asDiagonal());
const int num_blocks = pg.numBlocks();
std::vector<ADB::M> jacs(num_blocks);
for (int block = 0; block < num_blocks; ++block) {
fastSparseProduct(dmudp_diag, pg.derivative()[block], jacs[block]);
ADB::M temp;
fastSparseProduct(dmudr_diag, rv.derivative()[block], temp);
jacs[block] += temp;
}
return ADB::function(std::move(mu), std::move(jacs));
}
// ------ Formation volume factor (b) ------
/// Water formation volume factor.
/// \param[in] pw Array of n water pressure values.
/// \param[in] T Array of n temperature values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n formation volume factor values.
ADB BlackoilPropsAdFromDeck::bWat(const ADB& pw,
const ADB& T,
const Cells& cells) const
{
if (!phase_usage_.phase_used[Water]) {
OPM_THROW(std::runtime_error, "Cannot call bWat(): water phase not active.");
}
const int n = cells.size();
assert(pw.size() == n);
V b(n);
V dbdp(n);
V dbdr(n);
typedef Opm::DenseAd::Evaluation<double, /*size=*/1> Eval;
Eval pEval = 0.0;
Eval TEval = 0.0;
pEval.setDerivative(0, 1.0);
for (int i = 0; i < n; ++i) {
unsigned pvtRegionIdx = cellPvtRegionIdx_[cells[i]];
pEval.setValue(pw.value()[i]);
TEval.setValue(T.value()[i]);
const Eval& bEval = waterPvt_->inverseFormationVolumeFactor(pvtRegionIdx, TEval, pEval);
b[i] = bEval.value();
dbdp[i] = bEval.derivative(0);
}
ADB::M dbdp_diag(dbdp.matrix().asDiagonal());
const int num_blocks = pw.numBlocks();
std::vector<ADB::M> jacs(num_blocks);
for (int block = 0; block < num_blocks; ++block) {
fastSparseProduct(dbdp_diag, pw.derivative()[block], jacs[block]);
}
return ADB::function(std::move(b), std::move(jacs));
}
/// Oil formation volume factor.
/// \param[in] po Array of n oil pressure values.
/// \param[in] T Array of n temperature values.
/// \param[in] rs Array of n gas solution factor values.
/// \param[in] cond Array of n taxonomies classifying fluid condition.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n formation volume factor values.
ADB BlackoilPropsAdFromDeck::bOil(const ADB& po,
const ADB& T,
const ADB& rs,
const std::vector<PhasePresence>& cond,
const Cells& cells) const
{
if (!phase_usage_.phase_used[Oil]) {
OPM_THROW(std::runtime_error, "Cannot call bOil(): oil phase not active.");
}
const int n = cells.size();
assert(po.size() == n);
V b(n);
V dbdp(n);
V dbdr(n);
typedef Opm::DenseAd::Evaluation<double, /*size=*/2> Eval;
Eval pEval = 0.0;
Eval TEval = 0.0;
Eval RsEval = 0.0;
Eval bEval;
pEval.setDerivative(0, 1.0);
RsEval.setDerivative(1, 1.0);
for (int i = 0; i < n; ++i) {
unsigned pvtRegionIdx = cellPvtRegionIdx_[cells[i]];
pEval.setValue(po.value()[i]);
TEval.setValue(T.value()[i]);
//RS/RV only makes sense when gas phase is active
if (cond[i].hasFreeGas()) {
bEval = oilPvt_->saturatedInverseFormationVolumeFactor(pvtRegionIdx, TEval, pEval);
}
else {
if (rs.size() == 0) {
RsEval.setValue(0.0);
}
else {
RsEval.setValue(rs.value()[i]);
}
bEval = oilPvt_->inverseFormationVolumeFactor(pvtRegionIdx, TEval, pEval, RsEval);
}
b[i] = bEval.value();
dbdp[i] = bEval.derivative(0);
dbdr[i] = bEval.derivative(1);
}
ADB::M dbdp_diag(dbdp.matrix().asDiagonal());
ADB::M dbdr_diag(dbdr.matrix().asDiagonal());
const int num_blocks = po.numBlocks();
std::vector<ADB::M> jacs(num_blocks);
for (int block = 0; block < num_blocks; ++block) {
fastSparseProduct(dbdp_diag, po.derivative()[block], jacs[block]);
if (phase_usage_.phase_used[Gas]) {
ADB::M temp;
fastSparseProduct(dbdr_diag, rs.derivative()[block], temp);
jacs[block] += temp;
}
}
return ADB::function(std::move(b), std::move(jacs));
}
/// Gas formation volume factor.
/// \param[in] pg Array of n gas pressure values.
/// \param[in] T Array of n temperature values.
/// \param[in] rv Array of n vapor oil/gas ratio
/// \param[in] cond Array of n objects, each specifying which phases are present with non-zero saturation in a cell.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n formation volume factor values.
ADB BlackoilPropsAdFromDeck::bGas(const ADB& pg,
const ADB& T,
const ADB& rv,
const std::vector<PhasePresence>& cond,
const Cells& cells) const
{
if (!phase_usage_.phase_used[Gas]) {
OPM_THROW(std::runtime_error, "Cannot call bGas(): gas phase not active.");
}
const int n = cells.size();
assert(pg.size() == n);
V b(n);
V dbdp(n);
V dbdr(n);
typedef Opm::DenseAd::Evaluation<double, /*size=*/2> Eval;
Eval pEval = 0.0;
Eval TEval = 0.0;
Eval RvEval = 0.0;
Eval bEval;
pEval.setDerivative(0, 1.0);
RvEval.setDerivative(1, 1.0);
for (int i = 0; i < n; ++i) {
unsigned pvtRegionIdx = cellPvtRegionIdx_[cells[i]];
pEval.setValue(pg.value()[i]);
TEval.setValue(T.value()[i]);
if (cond[i].hasFreeOil()) {
bEval = gasPvt_->saturatedInverseFormationVolumeFactor(pvtRegionIdx, TEval, pEval);
}
else {
RvEval.setValue(rv.value()[i]);
bEval = gasPvt_->inverseFormationVolumeFactor(pvtRegionIdx, TEval, pEval, RvEval);
}
b[i] = bEval.value();
dbdp[i] = bEval.derivative(0);
dbdr[i] = bEval.derivative(1);
}
ADB::M dbdp_diag(dbdp.matrix().asDiagonal());
ADB::M dbdr_diag(dbdr.matrix().asDiagonal());
const int num_blocks = pg.numBlocks();
std::vector<ADB::M> jacs(num_blocks);
for (int block = 0; block < num_blocks; ++block) {
fastSparseProduct(dbdp_diag, pg.derivative()[block], jacs[block]);
ADB::M temp;
fastSparseProduct(dbdr_diag, rv.derivative()[block], temp);
jacs[block] += temp;
}
return ADB::function(std::move(b), std::move(jacs));
}
// ------ Rs bubble point curve ------
/// Bubble point curve for Rs as function of oil pressure.
/// \param[in] po Array of n oil pressure values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n bubble point values for Rs.
ADB BlackoilPropsAdFromDeck::rsSat(const ADB& po,
const Cells& cells) const
{
if (!phase_usage_.phase_used[Oil]) {
OPM_THROW(std::runtime_error, "Cannot call rsSat(): oil phase not active.");
}
const int n = cells.size();
assert(po.size() == n);
V rbub(n);
V drbubdp(n);
typedef Opm::DenseAd::Evaluation<double, /*size=*/1> Eval;
Eval pEval = 0.0;
Eval TEval = 293.15; // temperature is not supported by this API!
pEval.setDerivative(0, 1.0);
for (int i = 0; i < n; ++i) {
unsigned pvtRegionIdx = cellPvtRegionIdx_[cells[i]];
pEval.setValue(po.value()[i]);
const Eval& RsEval = oilPvt_->saturatedGasDissolutionFactor(pvtRegionIdx, TEval, pEval);
rbub[i] = RsEval.value();
drbubdp[i] = RsEval.derivative(0);
}
ADB::M drbubdp_diag(drbubdp.matrix().asDiagonal());
const int num_blocks = po.numBlocks();
std::vector<ADB::M> jacs(num_blocks);
for (int block = 0; block < num_blocks; ++block) {
fastSparseProduct(drbubdp_diag, po.derivative()[block], jacs[block]);
}
return ADB::function(std::move(rbub), std::move(jacs));
}
/// Bubble point curve for Rs as function of oil pressure.
/// \param[in] po Array of n oil pressure values.
/// \param[in] so Array of n oil saturation values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n bubble point values for Rs.
ADB BlackoilPropsAdFromDeck::rsSat(const ADB& po,
const ADB& so,
const Cells& cells) const
{
ADB rs = rsSat(po, cells);
applyVap(rs, so, cells, vap2_);
return rs;
}
// ------ Rv condensation curve ------
/// Condensation curve for Rv as function of oil pressure.
/// \param[in] pg Array of n gas pressure values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n condensation point values for Rv.
ADB BlackoilPropsAdFromDeck::rvSat(const ADB& pg,
const Cells& cells) const
{
if (!phase_usage_.phase_used[Gas]) {
OPM_THROW(std::runtime_error, "Cannot call rvSat(): gas phase not active.");
}
const int n = cells.size();
assert(pg.size() == n);
V rv(n);
V drvdp(n);
typedef Opm::DenseAd::Evaluation<double, /*size=*/1> Eval;
Eval pEval = 0.0;
Eval TEval = 293.15; // temperature is not supported by this API!
pEval.setDerivative(0, 1.0);
for (int i = 0; i < n; ++i) {
unsigned pvtRegionIdx = cellPvtRegionIdx_[cells[i]];
pEval.setValue(pg.value()[i]);
const Eval& RvEval = gasPvt_->saturatedOilVaporizationFactor(pvtRegionIdx, TEval, pEval);
rv[i] = RvEval.value();
drvdp[i] = RvEval.derivative(0);
}
ADB::M drvdp_diag(drvdp.matrix().asDiagonal());
const int num_blocks = pg.numBlocks();
std::vector<ADB::M> jacs(num_blocks);
for (int block = 0; block < num_blocks; ++block) {
fastSparseProduct(drvdp_diag, pg.derivative()[block], jacs[block]);
}
return ADB::function(std::move(rv), std::move(jacs));
}
/// Condensation curve for Rv as function of oil pressure.
/// \param[in] po Array of n oil pressure values.
/// \param[in] so Array of n oil saturation values.
/// \param[in] cells Array of n cell indices to be associated with the pressure values.
/// \return Array of n condensation point values for Rv.
ADB BlackoilPropsAdFromDeck::rvSat(const ADB& po,
const ADB& so,
const Cells& cells) const
{
ADB rv = rvSat(po, cells);
applyVap(rv, so, cells, vap1_);
return rv;
}
// ------ Relative permeability ------
/// Relative permeabilities for all phases.
/// \param[in] sw Array of n water saturation values.
/// \param[in] so Array of n oil saturation values.
/// \param[in] sg Array of n gas saturation values.
/// \param[in] cells Array of n cell indices to be associated with the saturation values.
/// \return An std::vector with 3 elements, each an array of n relperm values,
/// containing krw, kro, krg. Use PhaseIndex for indexing into the result.
std::vector<ADB> BlackoilPropsAdFromDeck::relperm(const ADB& sw,
const ADB& so,
const ADB& sg,
const Cells& cells) const
{
const int n = cells.size();
const int np = numPhases();
Block s_all(n, np);
if (phase_usage_.phase_used[Water]) {
assert(sw.value().size() == n);
s_all.col(phase_usage_.phase_pos[Water]) = sw.value();
}
if (phase_usage_.phase_used[Oil]) {
assert(so.value().size() == n);
s_all.col(phase_usage_.phase_pos[Oil]) = so.value();
} else {
OPM_THROW(std::runtime_error, "BlackoilPropsAdFromDeck::relperm() assumes oil phase is active.");
}
if (phase_usage_.phase_used[Gas]) {
assert(sg.value().size() == n);
s_all.col(phase_usage_.phase_pos[Gas]) = sg.value();
}
Block kr(n, np);
Block dkr(n, np*np);
satprops_->relperm(n, s_all.data(), cells.data(), kr.data(), dkr.data());
const int num_blocks = so.numBlocks();
std::vector<ADB> relperms;
relperms.reserve(3);
typedef const ADB* ADBPtr;
ADBPtr s[3] = { &sw, &so, &sg };
for (int phase1 = 0; phase1 < 3; ++phase1) {
if (phase_usage_.phase_used[phase1]) {
const int phase1_pos = phase_usage_.phase_pos[phase1];
std::vector<ADB::M> jacs(num_blocks);
for (int block = 0; block < num_blocks; ++block) {
jacs[block] = ADB::M(n, s[phase1]->derivative()[block].cols());
}
for (int phase2 = 0; phase2 < 3; ++phase2) {
if (!phase_usage_.phase_used[phase2]) {
continue;
}
const int phase2_pos = phase_usage_.phase_pos[phase2];
// Assemble dkr1/ds2.
const int column = phase1_pos + np*phase2_pos; // Recall: Fortran ordering from props_.relperm()
ADB::M dkr1_ds2_diag(dkr.col(column).matrix().asDiagonal());
for (int block = 0; block < num_blocks; ++block) {
ADB::M temp;
fastSparseProduct(dkr1_ds2_diag, s[phase2]->derivative()[block], temp);
jacs[block] += temp;
}
}
ADB::V val = kr.col(phase1_pos);
relperms.emplace_back(ADB::function(std::move(val), std::move(jacs)));
} else {
relperms.emplace_back(ADB::null());
}
}
return relperms;
}
std::vector<ADB> BlackoilPropsAdFromDeck::capPress(const ADB& sw,
const ADB& so,
const ADB& sg,
const Cells& cells) const
{
const int nCells = cells.size();
const int nActivePhases = numPhases();
const int nBlocks = so.numBlocks();
Block activeSat(nCells, nActivePhases);
if (phase_usage_.phase_used[Water]) {
assert(sw.value().size() == nCells);
activeSat.col(phase_usage_.phase_pos[Water]) = sw.value();
}
if (phase_usage_.phase_used[Oil]) {
assert(so.value().size() == nCells);
activeSat.col(phase_usage_.phase_pos[Oil]) = so.value();
} else {
OPM_THROW(std::runtime_error, "BlackoilPropsAdFromDeck::relperm() assumes oil phase is active.");
}
if (phase_usage_.phase_used[Gas]) {
assert(sg.value().size() == nCells);
activeSat.col(phase_usage_.phase_pos[Gas]) = sg.value();
}
Block pc(nCells, nActivePhases);
Block dpc(nCells, nActivePhases*nActivePhases);
satprops_->capPress(nCells, activeSat.data(), cells.data(), pc.data(), dpc.data());
std::vector<ADB> adbCapPressures;
adbCapPressures.reserve(3);
const ADB* s[3] = { &sw, &so, &sg };
for (int phase1 = 0; phase1 < 3; ++phase1) {
if (phase_usage_.phase_used[phase1]) {
const int phase1_pos = phase_usage_.phase_pos[phase1];
std::vector<ADB::M> jacs(nBlocks);
for (int block = 0; block < nBlocks; ++block) {
jacs[block] = ADB::M(nCells, s[phase1]->derivative()[block].cols());
}
for (int phase2 = 0; phase2 < 3; ++phase2) {
if (!phase_usage_.phase_used[phase2])
continue;
const int phase2_pos = phase_usage_.phase_pos[phase2];
// Assemble dpc1/ds2.
const int column = phase1_pos + nActivePhases*phase2_pos; // Recall: Fortran ordering from props_.relperm()
ADB::M dpc1_ds2_diag(dpc.col(column).matrix().asDiagonal());
for (int block = 0; block < nBlocks; ++block) {
ADB::M temp;
fastSparseProduct(dpc1_ds2_diag, s[phase2]->derivative()[block], temp);
jacs[block] += temp;
}
}
ADB::V val = pc.col(phase1_pos);
adbCapPressures.emplace_back(ADB::function(std::move(val), std::move(jacs)));
} else {
adbCapPressures.emplace_back(ADB::null());
}
}
return adbCapPressures;
}
/// Saturation update for hysteresis behavior.
/// \param[in] cells Array of n cell indices to be associated with the saturation values.
void BlackoilPropsAdFromDeck::updateSatHyst(const std::vector<double>& saturation,
const std::vector<int>& cells)
{
const int n = cells.size();
satprops_->updateSatHyst(n, cells.data(), saturation.data());
}
/// Update for max oil saturation.
void BlackoilPropsAdFromDeck::updateSatOilMax(const std::vector<double>& saturation)
{
if (!satOilMax_.empty()) {
const int n = satOilMax_.size();
const int np = phase_usage_.num_phases;
const int posOil = phase_usage_.phase_pos[Oil];
const double* s = saturation.data();
for (int i=0; i<n; ++i) {
if (satOilMax_[i] < s[np*i+posOil]) {
satOilMax_[i] = s[np*i+posOil];
}
}
}
}
/// Set capillary pressure scaling according to pressure diff. and initial water saturation.
/// \param[in] saturation Array of n*numPhases saturation values.
/// \param[in] pc Array of n*numPhases capillary pressure values.
void BlackoilPropsAdFromDeck::setSwatInitScaling(const std::vector<double>& saturation,
const std::vector<double>& pc)
{
const int nc = rock_.numCells();
const int numActivePhases = numPhases();
for (int i = 0; i < nc; ++i) {
double pcow = pc[numActivePhases*i + phase_usage_.phase_pos[Water]];
double swat = saturation[numActivePhases*i + phase_usage_.phase_pos[Water]];
satprops_->swatInitScaling(i, pcow, swat);
}
}
/// Apply correction to rs/rv according to kw VAPPARS
/// \param[in/out] r Array of n rs/rv values.
/// \param[in] so Array of n oil saturation values.
/// \param[in] cells Array of n cell indices to be associated with the r and so values.
/// \param[in] vap Correction parameter.
void BlackoilPropsAdFromDeck::applyVap(V& r,
const V& so,
const std::vector<int>& cells,
const double vap) const
{
if (!satOilMax_.empty() && vap > 0.0) {
const int n = cells.size();
V factor = V::Ones(n, 1);
const double eps_sqrt = std::sqrt(std::numeric_limits<double>::epsilon());
for (int i=0; i<n; ++i) {
if (satOilMax_[cells[i]] > vap_satmax_guard_ && so[i] < satOilMax_[cells[i]]) {
// guard against too small saturation values.
const double so_i= std::max(so[i],eps_sqrt);
factor[i] = std::pow(so_i/satOilMax_[cells[i]], vap);
}
}
r = factor*r;
}
}
/// Apply correction to rs/rv according to kw VAPPARS
/// \param[in/out] r Array of n rs/rv values.
/// \param[in] so Array of n oil saturation values.
/// \param[in] cells Array of n cell indices to be associated with the r and so values.
/// \param[in] vap Correction parameter.
void BlackoilPropsAdFromDeck::applyVap(ADB& r,
const ADB& so,
const std::vector<int>& cells,
const double vap) const
{
if (!satOilMax_.empty() && vap > 0.0) {
const int n = cells.size();
V factor = V::Ones(n, 1);
const double eps_sqrt = std::sqrt(std::numeric_limits<double>::epsilon());
V dfactor_dso = V::Zero(n, 1);
for (int i=0; i<n; ++i) {
if (satOilMax_[cells[i]] > vap_satmax_guard_ && so.value()[i] < satOilMax_[cells[i]]) {
// guard against too small saturation values.
const double so_i= std::max(so.value()[i],eps_sqrt);
factor[i] = std::pow(so_i/satOilMax_[cells[i]], vap);
dfactor_dso[i] = vap*std::pow(so_i/satOilMax_[cells[i]], vap-1.0)/satOilMax_[cells[i]];
}
}
ADB::M dfactor_dso_diag(dfactor_dso.matrix().asDiagonal());
const int num_blocks = so.numBlocks();
std::vector<ADB::M> jacs(num_blocks);
for (int block = 0; block < num_blocks; ++block) {
jacs[block] = dfactor_dso_diag * so.derivative()[block];
}
r = ADB::function(std::move(factor), std::move(jacs))*r;
}
}
/// Obtain the scaled critical oil in gas saturation values.
/// \param[in] cells Array of cell indices.
/// \return Array of critical oil in gas saturaion values.
V BlackoilPropsAdFromDeck::scaledCriticalOilinGasSaturations(const Cells& cells) const {
assert(phase_usage_.phase_used[Gas]);
assert(phase_usage_.phase_used[Oil]);
const int n = cells.size();
V sogcr = V::Zero(n);
const MaterialLawManager& materialLawManager = satprops_->materialLawManager();
for (int i = 0; i < n; ++i) {
const auto& scaledDrainageInfo =
materialLawManager.oilWaterScaledEpsInfoDrainage(cells[i]);
sogcr[i] = scaledDrainageInfo.Sogcr;
}
return sogcr;
}
/// Obtain the scaled critical gas saturation values.
/// \param[in] cells Array of cell indices.
/// \return Array of scaled critical gas saturaion values.
V BlackoilPropsAdFromDeck::scaledCriticalGasSaturations(const Cells& cells) const {
assert(phase_usage_.phase_used[Gas]);
const int n = cells.size();
V sgcr = V::Zero(n);
const MaterialLawManager& materialLawManager = satprops_->materialLawManager();
for (int i = 0; i < n; ++i) {
const auto& scaledDrainageInfo =
materialLawManager.oilWaterScaledEpsInfoDrainage(cells[i]);
sgcr[i] = scaledDrainageInfo.Sgcr;
}
return sgcr;
}
} // namespace Opm