mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-11-25 10:40:21 -06:00
4aa0eaff67
The criteria for whether the fluid is saturated or not is moved from the within the pvt calculations to the solver, and passed to the pvt calculations as a array of boolean values.
1225 lines
42 KiB
C++
1225 lines
42 KiB
C++
/*
|
|
Copyright 2013 SINTEF ICT, Applied Mathematics.
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <opm/autodiff/FullyImplicitBlackoilSolver.hpp>
|
|
|
|
|
|
#include <opm/autodiff/AutoDiffBlock.hpp>
|
|
#include <opm/autodiff/AutoDiffHelpers.hpp>
|
|
#include <opm/autodiff/BlackoilPropsAdInterface.hpp>
|
|
#include <opm/autodiff/GeoProps.hpp>
|
|
|
|
#include <opm/core/grid.h>
|
|
#include <opm/core/linalg/LinearSolverInterface.hpp>
|
|
#include <opm/core/props/rock/RockCompressibility.hpp>
|
|
#include <opm/core/simulator/BlackoilState.hpp>
|
|
#include <opm/core/simulator/WellState.hpp>
|
|
#include <opm/core/utility/ErrorMacros.hpp>
|
|
|
|
#include <cassert>
|
|
#include <cmath>
|
|
#include <iostream>
|
|
#include <iomanip>
|
|
|
|
// A debugging utility.
|
|
#define DUMP(foo) \
|
|
do { \
|
|
std::cout << "==========================================\n" \
|
|
<< #foo ":\n" \
|
|
<< collapseJacs(foo) << std::endl; \
|
|
} while (0)
|
|
|
|
|
|
|
|
namespace Opm {
|
|
|
|
typedef AutoDiffBlock<double> ADB;
|
|
typedef ADB::V V;
|
|
typedef ADB::M M;
|
|
typedef Eigen::Array<double,
|
|
Eigen::Dynamic,
|
|
Eigen::Dynamic,
|
|
Eigen::RowMajor> DataBlock;
|
|
|
|
|
|
namespace {
|
|
|
|
|
|
std::vector<int>
|
|
buildAllCells(const int nc)
|
|
{
|
|
std::vector<int> all_cells(nc);
|
|
|
|
for (int c = 0; c < nc; ++c) { all_cells[c] = c; }
|
|
|
|
return all_cells;
|
|
}
|
|
|
|
template <class GeoProps>
|
|
AutoDiffBlock<double>::M
|
|
gravityOperator(const UnstructuredGrid& grid,
|
|
const HelperOps& ops ,
|
|
const GeoProps& geo )
|
|
{
|
|
const int nc = grid.number_of_cells;
|
|
|
|
std::vector<int> f2hf(2 * grid.number_of_faces, -1);
|
|
for (int c = 0, i = 0; c < nc; ++c) {
|
|
for (; i < grid.cell_facepos[c + 1]; ++i) {
|
|
const int f = grid.cell_faces[ i ];
|
|
const int p = 0 + (grid.face_cells[2*f + 0] != c);
|
|
|
|
f2hf[2*f + p] = i;
|
|
}
|
|
}
|
|
|
|
typedef AutoDiffBlock<double>::V V;
|
|
typedef AutoDiffBlock<double>::M M;
|
|
|
|
const V& gpot = geo.gravityPotential();
|
|
const V& trans = geo.transmissibility();
|
|
|
|
const HelperOps::IFaces::Index ni = ops.internal_faces.size();
|
|
|
|
typedef Eigen::Triplet<double> Tri;
|
|
std::vector<Tri> grav; grav.reserve(2 * ni);
|
|
for (HelperOps::IFaces::Index i = 0; i < ni; ++i) {
|
|
const int f = ops.internal_faces[ i ];
|
|
const int c1 = grid.face_cells[2*f + 0];
|
|
const int c2 = grid.face_cells[2*f + 1];
|
|
|
|
assert ((c1 >= 0) && (c2 >= 0));
|
|
|
|
const double dG1 = gpot[ f2hf[2*f + 0] ];
|
|
const double dG2 = gpot[ f2hf[2*f + 1] ];
|
|
const double t = trans[ f ];
|
|
|
|
grav.push_back(Tri(i, c1, t * dG1));
|
|
grav.push_back(Tri(i, c2, - t * dG2));
|
|
}
|
|
|
|
M G(ni, nc); G.setFromTriplets(grav.begin(), grav.end());
|
|
|
|
return G;
|
|
}
|
|
|
|
|
|
|
|
V computePerfPress(const UnstructuredGrid& grid, const Wells& wells, const V& rho, const double grav)
|
|
{
|
|
const int nw = wells.number_of_wells;
|
|
const int nperf = wells.well_connpos[nw];
|
|
const int dim = grid.dimensions;
|
|
V wdp = V::Zero(nperf,1);
|
|
assert(wdp.size() == rho.size());
|
|
|
|
// Main loop, iterate over all perforations,
|
|
// using the following formula:
|
|
// wdp(perf) = g*(perf_z - well_ref_z)*rho(perf)
|
|
// where the total density rho(perf) is taken to be
|
|
// sum_p (rho_p*saturation_p) in the perforation cell.
|
|
// [although this is computed on the outside of this function].
|
|
for (int w = 0; w < nw; ++w) {
|
|
const double ref_depth = wells.depth_ref[w];
|
|
for (int j = wells.well_connpos[w]; j < wells.well_connpos[w + 1]; ++j) {
|
|
const int cell = wells.well_cells[j];
|
|
const double cell_depth = grid.cell_centroids[dim * cell + dim - 1];
|
|
wdp[j] = rho[j]*grav*(cell_depth - ref_depth);
|
|
}
|
|
}
|
|
return wdp;
|
|
}
|
|
|
|
|
|
|
|
template <class PU>
|
|
std::vector<bool>
|
|
activePhases(const PU& pu)
|
|
{
|
|
const int maxnp = Opm::BlackoilPhases::MaxNumPhases;
|
|
std::vector<bool> active(maxnp, false);
|
|
|
|
for (int p = 0; p < pu.MaxNumPhases; ++p) {
|
|
active[ p ] = pu.phase_used[ p ] != 0;
|
|
}
|
|
|
|
return active;
|
|
}
|
|
|
|
|
|
|
|
template <class PU>
|
|
std::vector<int>
|
|
active2Canonical(const PU& pu)
|
|
{
|
|
const int maxnp = Opm::BlackoilPhases::MaxNumPhases;
|
|
std::vector<int> act2can(maxnp, -1);
|
|
|
|
for (int phase = 0; phase < maxnp; ++phase) {
|
|
if (pu.phase_used[ phase ]) {
|
|
act2can[ pu.phase_pos[ phase ] ] = phase;
|
|
}
|
|
}
|
|
|
|
return act2can;
|
|
}
|
|
|
|
|
|
} // Anonymous namespace
|
|
|
|
|
|
|
|
|
|
FullyImplicitBlackoilSolver::
|
|
FullyImplicitBlackoilSolver(const UnstructuredGrid& grid ,
|
|
const BlackoilPropsAdInterface& fluid,
|
|
const DerivedGeology& geo ,
|
|
const RockCompressibility* rock_comp_props,
|
|
const Wells& wells,
|
|
const LinearSolverInterface& linsolver)
|
|
: grid_ (grid)
|
|
, fluid_ (fluid)
|
|
, geo_ (geo)
|
|
, rock_comp_props_(rock_comp_props)
|
|
, wells_ (wells)
|
|
, linsolver_ (linsolver)
|
|
, active_(activePhases(fluid.phaseUsage()))
|
|
, canph_ (active2Canonical(fluid.phaseUsage()))
|
|
, cells_ (buildAllCells(grid.number_of_cells))
|
|
, ops_ (grid)
|
|
, wops_ (wells)
|
|
, grav_ (gravityOperator(grid_, ops_, geo_))
|
|
, rq_ (fluid.numPhases())
|
|
, residual_ ( { std::vector<ADB>(fluid.numPhases(), ADB::null()),
|
|
ADB::null(),
|
|
ADB::null(),
|
|
ADB::null() } )
|
|
{
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void
|
|
FullyImplicitBlackoilSolver::
|
|
step(const double dt,
|
|
BlackoilState& x ,
|
|
WellState& xw)
|
|
{
|
|
const V pvdt = geo_.poreVolume() / dt;
|
|
|
|
{
|
|
const SolutionState state = constantState(x, xw);
|
|
computeAccum(state, 0);
|
|
}
|
|
|
|
const double atol = 1.0e-12;
|
|
const double rtol = 5.0e-8;
|
|
const int maxit = 15;
|
|
|
|
assemble(pvdt, x, xw);
|
|
|
|
const double r0 = residualNorm();
|
|
int it = 0;
|
|
std::cout << "\nIteration Residual\n"
|
|
<< std::setw(9) << it << std::setprecision(9)
|
|
<< std::setw(18) << r0 << std::endl;
|
|
bool resTooLarge = r0 > atol;
|
|
while (resTooLarge && (it < maxit)) {
|
|
const V dx = solveJacobianSystem();
|
|
|
|
updateState(dx, x, xw);
|
|
|
|
assemble(pvdt, x, xw);
|
|
|
|
const double r = residualNorm();
|
|
|
|
resTooLarge = (r > atol) && (r > rtol*r0);
|
|
|
|
it += 1;
|
|
std::cout << std::setw(9) << it << std::setprecision(9)
|
|
<< std::setw(18) << r << std::endl;
|
|
}
|
|
|
|
if (resTooLarge) {
|
|
std::cerr << "Failed to compute converged solution in " << it << " iterations. Ignoring!\n";
|
|
// OPM_THROW(std::runtime_error, "Failed to compute converged solution in " << it << " iterations.");
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
FullyImplicitBlackoilSolver::ReservoirResidualQuant::ReservoirResidualQuant()
|
|
: accum(2, ADB::null())
|
|
, mflux( ADB::null())
|
|
, b ( ADB::null())
|
|
, head ( ADB::null())
|
|
, mob ( ADB::null())
|
|
{
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
FullyImplicitBlackoilSolver::SolutionState::SolutionState(const int np)
|
|
: pressure ( ADB::null())
|
|
, saturation(np, ADB::null())
|
|
, rs ( ADB::null())
|
|
, qs ( ADB::null())
|
|
, bhp ( ADB::null())
|
|
{
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
FullyImplicitBlackoilSolver::
|
|
WellOps::WellOps(const Wells& wells)
|
|
: w2p(wells.well_connpos[ wells.number_of_wells ],
|
|
wells.number_of_wells)
|
|
, p2w(wells.number_of_wells,
|
|
wells.well_connpos[ wells.number_of_wells ])
|
|
{
|
|
const int nw = wells.number_of_wells;
|
|
const int* const wpos = wells.well_connpos;
|
|
|
|
typedef Eigen::Triplet<double> Tri;
|
|
|
|
std::vector<Tri> scatter, gather;
|
|
scatter.reserve(wpos[nw]);
|
|
gather .reserve(wpos[nw]);
|
|
|
|
for (int w = 0, i = 0; w < nw; ++w) {
|
|
for (; i < wpos[ w + 1 ]; ++i) {
|
|
scatter.push_back(Tri(i, w, 1.0));
|
|
gather .push_back(Tri(w, i, 1.0));
|
|
}
|
|
}
|
|
|
|
w2p.setFromTriplets(scatter.begin(), scatter.end());
|
|
p2w.setFromTriplets(gather .begin(), gather .end());
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
FullyImplicitBlackoilSolver::SolutionState
|
|
FullyImplicitBlackoilSolver::constantState(const BlackoilState& x,
|
|
const WellState& xw)
|
|
{
|
|
const int nc = grid_.number_of_cells;
|
|
const int np = x.numPhases();
|
|
|
|
// The block pattern assumes the following primary variables:
|
|
// pressure
|
|
// water saturation (if water present)
|
|
// gas saturation (if gas present)
|
|
// gas solution factor (if both gas and oil present)
|
|
// well rates per active phase and well
|
|
// well bottom-hole pressure
|
|
// Note that oil is assumed to always be present, but is never
|
|
// a primary variable.
|
|
assert(active_[ Oil ]);
|
|
std::vector<int> bpat(np, nc);
|
|
const bool gasandoil = (active_[ Oil ] && active_[ Gas ]);
|
|
if (gasandoil) {
|
|
bpat.push_back(nc);
|
|
}
|
|
bpat.push_back(xw.bhp().size() * np);
|
|
bpat.push_back(xw.bhp().size());
|
|
|
|
SolutionState state(np);
|
|
|
|
// Pressure.
|
|
assert (not x.pressure().empty());
|
|
const V p = Eigen::Map<const V>(& x.pressure()[0], nc, 1);
|
|
state.pressure = ADB::constant(p, bpat);
|
|
|
|
// Saturation.
|
|
assert (not x.saturation().empty());
|
|
const DataBlock s = Eigen::Map<const DataBlock>(& x.saturation()[0], nc, np);
|
|
const Opm::PhaseUsage pu = fluid_.phaseUsage();
|
|
{
|
|
V so = V::Ones(nc, 1);
|
|
if (active_[ Water ]) {
|
|
const int pos = pu.phase_pos[ Water ];
|
|
const V sw = s.col(pos);
|
|
so -= sw;
|
|
|
|
state.saturation[pos] = ADB::constant(sw, bpat);
|
|
}
|
|
if (active_[ Gas ]) {
|
|
const int pos = pu.phase_pos[ Gas ];
|
|
const V sg = s.col(pos);
|
|
so -= sg;
|
|
|
|
state.saturation[pos] = ADB::constant(sg, bpat);
|
|
}
|
|
if (active_[ Oil ]) {
|
|
const int pos = pu.phase_pos[ Oil ];
|
|
state.saturation[pos] = ADB::constant(so, bpat);
|
|
}
|
|
}
|
|
|
|
// Gas-oil ratio (rs).
|
|
if (active_[ Oil ] && active_[ Gas ]) {
|
|
const V rs = Eigen::Map<const V>(& x.gasoilratio()[0], x.gasoilratio().size());
|
|
state.rs = ADB::constant(rs, bpat);
|
|
} else {
|
|
const V Rs = V::Zero(nc, 1);
|
|
state.rs = ADB::constant(Rs, bpat);
|
|
}
|
|
|
|
// Well rates.
|
|
assert (not xw.wellRates().empty());
|
|
// Need to reshuffle well rates, from ordered by wells, then phase,
|
|
// to ordered by phase, then wells.
|
|
const int nw = wells_.number_of_wells;
|
|
// The transpose() below switches the ordering.
|
|
const DataBlock wrates = Eigen::Map<const DataBlock>(& xw.wellRates()[0], nw, np).transpose();
|
|
const V qs = Eigen::Map<const V>(wrates.data(), nw*np);
|
|
state.qs = ADB::constant(qs, bpat);
|
|
|
|
// Well bottom-hole pressure.
|
|
assert (not xw.bhp().empty());
|
|
const V bhp = Eigen::Map<const V>(& xw.bhp()[0], xw.bhp().size());
|
|
state.bhp = ADB::constant(bhp, bpat);
|
|
|
|
return state;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
FullyImplicitBlackoilSolver::SolutionState
|
|
FullyImplicitBlackoilSolver::variableState(const BlackoilState& x,
|
|
const WellState& xw)
|
|
{
|
|
const int nc = grid_.number_of_cells;
|
|
const int np = x.numPhases();
|
|
|
|
std::vector<V> vars0;
|
|
vars0.reserve(active_[Oil] && active_[Gas] ? np + 2 : np + 1); // Rs is primary if oil and gas present.
|
|
|
|
// Initial pressure.
|
|
assert (not x.pressure().empty());
|
|
const V p = Eigen::Map<const V>(& x.pressure()[0], nc, 1);
|
|
vars0.push_back(p);
|
|
|
|
// Initial saturation.
|
|
assert (not x.saturation().empty());
|
|
const DataBlock s = Eigen::Map<const DataBlock>(& x.saturation()[0], nc, np);
|
|
const Opm::PhaseUsage pu = fluid_.phaseUsage();
|
|
// We do not handle a Water/Gas situation correctly, guard against it.
|
|
assert (active_[ Oil]);
|
|
if (active_[ Water ]) {
|
|
const V sw = s.col(pu.phase_pos[ Water ]);
|
|
vars0.push_back(sw);
|
|
}
|
|
if (active_[ Gas ]) {
|
|
const V sg = s.col(pu.phase_pos[ Gas ]);
|
|
vars0.push_back(sg);
|
|
}
|
|
|
|
// Initial gas-oil ratio (Rs).
|
|
if (active_[ Oil ] && active_[ Gas ]) {
|
|
const V rs = Eigen::Map<const V>(& x.gasoilratio()[0], x.gasoilratio().size());
|
|
vars0.push_back(rs);
|
|
}
|
|
|
|
// Initial well rates.
|
|
assert (not xw.wellRates().empty());
|
|
// Need to reshuffle well rates, from ordered by wells, then phase,
|
|
// to ordered by phase, then wells.
|
|
const int nw = wells_.number_of_wells;
|
|
// The transpose() below switches the ordering.
|
|
const DataBlock wrates = Eigen::Map<const DataBlock>(& xw.wellRates()[0], nw, np).transpose();
|
|
const V qs = Eigen::Map<const V>(wrates.data(), nw*np);
|
|
vars0.push_back(qs);
|
|
|
|
// Initial well bottom-hole pressure.
|
|
assert (not xw.bhp().empty());
|
|
const V bhp = Eigen::Map<const V>(& xw.bhp()[0], xw.bhp().size());
|
|
vars0.push_back(bhp);
|
|
|
|
std::vector<ADB> vars = ADB::variables(vars0);
|
|
|
|
SolutionState state(np);
|
|
|
|
// Pressure.
|
|
int nextvar = 0;
|
|
state.pressure = vars[ nextvar++ ];
|
|
|
|
// Saturation.
|
|
const std::vector<int>& bpat = vars[0].blockPattern();
|
|
{
|
|
ADB so = ADB::constant(V::Ones(nc, 1), bpat);
|
|
|
|
if (active_[ Water ]) {
|
|
ADB& sw = vars[ nextvar++ ];
|
|
state.saturation[ pu.phase_pos[ Water ] ] = sw;
|
|
|
|
so = so - sw;
|
|
}
|
|
if (active_[ Gas ]) {
|
|
ADB& sg = vars[ nextvar++ ];
|
|
state.saturation[ pu.phase_pos[ Gas ] ] = sg;
|
|
|
|
so = so - sg;
|
|
}
|
|
if (active_[ Oil ]) {
|
|
// Note that so is never a primary variable.
|
|
state.saturation[ pu.phase_pos[ Oil ] ] = so;
|
|
}
|
|
}
|
|
|
|
// Rs.
|
|
if (active_[ Oil ] && active_[ Gas ]) {
|
|
state.rs = vars[ nextvar++ ];
|
|
} else {
|
|
state.rs = ADB::constant(V::Zero(nc), bpat);
|
|
}
|
|
|
|
// Qs.
|
|
state.qs = vars[ nextvar++ ];
|
|
|
|
// Bhp.
|
|
state.bhp = vars[ nextvar++ ];
|
|
|
|
assert(nextvar == int(vars.size()));
|
|
|
|
return state;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void
|
|
FullyImplicitBlackoilSolver::computeAccum(const SolutionState& state,
|
|
const int aix )
|
|
{
|
|
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
|
|
|
|
const ADB& press = state.pressure;
|
|
const std::vector<ADB>& sat = state.saturation;
|
|
const ADB& rs = state.rs;
|
|
|
|
bool isSat[rs.size()];
|
|
getSaturatedCells(state,&isSat[0]);
|
|
|
|
const ADB pv_mult = poroMult(press);
|
|
|
|
const int maxnp = Opm::BlackoilPhases::MaxNumPhases;
|
|
for (int phase = 0; phase < maxnp; ++phase) {
|
|
if (active_[ phase ]) {
|
|
const int pos = pu.phase_pos[ phase ];
|
|
rq_[pos].b = fluidReciprocFVF(phase, press, rs, &isSat[0], cells_);
|
|
rq_[pos].accum[aix] = pv_mult * rq_[pos].b * sat[pos];
|
|
// DUMP(rq_[pos].b);
|
|
// DUMP(rq_[pos].accum[aix]);
|
|
}
|
|
}
|
|
|
|
if (active_[ Oil ] && active_[ Gas ]) {
|
|
// Account for gas dissolved in oil.
|
|
const int po = pu.phase_pos[ Oil ];
|
|
const int pg = pu.phase_pos[ Gas ];
|
|
|
|
rq_[pg].accum[aix] += state.rs * rq_[po].accum[aix];
|
|
//DUMP(rq_[pg].accum[aix]);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void
|
|
FullyImplicitBlackoilSolver::
|
|
assemble(const V& pvdt,
|
|
const BlackoilState& x ,
|
|
const WellState& xw )
|
|
{
|
|
// Create the primary variables.
|
|
const SolutionState state = variableState(x, xw);
|
|
|
|
// -------- Mass balance equations --------
|
|
|
|
// Compute b_p and the accumulation term b_p*s_p for each phase,
|
|
// except gas. For gas, we compute b_g*s_g + Rs*b_o*s_o.
|
|
// These quantities are stored in rq_[phase].accum[1].
|
|
// The corresponding accumulation terms from the start of
|
|
// the timestep (b^0_p*s^0_p etc.) were already computed
|
|
// in step() and stored in rq_[phase].accum[0].
|
|
computeAccum(state, 1);
|
|
|
|
// Set up the common parts of the mass balance equations
|
|
// for each active phase.
|
|
const V transi = subset(geo_.transmissibility(), ops_.internal_faces);
|
|
const std::vector<ADB> kr = computeRelPerm(state);
|
|
for (int phase = 0; phase < fluid_.numPhases(); ++phase) {
|
|
computeMassFlux(phase, transi, kr, state);
|
|
// std::cout << "===== kr[" << phase << "] = \n" << std::endl;
|
|
// std::cout << kr[phase];
|
|
// std::cout << "===== rq_[" << phase << "].mflux = \n" << std::endl;
|
|
// std::cout << rq_[phase].mflux;
|
|
|
|
residual_.mass_balance[ phase ] =
|
|
pvdt*(rq_[phase].accum[1] - rq_[phase].accum[0])
|
|
+ ops_.div*rq_[phase].mflux;
|
|
|
|
// DUMP(residual_.mass_balance[phase]);
|
|
}
|
|
|
|
bool isSat[grid_.number_of_cells];
|
|
getSaturatedCells(state,isSat);
|
|
// -------- Extra (optional) sg or rs equation, and rs contributions to the mass balance equations --------
|
|
|
|
// Add the extra (flux) terms to the gas mass balance equations
|
|
// from gas dissolved in the oil phase.
|
|
// The extra terms in the accumulation part of the equation are already handled.
|
|
if (active_[ Oil ] && active_[ Gas ]) {
|
|
const int po = fluid_.phaseUsage().phase_pos[ Oil ];
|
|
const UpwindSelector<double> upwind(grid_, ops_,
|
|
rq_[po].head.value());
|
|
const ADB rs_face = upwind.select(state.rs);
|
|
|
|
residual_.mass_balance[ Gas ] += ops_.div * (rs_face * rq_[po].mflux);
|
|
// DUMP(residual_.mass_balance[ Gas ]);
|
|
|
|
// Also, we have another equation: sg = 0 or rs = rsMax.
|
|
const int pg = fluid_.phaseUsage().phase_pos[ Gas ];
|
|
const ADB sg_eq = state.saturation[pg];
|
|
const ADB rs_max = fluidRsMax(state.pressure, cells_);
|
|
const ADB rs_eq = state.rs - rs_max;
|
|
// Consider the fluid to be saturated if sg >= 1e-14 (a small number)
|
|
Selector<double> use_sat_eq(sg_eq.value()-1e-14);
|
|
residual_.rs_or_sg_eq = use_sat_eq.select(rs_eq, sg_eq);
|
|
// DUMP(residual_.rs_or_sg_eq);
|
|
}
|
|
|
|
// -------- Well equation, and well contributions to the mass balance equations --------
|
|
|
|
// Contribution to mass balance will have to wait.
|
|
|
|
const int nc = grid_.number_of_cells;
|
|
const int np = wells_.number_of_phases;
|
|
const int nw = wells_.number_of_wells;
|
|
const int nperf = wells_.well_connpos[nw];
|
|
|
|
const std::vector<int> well_cells(wells_.well_cells, wells_.well_cells + nperf);
|
|
const V transw = Eigen::Map<const V>(wells_.WI, nperf);
|
|
|
|
const ADB& bhp = state.bhp;
|
|
|
|
const DataBlock well_s = wops_.w2p * Eigen::Map<const DataBlock>(wells_.comp_frac, nw, np).matrix();
|
|
|
|
// Extract variables for perforation cell pressures
|
|
// and corresponding perforation well pressures.
|
|
const ADB p_perfcell = subset(state.pressure, well_cells);
|
|
// Finally construct well perforation pressures and well flows.
|
|
|
|
// Compute well pressure differentials.
|
|
// Construct pressure difference vector for wells.
|
|
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
|
|
const int dim = grid_.dimensions;
|
|
const double* g = geo_.gravity();
|
|
if (g) {
|
|
// Guard against gravity in anything but last dimension.
|
|
for (int dd = 0; dd < dim - 1; ++dd) {
|
|
assert(g[dd] == 0.0);
|
|
}
|
|
}
|
|
ADB cell_rho_total = ADB::constant(V::Zero(nc), state.pressure.blockPattern());
|
|
for (int phase = 0; phase < 3; ++phase) {
|
|
if (active_[phase]) {
|
|
const int pos = pu.phase_pos[phase];
|
|
const ADB cell_rho = fluidDensity(phase, state.pressure, state.rs, &isSat[0],cells_);
|
|
cell_rho_total += state.saturation[pos] * cell_rho;
|
|
}
|
|
}
|
|
ADB inj_rho_total = ADB::constant(V::Zero(nperf), state.pressure.blockPattern());
|
|
assert(np == wells_.number_of_phases);
|
|
const DataBlock compi = Eigen::Map<const DataBlock>(wells_.comp_frac, nw, np);
|
|
for (int phase = 0; phase < 3; ++phase) {
|
|
if (active_[phase]) {
|
|
const int pos = pu.phase_pos[phase];
|
|
const ADB cell_rho = fluidDensity(phase, state.pressure, state.rs, &isSat[0],cells_);
|
|
const V fraction = compi.col(pos);
|
|
inj_rho_total += (wops_.w2p * fraction.matrix()).array() * subset(cell_rho, well_cells);
|
|
}
|
|
}
|
|
const V rho_perf_cell = subset(cell_rho_total, well_cells).value();
|
|
const V rho_perf_well = inj_rho_total.value();
|
|
V prodperfs = V::Constant(nperf, -1.0);
|
|
for (int w = 0; w < nw; ++w) {
|
|
if (wells_.type[w] == PRODUCER) {
|
|
std::fill(prodperfs.data() + wells_.well_connpos[w],
|
|
prodperfs.data() + wells_.well_connpos[w+1], 1.0);
|
|
}
|
|
}
|
|
const Selector<double> producer(prodperfs);
|
|
const V rho_perf = producer.select(rho_perf_cell, rho_perf_well);
|
|
const V well_perf_dp = computePerfPress(grid_, wells_, rho_perf, g ? g[dim-1] : 0.0);
|
|
|
|
const ADB p_perfwell = wops_.w2p * bhp + well_perf_dp;
|
|
const ADB nkgradp_well = transw * (p_perfcell - p_perfwell);
|
|
// DUMP(nkgradp_well);
|
|
const Selector<double> cell_to_well_selector(nkgradp_well.value());
|
|
ADB well_rates_all = ADB::constant(V::Zero(nw*np), state.bhp.blockPattern());
|
|
ADB perf_total_mob = subset(rq_[0].mob, well_cells);
|
|
for (int phase = 1; phase < np; ++phase) {
|
|
perf_total_mob += subset(rq_[phase].mob, well_cells);
|
|
}
|
|
std::vector<ADB> well_contribs(np, ADB::null());
|
|
std::vector<ADB> well_perf_rates(np, ADB::null());
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
const ADB& cell_b = rq_[phase].b;
|
|
const ADB perf_b = subset(cell_b, well_cells);
|
|
const ADB& cell_mob = rq_[phase].mob;
|
|
const V well_fraction = compi.col(phase);
|
|
// Using total mobilities for all phases for injection.
|
|
const ADB perf_mob_injector = (wops_.w2p * well_fraction.matrix()).array() * perf_total_mob;
|
|
const ADB perf_mob = producer.select(subset(cell_mob, well_cells),
|
|
perf_mob_injector);
|
|
const ADB perf_flux = perf_mob * (nkgradp_well); // No gravity term for perforations.
|
|
well_perf_rates[phase] = (perf_flux*perf_b);
|
|
const ADB well_rates = wops_.p2w * well_perf_rates[phase];
|
|
well_rates_all += superset(well_rates, Span(nw, 1, phase*nw), nw*np);
|
|
|
|
// const ADB well_contrib = superset(perf_flux*perf_b, well_cells, nc);
|
|
well_contribs[phase] = superset(perf_flux*perf_b, well_cells, nc);
|
|
// DUMP(well_contribs[phase]);
|
|
residual_.mass_balance[phase] += well_contribs[phase];
|
|
}
|
|
if (active_[Gas] && active_[Oil]) {
|
|
const int oilpos = pu.phase_pos[Oil];
|
|
const int gaspos = pu.phase_pos[Gas];
|
|
const ADB rs_perf = subset(state.rs, well_cells);
|
|
well_rates_all += superset(wops_.p2w * (well_perf_rates[oilpos]*rs_perf), Span(nw, 1, gaspos*nw), nw*np);
|
|
// DUMP(well_contribs[gaspos] + well_contribs[oilpos]*state.rs);
|
|
residual_.mass_balance[gaspos] += well_contribs[oilpos]*state.rs;
|
|
}
|
|
|
|
// Set the well flux equation
|
|
residual_.well_flux_eq = state.qs + well_rates_all;
|
|
// DUMP(residual_.well_flux_eq);
|
|
|
|
// Handling BHP and SURFACE_RATE wells.
|
|
V bhp_targets(nw);
|
|
V rate_targets(nw);
|
|
M rate_distr(nw, np*nw);
|
|
for (int w = 0; w < nw; ++w) {
|
|
const WellControls* wc = wells_.ctrls[w];
|
|
if (wc->type[wc->current] == BHP) {
|
|
bhp_targets[w] = wc->target[wc->current];
|
|
rate_targets[w] = -1e100;
|
|
} else if (wc->type[wc->current] == SURFACE_RATE) {
|
|
bhp_targets[w] = -1e100;
|
|
rate_targets[w] = wc->target[wc->current];
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
rate_distr.insert(w, phase*nw + w) = wc->distr[phase];
|
|
}
|
|
} else {
|
|
OPM_THROW(std::runtime_error, "Can only handle BHP and SURFACE_RATE type controls.");
|
|
}
|
|
}
|
|
const ADB bhp_residual = bhp - bhp_targets;
|
|
const ADB rate_residual = rate_distr * state.qs - rate_targets;
|
|
// Choose bhp residual for positive bhp targets.
|
|
Selector<double> bhp_selector(bhp_targets);
|
|
residual_.well_eq = bhp_selector.select(bhp_residual, rate_residual);
|
|
// DUMP(residual_.well_eq);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
V FullyImplicitBlackoilSolver::solveJacobianSystem() const
|
|
{
|
|
const int np = fluid_.numPhases();
|
|
ADB mass_res = residual_.mass_balance[0];
|
|
for (int phase = 1; phase < np; ++phase) {
|
|
mass_res = vertcat(mass_res, residual_.mass_balance[phase]);
|
|
}
|
|
if (active_[Oil] && active_[Gas]) {
|
|
mass_res = vertcat(mass_res, residual_.rs_or_sg_eq);
|
|
}
|
|
const ADB well_res = vertcat(residual_.well_flux_eq, residual_.well_eq);
|
|
const ADB total_residual = collapseJacs(vertcat(mass_res, well_res));
|
|
// DUMP(total_residual);
|
|
|
|
const Eigen::SparseMatrix<double, Eigen::RowMajor> matr = total_residual.derivative()[0];
|
|
|
|
V dx(V::Zero(total_residual.size()));
|
|
Opm::LinearSolverInterface::LinearSolverReport rep
|
|
= linsolver_.solve(matr.rows(), matr.nonZeros(),
|
|
matr.outerIndexPtr(), matr.innerIndexPtr(), matr.valuePtr(),
|
|
total_residual.value().data(), dx.data());
|
|
if (!rep.converged) {
|
|
OPM_THROW(std::runtime_error,
|
|
"FullyImplicitBlackoilSolver::solveJacobianSystem(): "
|
|
"Linear solver convergence failure.");
|
|
}
|
|
return dx;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
namespace {
|
|
struct Chop01 {
|
|
double operator()(double x) const { return std::max(std::min(x, 1.0), 0.0); }
|
|
};
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void FullyImplicitBlackoilSolver::updateState(const V& dx,
|
|
BlackoilState& state,
|
|
WellState& well_state) const
|
|
{
|
|
const int np = fluid_.numPhases();
|
|
const int nc = grid_.number_of_cells;
|
|
const int nw = wells_.number_of_wells;
|
|
const V null;
|
|
assert(null.size() == 0);
|
|
const V zero = V::Zero(nc);
|
|
const V one = V::Constant(nc, 1.0);
|
|
|
|
// Extract parts of dx corresponding to each part.
|
|
const V dp = subset(dx, Span(nc));
|
|
int varstart = nc;
|
|
const V dsw = active_[Water] ? subset(dx, Span(nc, 1, varstart)) : null;
|
|
varstart += dsw.size();
|
|
const V dsg = active_[Gas] ? subset(dx, Span(nc, 1, varstart)) : null;
|
|
varstart += dsg.size();
|
|
const V drs = (active_[Water] && active_[Gas]) ? subset(dx, Span(nc, 1, varstart)) : null;
|
|
varstart += drs.size();
|
|
const V dqs = subset(dx, Span(np*nw, 1, varstart));
|
|
varstart += dqs.size();
|
|
const V dbhp = subset(dx, Span(nw, 1, varstart));
|
|
varstart += dbhp.size();
|
|
assert(varstart == dx.size());
|
|
|
|
// Pressure update.
|
|
const double dpmaxrel = 0.8;
|
|
const V p_old = Eigen::Map<const V>(&state.pressure()[0], nc, 1);
|
|
const V absdpmax = dpmaxrel*p_old.abs();
|
|
const V dp_limited = sign(dp) * dp.abs().min(absdpmax);
|
|
const V p = (p_old - dp_limited).max(zero);
|
|
std::copy(&p[0], &p[0] + nc, state.pressure().begin());
|
|
|
|
// Rs update. Moved before the saturation update because it is
|
|
// needed there.
|
|
if (active_[Oil] && active_[Gas]) {
|
|
const double drsmaxrel = 0.8;
|
|
const V rs_old = Eigen::Map<const V>(&state.gasoilratio()[0], nc);
|
|
const V absdrsmax = drsmaxrel*rs_old.abs();
|
|
const V drs_limited = sign(drs) * drs.abs().min(absdrsmax);
|
|
const V rs = rs_old - drs_limited;
|
|
std::copy(&rs[0], &rs[0] + nc, state.gasoilratio().begin());
|
|
}
|
|
|
|
// Saturation updates.
|
|
const double dsmax = 0.3;
|
|
const DataBlock s_old = Eigen::Map<const DataBlock>(& state.saturation()[0], nc, np);
|
|
V so = one;
|
|
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
|
|
if (active_[ Water ]) {
|
|
const int pos = pu.phase_pos[ Water ];
|
|
const V sw_old = s_old.col(pos);
|
|
const V dsw_limited = sign(dsw) * dsw.abs().min(dsmax);
|
|
const V sw = (sw_old - dsw_limited).unaryExpr(Chop01());
|
|
so -= sw;
|
|
for (int c = 0; c < nc; ++c) {
|
|
state.saturation()[c*np + pos] = sw[c];
|
|
}
|
|
}
|
|
if (active_[ Gas ]) {
|
|
const int pos = pu.phase_pos[ Gas ];
|
|
const V sg_old = s_old.col(pos);
|
|
const V dsg_limited = sign(dsg) * dsg.abs().min(dsmax);
|
|
V sg = sg_old - dsg_limited;
|
|
if (active_[ Oil ]) {
|
|
// Appleyard chop process.
|
|
const double epsilon = std::sqrt(std::numeric_limits<double>::epsilon());
|
|
const double above_epsilon = 2.0*epsilon;
|
|
const double rs_adjust = 1.0;
|
|
auto sat2usat = (sg_old > 0.0) && (sg <= 0.0);
|
|
Eigen::Map<V> rs(&state.gasoilratio()[0], nc);
|
|
const V rs_sat = fluidRsMax(p, cells_);
|
|
auto over_saturated = ((sg > 0) || (rs > rs_sat*rs_adjust)) && (sat2usat == false);
|
|
auto usat2sat = (sg_old < epsilon) && over_saturated;
|
|
auto zerosg = (sat2usat && sg_old <= above_epsilon);
|
|
auto epssg = (sat2usat && sg_old > epsilon);
|
|
// With no simple support for Matlab-style statements below,
|
|
// we use an explicit for loop.
|
|
// sg(zerosg) = 0.0;
|
|
// sg(epssg) = epsilon;
|
|
// sg(usat2sat) = above_epsilon;
|
|
// rs(sg > 0) = rs_sat(sg > 0);
|
|
// rs(rs > rs_sat*rs_adjust) = rs_sat(rs > rs_sat*rs_adjust);
|
|
for (int c = 0; c < nc; ++c) {
|
|
|
|
if (zerosg[c]) {
|
|
sg[c] = 0.0;
|
|
}
|
|
if (epssg[c]) {
|
|
sg[c] = epsilon;
|
|
}
|
|
if (usat2sat[c]) {
|
|
sg[c] = above_epsilon;
|
|
}
|
|
if (sg[c] > 0.0) {
|
|
rs[c] = rs_sat[c];
|
|
}
|
|
if (rs[c] > rs_sat[c]*rs_adjust) {
|
|
rs[c] = rs_sat[c];
|
|
}
|
|
}
|
|
}
|
|
sg.unaryExpr(Chop01());
|
|
so -= sg;
|
|
for (int c = 0; c < nc; ++c) {
|
|
state.saturation()[c*np + pos] = sg[c];
|
|
}
|
|
}
|
|
if (active_[ Oil ]) {
|
|
const int pos = pu.phase_pos[ Oil ];
|
|
for (int c = 0; c < nc; ++c) {
|
|
state.saturation()[c*np + pos] = so[c];
|
|
}
|
|
}
|
|
|
|
// Qs update.
|
|
// Since we need to update the wellrates, that are ordered by wells,
|
|
// from dqs which are ordered by phase, the simplest is to compute
|
|
// dwr, which is the data from dqs but ordered by wells.
|
|
const DataBlock wwr = Eigen::Map<const DataBlock>(dqs.data(), np, nw).transpose();
|
|
const V dwr = Eigen::Map<const V>(wwr.data(), nw*np);
|
|
const V wr_old = Eigen::Map<const V>(&well_state.wellRates()[0], nw*np);
|
|
const V wr = wr_old - dwr;
|
|
std::copy(&wr[0], &wr[0] + wr.size(), well_state.wellRates().begin());
|
|
|
|
// Bhp update.
|
|
const V bhp_old = Eigen::Map<const V>(&well_state.bhp()[0], nw, 1);
|
|
const V bhp = bhp_old - dbhp;
|
|
std::copy(&bhp[0], &bhp[0] + bhp.size(), well_state.bhp().begin());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
std::vector<ADB>
|
|
FullyImplicitBlackoilSolver::computeRelPerm(const SolutionState& state) const
|
|
{
|
|
const int nc = grid_.number_of_cells;
|
|
const std::vector<int>& bpat = state.pressure.blockPattern();
|
|
|
|
const ADB null = ADB::constant(V::Zero(nc, 1), bpat);
|
|
|
|
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
|
|
const ADB sw = (active_[ Water ]
|
|
? state.saturation[ pu.phase_pos[ Water ] ]
|
|
: null);
|
|
|
|
const ADB so = (active_[ Oil ]
|
|
? state.saturation[ pu.phase_pos[ Oil ] ]
|
|
: null);
|
|
|
|
const ADB sg = (active_[ Gas ]
|
|
? state.saturation[ pu.phase_pos[ Gas ] ]
|
|
: null);
|
|
|
|
return fluid_.relperm(sw, so, sg, cells_);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
std::vector<ADB>
|
|
FullyImplicitBlackoilSolver::computeRelPermWells(const SolutionState& state,
|
|
const DataBlock& well_s,
|
|
const std::vector<int>& well_cells) const
|
|
{
|
|
const int nw = wells_.number_of_wells;
|
|
const int nperf = wells_.well_connpos[nw];
|
|
const std::vector<int>& bpat = state.pressure.blockPattern();
|
|
|
|
const ADB null = ADB::constant(V::Zero(nperf), bpat);
|
|
|
|
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
|
|
const ADB sw = (active_[ Water ]
|
|
? ADB::constant(well_s.col(pu.phase_pos[ Water ]), bpat)
|
|
: null);
|
|
|
|
const ADB so = (active_[ Oil ]
|
|
? ADB::constant(well_s.col(pu.phase_pos[ Oil ]), bpat)
|
|
: null);
|
|
|
|
const ADB sg = (active_[ Gas ]
|
|
? ADB::constant(well_s.col(pu.phase_pos[ Gas ]), bpat)
|
|
: null);
|
|
|
|
return fluid_.relperm(sw, so, sg, well_cells);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void
|
|
FullyImplicitBlackoilSolver::computeMassFlux(const int actph ,
|
|
const V& transi,
|
|
const std::vector<ADB>& kr ,
|
|
const SolutionState& state )
|
|
{
|
|
const int phase = canph_[ actph ];
|
|
bool isSat[grid_.number_of_cells];
|
|
getSaturatedCells(state,&isSat[0]);
|
|
const ADB mu = fluidViscosity(phase, state.pressure, state.rs, &isSat[0],cells_);
|
|
const ADB tr_mult = transMult(state.pressure);
|
|
|
|
rq_[ actph ].mob = tr_mult * kr[ phase ] / mu;
|
|
|
|
const ADB rho = fluidDensity(phase, state.pressure, state.rs, &isSat[0],cells_);
|
|
|
|
ADB& head = rq_[ actph ].head;
|
|
|
|
// compute gravity potensial using the face average as in eclipse and MRST
|
|
const ADB rhoavg = ops_.caver * rho;
|
|
|
|
const ADB dp = ops_.ngrad * state.pressure - geo_.gravity()[2] * (rhoavg * (ops_.ngrad * geo_.z().matrix()));
|
|
|
|
head = transi*dp;
|
|
//head = transi*(ops_.ngrad * state.pressure) + gflux;
|
|
|
|
UpwindSelector<double> upwind(grid_, ops_, head.value());
|
|
|
|
const ADB& b = rq_[ actph ].b;
|
|
const ADB& mob = rq_[ actph ].mob;
|
|
rq_[ actph ].mflux = upwind.select(b * mob) * head;
|
|
// DUMP(rq_[ actph ].mob);
|
|
// DUMP(rq_[ actph ].mflux);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
double
|
|
FullyImplicitBlackoilSolver::residualNorm() const
|
|
{
|
|
double r = 0;
|
|
for (std::vector<ADB>::const_iterator
|
|
b = residual_.mass_balance.begin(),
|
|
e = residual_.mass_balance.end();
|
|
b != e; ++b)
|
|
{
|
|
r = std::max(r, (*b).value().matrix().norm());
|
|
}
|
|
if (active_[Oil] && active_[Gas]) {
|
|
r = std::max(r, residual_.rs_or_sg_eq.value().matrix().norm());
|
|
}
|
|
r = std::max(r, residual_.well_flux_eq.value().matrix().norm());
|
|
r = std::max(r, residual_.well_eq.value().matrix().norm());
|
|
|
|
return r;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
ADB
|
|
FullyImplicitBlackoilSolver::fluidViscosity(const int phase,
|
|
const ADB& p ,
|
|
const ADB& rs ,
|
|
const bool* isSat,
|
|
const std::vector<int>& cells) const
|
|
{
|
|
switch (phase) {
|
|
case Water:
|
|
return fluid_.muWat(p, cells);
|
|
case Oil: {
|
|
return fluid_.muOil(p, rs, isSat,cells);
|
|
}
|
|
case Gas:
|
|
return fluid_.muGas(p, cells);
|
|
default:
|
|
OPM_THROW(std::runtime_error, "Unknown phase index " << phase);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
ADB
|
|
FullyImplicitBlackoilSolver::fluidReciprocFVF(const int phase,
|
|
const ADB& p ,
|
|
const ADB& rs ,
|
|
const bool* isSat,
|
|
const std::vector<int>& cells) const
|
|
{
|
|
switch (phase) {
|
|
case Water:
|
|
return fluid_.bWat(p, cells);
|
|
case Oil: {
|
|
return fluid_.bOil(p, rs, isSat, cells);
|
|
}
|
|
case Gas:
|
|
return fluid_.bGas(p, cells);
|
|
default:
|
|
OPM_THROW(std::runtime_error, "Unknown phase index " << phase);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
ADB
|
|
FullyImplicitBlackoilSolver::fluidDensity(const int phase,
|
|
const ADB& p ,
|
|
const ADB& rs ,
|
|
const bool* isSat,
|
|
const std::vector<int>& cells) const
|
|
{
|
|
const double* rhos = fluid_.surfaceDensity();
|
|
ADB b = fluidReciprocFVF(phase, p, rs, isSat, cells);
|
|
ADB rho = V::Constant(p.size(), 1, rhos[phase]) * b;
|
|
if (phase == Oil && active_[Gas]) {
|
|
// It is correct to index into rhos with canonical phase indices.
|
|
rho += V::Constant(p.size(), 1, rhos[Gas]) * rs * b;
|
|
}
|
|
return rho;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
V
|
|
FullyImplicitBlackoilSolver::fluidRsMax(const V& p,
|
|
const std::vector<int>& cells) const
|
|
{
|
|
return fluid_.rsMax(p, cells);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
ADB
|
|
FullyImplicitBlackoilSolver::fluidRsMax(const ADB& p,
|
|
const std::vector<int>& cells) const
|
|
{
|
|
return fluid_.rsMax(p, cells);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
ADB
|
|
FullyImplicitBlackoilSolver::poroMult(const ADB& p) const
|
|
{
|
|
const int n = p.size();
|
|
if (rock_comp_props_ && rock_comp_props_->isActive()) {
|
|
V pm(n);
|
|
V dpm(n);
|
|
for (int i = 0; i < n; ++i) {
|
|
pm[i] = rock_comp_props_->poroMult(p.value()[i]);
|
|
dpm[i] = rock_comp_props_->poroMultDeriv(p.value()[i]);
|
|
}
|
|
ADB::M dpm_diag = spdiag(dpm);
|
|
const int num_blocks = p.numBlocks();
|
|
std::vector<ADB::M> jacs(num_blocks);
|
|
for (int block = 0; block < num_blocks; ++block) {
|
|
jacs[block] = dpm_diag * p.derivative()[block];
|
|
}
|
|
return ADB::function(pm, jacs);
|
|
} else {
|
|
return ADB::constant(V::Constant(n, 1.0), p.blockPattern());
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
ADB
|
|
FullyImplicitBlackoilSolver::transMult(const ADB& p) const
|
|
{
|
|
const int n = p.size();
|
|
if (rock_comp_props_ && rock_comp_props_->isActive()) {
|
|
V tm(n);
|
|
V dtm(n);
|
|
for (int i = 0; i < n; ++i) {
|
|
tm[i] = rock_comp_props_->transMult(p.value()[i]);
|
|
dtm[i] = rock_comp_props_->transMultDeriv(p.value()[i]);
|
|
}
|
|
ADB::M dtm_diag = spdiag(dtm);
|
|
const int num_blocks = p.numBlocks();
|
|
std::vector<ADB::M> jacs(num_blocks);
|
|
for (int block = 0; block < num_blocks; ++block) {
|
|
jacs[block] = dtm_diag * p.derivative()[block];
|
|
}
|
|
return ADB::function(tm, jacs);
|
|
} else {
|
|
return ADB::constant(V::Constant(n, 1.0), p.blockPattern());
|
|
}
|
|
}
|
|
|
|
|
|
void
|
|
FullyImplicitBlackoilSolver::getSaturatedCells(const SolutionState& state, bool* isSat) const
|
|
{
|
|
const int pg = fluid_.phaseUsage().phase_pos[ Gas ];
|
|
const V sg = state.saturation[pg].value();
|
|
for (int c=0; c < sg.size(); ++ c) {
|
|
if (sg[c]>0){
|
|
isSat[c] = true;
|
|
}
|
|
else{
|
|
isSat[c] = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
} // namespace Opm
|