mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-12-25 08:41:00 -06:00
337 lines
14 KiB
C++
337 lines
14 KiB
C++
/*
|
|
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
|
|
Copyright 2017 Statoil ASA.
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
|
|
#ifndef OPM_MULTISEGMENTWELL_HEADER_INCLUDED
|
|
#define OPM_MULTISEGMENTWELL_HEADER_INCLUDED
|
|
|
|
|
|
#include <opm/autodiff/WellInterface.hpp>
|
|
|
|
namespace Opm
|
|
{
|
|
|
|
template<typename TypeTag>
|
|
class MultisegmentWell: public WellInterface<TypeTag>
|
|
{
|
|
public:
|
|
typedef WellInterface<TypeTag> Base;
|
|
|
|
// TODO: the WellState does not have any information related to segments
|
|
using typename Base::WellState;
|
|
using typename Base::Simulator;
|
|
using typename Base::IntensiveQuantities;
|
|
using typename Base::FluidSystem;
|
|
using typename Base::ModelParameters;
|
|
using typename Base::MaterialLaw;
|
|
using typename Base::BlackoilIndices;
|
|
|
|
/// the number of reservior equations
|
|
using Base::numEq;
|
|
|
|
// TODO: for now, not considering the polymer, solvent and so on to simplify the development process.
|
|
// TODO: should I begin with the old primary variable or the new fraction based variable systems?
|
|
// Let us begin with the new one
|
|
// TODO: we need to have order for the primary variables and also the order for the well equations.
|
|
// sometimes, they are similar, while sometimes, they can have very different forms.
|
|
|
|
// TODO: the following system looks not rather flexible. Looking into all kinds of possibilities
|
|
// TODO: gas is always there? how about oil water case?
|
|
// Is it gas oil two phase case?
|
|
static const bool gasoil = numEq == 2 && (BlackoilIndices::compositionSwitchIdx >= 0);
|
|
static const int GTotal = 0;
|
|
static const int WFrac = gasoil? -1000: 1;
|
|
static const int GFrac = gasoil? 1 : 2;
|
|
static const int SPres = gasoil? 2 : 3;
|
|
|
|
/// the number of well equations // TODO: it should have a more general strategy for it
|
|
static const int numWellEq = GET_PROP_VALUE(TypeTag, EnablePolymer)? numEq : numEq + 1;
|
|
|
|
using typename Base::Scalar;
|
|
using typename Base::ConvergenceReport;
|
|
|
|
/// the matrix and vector types for the reservoir
|
|
using typename Base::Mat;
|
|
using typename Base::BVector;
|
|
using typename Base::Eval;
|
|
|
|
// sparsity pattern for the matrices
|
|
// [A C^T [x = [ res
|
|
// B D ] x_well] res_well]
|
|
|
|
// the vector type for the res_well and x_well
|
|
typedef Dune::FieldVector<Scalar, numWellEq> VectorBlockWellType;
|
|
typedef Dune::BlockVector<VectorBlockWellType> BVectorWell;
|
|
|
|
// the matrix type for the diagonal matrix D
|
|
typedef Dune::FieldMatrix<Scalar, numWellEq, numWellEq > DiagMatrixBlockWellType;
|
|
typedef Dune::BCRSMatrix <DiagMatrixBlockWellType> DiagMatWell;
|
|
|
|
// the matrix type for the non-diagonal matrix B and C^T
|
|
typedef Dune::FieldMatrix<Scalar, numWellEq, numEq> OffDiagMatrixBlockWellType;
|
|
typedef Dune::BCRSMatrix<OffDiagMatrixBlockWellType> OffDiagMatWell;
|
|
|
|
// TODO: for more efficient implementation, we should have EvalReservoir, EvalWell, and EvalRerservoirAndWell
|
|
// EvalR (Eval), EvalW, EvalRW
|
|
// TODO: for now, we only use one type to save some implementation efforts, while improve later.
|
|
typedef DenseAd::Evaluation<double, /*size=*/numEq + numWellEq> EvalWell;
|
|
|
|
MultisegmentWell(const Well* well, const int time_step, const Wells* wells);
|
|
|
|
virtual void init(const PhaseUsage* phase_usage_arg,
|
|
const std::vector<bool>* active_arg,
|
|
const std::vector<double>& depth_arg,
|
|
const double gravity_arg,
|
|
const int num_cells);
|
|
|
|
|
|
virtual void initPrimaryVariablesEvaluation() const;
|
|
|
|
virtual void assembleWellEq(Simulator& ebosSimulator,
|
|
const double dt,
|
|
WellState& well_state,
|
|
bool only_wells);
|
|
|
|
/// updating the well state based the control mode specified with current
|
|
// TODO: later will check wheter we need current
|
|
virtual void updateWellStateWithTarget(const int current,
|
|
WellState& well_state) const;
|
|
|
|
/// check whether the well equations get converged for this well
|
|
virtual ConvergenceReport getWellConvergence(Simulator& ebosSimulator,
|
|
const std::vector<double>& B_avg,
|
|
const ModelParameters& param) const;
|
|
|
|
/// Ax = Ax - C D^-1 B x
|
|
virtual void apply(const BVector& x, BVector& Ax) const;
|
|
/// r = r - C D^-1 Rw
|
|
virtual void apply(BVector& r) const;
|
|
|
|
/// using the solution x to recover the solution xw for wells and applying
|
|
/// xw to update Well State
|
|
virtual void recoverWellSolutionAndUpdateWellState(const BVector& x, const ModelParameters& param,
|
|
WellState& well_state) const;
|
|
|
|
/// computing the well potentials for group control
|
|
virtual void computeWellPotentials(const Simulator& ebosSimulator,
|
|
const WellState& well_state,
|
|
std::vector<double>& well_potentials);
|
|
|
|
virtual void updatePrimaryVariables(const WellState& well_state) const;
|
|
|
|
virtual void solveEqAndUpdateWellState(const ModelParameters& param,
|
|
WellState& well_state); // const?
|
|
|
|
virtual void calculateExplicitQuantities(const Simulator& ebosSimulator,
|
|
const WellState& well_state); // should be const?
|
|
|
|
/// number of segments for this well
|
|
/// int number_of_segments_;
|
|
int numberOfSegments() const;
|
|
|
|
int numberOfPerforations() const;
|
|
|
|
protected:
|
|
int number_segments_;
|
|
|
|
// components of the pressure drop to be included
|
|
WellSegment::CompPressureDropEnum compPressureDrop() const;
|
|
// multi-phase flow model
|
|
WellSegment::MultiPhaseModelEnum multiphaseModel() const;
|
|
|
|
// get the SegmentSet from the well_ecl_
|
|
const SegmentSet& segmentSet() const;
|
|
|
|
// protected member variables from the Base class
|
|
using Base::well_ecl_;
|
|
using Base::number_of_perforations_; // TODO: can use well_ecl_?
|
|
using Base::current_step_;
|
|
using Base::index_of_well_;
|
|
using Base::number_of_phases_;
|
|
|
|
// TODO: the current implementation really relies on the order of the
|
|
// perforation does not change from the parser to Wells structure.
|
|
using Base::well_cells_;
|
|
using Base::well_index_;
|
|
using Base::well_type_;
|
|
using Base::first_perf_;
|
|
using Base::saturation_table_number_;
|
|
using Base::well_efficiency_factor_;
|
|
using Base::gravity_;
|
|
using Base::well_controls_;
|
|
using Base::perf_depth_;
|
|
|
|
// protected functions from the Base class
|
|
using Base::active;
|
|
using Base::phaseUsage;
|
|
using Base::name;
|
|
using Base::numComponents;
|
|
using Base::flowPhaseToEbosPhaseIdx;
|
|
using Base::flowPhaseToEbosCompIdx;
|
|
using Base::getAllowCrossFlow;
|
|
|
|
// TODO: trying to use the information from the Well opm-parser as much
|
|
// as possible, it will possibly be re-implemented later for efficiency reason.
|
|
|
|
// the completions that is related to each segment
|
|
// the completions's ids are their location in the vector well_index_, well_cell_
|
|
// This is also assuming the order of the completions in Well is the same with
|
|
// the order of the completions in wells.
|
|
// it is for convinience reason. we can just calcuate the inforation for segment once then using it for all the perofrations
|
|
// belonging to this segment
|
|
std::vector<std::vector<int> > segment_perforations_;
|
|
|
|
// the inlet segments for each segment. It is for convinience and efficiency reason
|
|
std::vector<std::vector<int> > segment_inlets_;
|
|
|
|
// segment number is an ID of the segment, it is specified in the deck
|
|
// get the loation of the segment with a segment number in the segmentSet
|
|
int numberToLocation(const int segment_number) const;
|
|
|
|
// TODO, the following should go to a class for computing purpose
|
|
// two off-diagonal matrices
|
|
mutable OffDiagMatWell duneB_;
|
|
mutable OffDiagMatWell duneC_;
|
|
// diagonal matrix for the well
|
|
mutable DiagMatWell duneD_;
|
|
|
|
// residuals of the well equations
|
|
mutable BVectorWell resWell_;
|
|
|
|
// the values for the primary varibles
|
|
// based on different solutioin strategies, the wells can have different primary variables
|
|
mutable std::vector<std::array<double, numWellEq> > primary_variables_;
|
|
|
|
// the Evaluation for the well primary variables, which contain derivativles and are used in AD calculation
|
|
mutable std::vector<std::array<EvalWell, numWellEq> > primary_variables_evaluation_;
|
|
|
|
// depth difference between perforations and the perforated grid cells
|
|
std::vector<double> cell_perforation_depth_diffs_;
|
|
// pressure correction due to the different depth of the perforation and
|
|
// center depth of the grid block
|
|
std::vector<double> cell_perforation_pressure_diffs_;
|
|
|
|
// depth difference between the segment and the peforation
|
|
// or in another way, the depth difference between the perforation and
|
|
// the segment the perforation belongs to
|
|
std::vector<double> perforation_segment_depth_diffs_;
|
|
|
|
// the intial component compistion of segments
|
|
std::vector<std::vector<double> > segment_comp_initial_;
|
|
|
|
// the densities of segment fluids
|
|
// we should not have this member variable
|
|
std::vector<EvalWell> segment_densities_;
|
|
|
|
// the viscosity of the segments
|
|
std::vector<EvalWell> segment_viscosities_;
|
|
|
|
// the mass rate of the segments
|
|
std::vector<EvalWell> segment_mass_rates_;
|
|
|
|
std::vector<double> segment_depth_diffs_;
|
|
|
|
void initMatrixAndVectors(const int num_cells) const;
|
|
|
|
// protected functions
|
|
// EvalWell getBhp(); this one should be something similar to getSegmentPressure();
|
|
// EvalWell getQs(); this one should be something similar to getSegmentRates()
|
|
// EValWell wellVolumeFractionScaled, wellVolumeFraction, wellSurfaceVolumeFraction ... these should have different names, and probably will be needed.
|
|
// bool crossFlowAllowed(const Simulator& ebosSimulator) const; probably will be needed
|
|
// xw = inv(D)*(rw - C*x)
|
|
void recoverSolutionWell(const BVector& x, BVectorWell& xw) const;
|
|
|
|
// updating the well_state based on well solution dwells
|
|
void updateWellState(const BVectorWell& dwells,
|
|
const BlackoilModelParameters& param,
|
|
WellState& well_state) const;
|
|
|
|
// computing the accumulation term for later use in well mass equations
|
|
void computeInitialComposition();
|
|
|
|
// compute the pressure difference between the perforation and cell center
|
|
void computePerfCellPressDiffs(const Simulator& ebosSimulator);
|
|
|
|
// fraction value of the primary variables
|
|
// should we just use member variables to store them instead of calculating them again and again
|
|
EvalWell volumeFraction(const int seg, const int comp_idx) const;
|
|
|
|
// F_p / g_p, the basic usage of this value is because Q_p = G_t * F_p / G_p
|
|
EvalWell volumeFractionScaled(const int seg, const int comp_idx) const;
|
|
|
|
// basically Q_p / \sigma_p Q_p
|
|
EvalWell surfaceVolumeFraction(const int seg, const int comp_idx) const;
|
|
|
|
void computePerfRate(const IntensiveQuantities& int_quants,
|
|
const std::vector<EvalWell>& mob_perfcells,
|
|
const int seg,
|
|
const int perf,
|
|
const EvalWell& segment_pressure,
|
|
const bool& allow_cf,
|
|
std::vector<EvalWell>& cq_s) const;
|
|
|
|
// convert a Eval from reservoir to contain the derivative related to wells
|
|
EvalWell extendEval(const Eval& in) const;
|
|
|
|
// compute the fluid properties, such as densities, viscosities, and so on, in the segments
|
|
// They will be treated implicitly, so they need to be of Evaluation type
|
|
void computeSegmentFluidProperties(const Simulator& ebosSimulator);
|
|
|
|
EvalWell getSegmentPressure(const int seg) const;
|
|
|
|
EvalWell getSegmentRate(const int seg, const int comp_idx) const;
|
|
|
|
EvalWell getSegmentGTotal(const int seg) const;
|
|
|
|
// get the mobility for specific perforation
|
|
void getMobility(const Simulator& ebosSimulator,
|
|
const int perf,
|
|
std::vector<EvalWell>& mob) const;
|
|
|
|
void assembleControlEq() const;
|
|
|
|
void assemblePressureEq(const int seg) const;
|
|
|
|
// hytrostatic pressure loss
|
|
EvalWell getHydroPressureLoss(const int seg) const;
|
|
|
|
// frictinal pressure loss
|
|
EvalWell getFrictionPressureLoss(const int seg) const;
|
|
|
|
void handleAccelerationPressureLoss(const int seg) const;
|
|
|
|
// handling the overshooting and undershooting of the fractions
|
|
void processFractions(const int seg) const;
|
|
|
|
void updateWellStateFromPrimaryVariables(WellState& well_state) const;
|
|
|
|
double scalingFactor(const int comp_idx) const;
|
|
|
|
bool frictionalPressureLossConsidered() const;
|
|
|
|
bool accelerationalPressureLossConsidered() const;
|
|
};
|
|
|
|
}
|
|
|
|
#include "MultisegmentWell_impl.hpp"
|
|
|
|
#endif // OPM_MULTISEGMENTWELL_HEADER_INCLUDED
|