opm-simulators/examples/problems/lensproblem.hh

717 lines
24 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::LensProblem
*/
#ifndef EWOMS_LENS_PROBLEM_HH
#define EWOMS_LENS_PROBLEM_HH
#include <opm/models/io/structuredgridvanguard.hh>
#include <opm/models/immiscible/immiscibleproperties.hh>
#include <opm/models/discretization/common/fvbaseadlocallinearizer.hh>
#include <opm/models/discretization/ecfv/ecfvdiscretization.hh>
#include <opm/models/common/transfluxmodule.hh>
#include <opm/material/fluidmatrixinteractions/RegularizedVanGenuchten.hpp>
#include <opm/material/fluidmatrixinteractions/LinearMaterial.hpp>
#include <opm/material/fluidmatrixinteractions/EffToAbsLaw.hpp>
#include <opm/material/fluidmatrixinteractions/MaterialTraits.hpp>
#include <opm/material/fluidsystems/TwoPhaseImmiscibleFluidSystem.hpp>
#include <opm/material/fluidstates/ImmiscibleFluidState.hpp>
#include <opm/material/components/SimpleH2O.hpp>
#include <opm/material/components/Dnapl.hpp>
#include <dune/common/version.hh>
#include <dune/common/fvector.hh>
#include <dune/common/fmatrix.hh>
#include <sstream>
#include <string>
#include <iostream>
namespace Opm {
template <class TypeTag>
class LensProblem;
}
namespace Opm::Properties {
// Create new type tags
namespace TTag {
struct LensBaseProblem { using InheritsFrom = std::tuple<StructuredGridVanguard>; };
} // end namespace TTag
// declare the properties specific for the lens problem
template<class TypeTag, class MyTypeTag>
struct LensLowerLeftX { using type = UndefinedProperty; };
template<class TypeTag, class MyTypeTag>
struct LensLowerLeftY { using type = UndefinedProperty; };
template<class TypeTag, class MyTypeTag>
struct LensLowerLeftZ { using type = UndefinedProperty; };
template<class TypeTag, class MyTypeTag>
struct LensUpperRightX { using type = UndefinedProperty; };
template<class TypeTag, class MyTypeTag>
struct LensUpperRightY { using type = UndefinedProperty; };
template<class TypeTag, class MyTypeTag>
struct LensUpperRightZ { using type = UndefinedProperty; };
// Set the problem property
template<class TypeTag>
struct Problem<TypeTag, TTag::LensBaseProblem> { using type = Opm::LensProblem<TypeTag>; };
// Use Dune-grid's YaspGrid
template<class TypeTag>
struct Grid<TypeTag, TTag::LensBaseProblem> { using type = Dune::YaspGrid<2>; };
// Set the wetting phase
template<class TypeTag>
struct WettingPhase<TypeTag, TTag::LensBaseProblem>
{
private:
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
public:
using type = Opm::LiquidPhase<Scalar, Opm::SimpleH2O<Scalar> >;
};
// Set the non-wetting phase
template<class TypeTag>
struct NonwettingPhase<TypeTag, TTag::LensBaseProblem>
{
private:
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
public:
using type = Opm::LiquidPhase<Scalar, Opm::DNAPL<Scalar> >;
};
// Set the material Law
template<class TypeTag>
struct MaterialLaw<TypeTag, TTag::LensBaseProblem>
{
private:
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
enum { wettingPhaseIdx = FluidSystem::wettingPhaseIdx };
enum { nonWettingPhaseIdx = FluidSystem::nonWettingPhaseIdx };
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using Traits = Opm::TwoPhaseMaterialTraits<Scalar,
/*wettingPhaseIdx=*/FluidSystem::wettingPhaseIdx,
/*nonWettingPhaseIdx=*/FluidSystem::nonWettingPhaseIdx>;
// define the material law which is parameterized by effective
// saturations
using EffectiveLaw = Opm::RegularizedVanGenuchten<Traits>;
public:
// define the material law parameterized by absolute saturations
using type = Opm::EffToAbsLaw<EffectiveLaw>;
};
// Use forward differences instead of central differences
template<class TypeTag>
struct NumericDifferenceMethod<TypeTag, TTag::LensBaseProblem> { static constexpr int value = +1; };
// Enable gravity
template<class TypeTag>
struct EnableGravity<TypeTag, TTag::LensBaseProblem> { static constexpr bool value = true; };
// define the properties specific for the lens problem
template<class TypeTag>
struct LensLowerLeftX<TypeTag, TTag::LensBaseProblem>
{
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 1.0;
};
template<class TypeTag>
struct LensLowerLeftY<TypeTag, TTag::LensBaseProblem>
{
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 2.0;
};
template<class TypeTag>
struct LensLowerLeftZ<TypeTag, TTag::LensBaseProblem>
{
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 0.0;
};
template<class TypeTag>
struct LensUpperRightX<TypeTag, TTag::LensBaseProblem>
{
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 4.0;
};
template<class TypeTag>
struct LensUpperRightY<TypeTag, TTag::LensBaseProblem>
{
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 3.0;
};
template<class TypeTag>
struct LensUpperRightZ<TypeTag, TTag::LensBaseProblem>
{
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 1.0;
};
template<class TypeTag>
struct CellsX<TypeTag, TTag::LensBaseProblem> { static constexpr unsigned value = 48; };
template<class TypeTag>
struct CellsY<TypeTag, TTag::LensBaseProblem> { static constexpr unsigned value = 32; };
template<class TypeTag>
struct CellsZ<TypeTag, TTag::LensBaseProblem> { static constexpr unsigned value = 16; };
// By default, include the intrinsic permeability tensor to the VTK output files
template<class TypeTag>
struct VtkWriteIntrinsicPermeabilities<TypeTag, TTag::LensBaseProblem> { static constexpr bool value = true; };
} // namespace Opm::Properties
namespace Opm::Parameters {
template<class TypeTag>
struct DomainSizeX<TypeTag, Properties::TTag::LensBaseProblem>
{
using type = GetPropType<TypeTag, Properties::Scalar>;
static constexpr type value = 6.0;
};
template<class TypeTag>
struct DomainSizeY<TypeTag, Properties::TTag::LensBaseProblem>
{
using type = GetPropType<TypeTag, Properties::Scalar>;
static constexpr type value = 4.0;
};
template<class TypeTag>
struct DomainSizeZ<TypeTag, Properties::TTag::LensBaseProblem>
{
using type = GetPropType<TypeTag, Properties::Scalar>;
static constexpr type value = 1.0;
};
// enable the cache for intensive quantities by default for this problem
template<class TypeTag>
struct EnableIntensiveQuantityCache<TypeTag, Properties::TTag::LensBaseProblem>
{ static constexpr bool value = true; };
// enable the storage cache by default for this problem
template<class TypeTag>
struct EnableStorageCache<TypeTag, Properties::TTag::LensBaseProblem>
{ static constexpr bool value = true; };
// The default for the end time of the simulation
template<class TypeTag>
struct EndTime<TypeTag, Properties::TTag::LensBaseProblem>
{
using type = GetPropType<TypeTag, Properties::Scalar>;
static constexpr type value = 30e3;
};
// The default for the initial time step size of the simulation
template<class TypeTag>
struct InitialTimeStepSize<TypeTag, Properties::TTag::LensBaseProblem>
{
using type = GetPropType<TypeTag, Properties::Scalar>;
static constexpr type value = 250;
};
// Write the solutions of individual newton iterations?
template<class TypeTag>
struct NewtonWriteConvergence<TypeTag, Properties::TTag::LensBaseProblem>
{ static constexpr bool value = false; };
} // namespace Opm::Parameters
namespace Opm {
/*!
* \ingroup TestProblems
*
* \brief Soil contamination problem where DNAPL infiltrates a fully
* water saturated medium.
*
* The domain is sized 6m times 4m and features a rectangular lens
* with low permeablility which spans from (1 m , 2 m) to (4 m, 3 m)
* and is surrounded by a medium with higher permability. Note that
* this problem is discretized using only two dimensions, so from the
* point of view of the model, the depth of the domain is implicitly
* assumed to be 1 m everywhere.
*
* On the top and the bottom of the domain no-flow boundary conditions
* are used, while free-flow conditions apply on the left and right
* boundaries; DNAPL is injected at the top boundary from 3m to 4m at
* a rate of 0.04 kg/(s m^2).
*
* At the boundary on the left, a free-flow condition using the
* hydrostatic pressure scaled by a factor of 1.125 is imposed, while
* on the right, it is just the hydrostatic pressure. The DNAPL
* saturation on both sides is zero.
*/
template <class TypeTag>
class LensProblem : public GetPropType<TypeTag, Properties::BaseProblem>
{
using ParentType = GetPropType<TypeTag, Properties::BaseProblem>;
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using GridView = GetPropType<TypeTag, Properties::GridView>;
using Indices = GetPropType<TypeTag, Properties::Indices>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
using WettingPhase = GetPropType<TypeTag, Properties::WettingPhase>;
using NonwettingPhase = GetPropType<TypeTag, Properties::NonwettingPhase>;
using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
using Model = GetPropType<TypeTag, Properties::Model>;
enum {
// number of phases
numPhases = FluidSystem::numPhases,
// phase indices
wettingPhaseIdx = FluidSystem::wettingPhaseIdx,
nonWettingPhaseIdx = FluidSystem::nonWettingPhaseIdx,
// equation indices
contiNEqIdx = Indices::conti0EqIdx + nonWettingPhaseIdx,
// Grid and world dimension
dim = GridView::dimension,
dimWorld = GridView::dimensionworld
};
using EqVector = GetPropType<TypeTag, Properties::EqVector>;
using RateVector = GetPropType<TypeTag, Properties::RateVector>;
using BoundaryRateVector = GetPropType<TypeTag, Properties::BoundaryRateVector>;
using MaterialLaw = GetPropType<TypeTag, Properties::MaterialLaw>;
using MaterialLawParams = GetPropType<TypeTag, Properties::MaterialLawParams>;
using CoordScalar = typename GridView::ctype;
using GlobalPosition = Dune::FieldVector<CoordScalar, dimWorld>;
using DimMatrix = Dune::FieldMatrix<Scalar, dimWorld, dimWorld>;
public:
/*!
* \copydoc Doxygen::defaultProblemConstructor
*/
LensProblem(Simulator& simulator)
: ParentType(simulator)
{ }
/*!
* \copydoc FvBaseProblem::finishInit
*/
void finishInit()
{
ParentType::finishInit();
eps_ = 3e-6;
FluidSystem::init();
temperature_ = 273.15 + 20; // -> 20°C
lensLowerLeft_[0] = Parameters::get<TypeTag, Properties::LensLowerLeftX>();
lensLowerLeft_[1] = Parameters::get<TypeTag, Properties::LensLowerLeftY>();
lensUpperRight_[0] = Parameters::get<TypeTag, Properties::LensUpperRightX>();
lensUpperRight_[1] = Parameters::get<TypeTag, Properties::LensUpperRightY>();
if (dimWorld == 3) {
lensLowerLeft_[2] = Parameters::get<TypeTag, Properties::LensLowerLeftZ>();
lensUpperRight_[2] = Parameters::get<TypeTag, Properties::LensUpperRightZ>();
}
// residual saturations
lensMaterialParams_.setResidualSaturation(wettingPhaseIdx, 0.18);
lensMaterialParams_.setResidualSaturation(nonWettingPhaseIdx, 0.0);
outerMaterialParams_.setResidualSaturation(wettingPhaseIdx, 0.05);
outerMaterialParams_.setResidualSaturation(nonWettingPhaseIdx, 0.0);
// parameters for the Van Genuchten law: alpha and n
lensMaterialParams_.setVgAlpha(0.00045);
lensMaterialParams_.setVgN(7.3);
outerMaterialParams_.setVgAlpha(0.0037);
outerMaterialParams_.setVgN(4.7);
lensMaterialParams_.finalize();
outerMaterialParams_.finalize();
lensK_ = this->toDimMatrix_(9.05e-12);
outerK_ = this->toDimMatrix_(4.6e-10);
if (dimWorld == 3) {
this->gravity_ = 0;
this->gravity_[1] = -9.81;
}
}
/*!
* \copydoc FvBaseMultiPhaseProblem::registerParameters
*/
static void registerParameters()
{
ParentType::registerParameters();
Parameters::registerParam<TypeTag, Properties::LensLowerLeftX>
("The x-coordinate of the lens' lower-left corner [m].");
Parameters::registerParam<TypeTag, Properties::LensLowerLeftY>
("The y-coordinate of the lens' lower-left corner [m].");
Parameters::registerParam<TypeTag, Properties::LensUpperRightX>
("The x-coordinate of the lens' upper-right corner [m].");
Parameters::registerParam<TypeTag, Properties::LensUpperRightY>
("The y-coordinate of the lens' upper-right corner [m].");
if (dimWorld == 3) {
Parameters::registerParam<TypeTag, Properties::LensLowerLeftZ>
("The z-coordinate of the lens' lower-left corner [m].");
Parameters::registerParam<TypeTag, Properties::LensUpperRightZ>
("The z-coordinate of the lens' upper-right corner [m].");
}
}
/*!
* \copydoc FvBaseProblem::briefDescription
*/
static std::string briefDescription()
{
std::string thermal = "isothermal";
bool enableEnergy = getPropValue<TypeTag, Properties::EnableEnergy>();
if (enableEnergy)
thermal = "non-isothermal";
std::string deriv = "finite difference";
using LLS = GetPropType<TypeTag, Properties::LocalLinearizerSplice>;
bool useAutoDiff = std::is_same<LLS, Properties::TTag::AutoDiffLocalLinearizer>::value;
if (useAutoDiff)
deriv = "automatic differentiation";
std::string disc = "vertex centered finite volume";
using D = GetPropType<TypeTag, Properties::Discretization>;
bool useEcfv = std::is_same<D, Opm::EcfvDiscretization<TypeTag>>::value;
if (useEcfv)
disc = "element centered finite volume";
return std::string("")+
"Ground remediation problem where a dense oil infiltrates "+
"an aquifer with an embedded low-permability lens. " +
"This is the binary for the "+thermal+" variant using "+deriv+
"and the "+disc+" discretization";
}
/*!
* \name Soil parameters
*/
//! \{
/*!
* \copydoc FvBaseMultiPhaseProblem::intrinsicPermeability
*/
template <class Context>
const DimMatrix& intrinsicPermeability(const Context& context, unsigned spaceIdx,
unsigned timeIdx) const
{
const GlobalPosition& globalPos = context.pos(spaceIdx, timeIdx);
if (isInLens_(globalPos))
return lensK_;
return outerK_;
}
/*!
* \copydoc FvBaseMultiPhaseProblem::porosity
*/
template <class Context>
Scalar porosity(const Context& /*context*/,
unsigned /*spaceIdx*/,
unsigned /*timeIdx*/) const
{ return 0.4; }
/*!
* \copydoc FvBaseMultiPhaseProblem::materialLawParams
*/
template <class Context>
const MaterialLawParams& materialLawParams(const Context& context,
unsigned spaceIdx, unsigned timeIdx) const
{
const GlobalPosition& globalPos = context.pos(spaceIdx, timeIdx);
if (isInLens_(globalPos))
return lensMaterialParams_;
return outerMaterialParams_;
}
/*!
* \copydoc FvBaseMultiPhaseProblem::temperature
*/
template <class Context>
Scalar temperature(const Context& /*context*/,
unsigned /*spaceIdx*/,
unsigned /*timeIdx*/) const
{ return temperature_; }
//! \}
/*!
* \name Auxiliary methods
*/
//! \{
/*!
* \copydoc FvBaseProblem::name
*/
std::string name() const
{
using LLS = GetPropType<TypeTag, Properties::LocalLinearizerSplice>;
bool useAutoDiff = std::is_same<LLS, Properties::TTag::AutoDiffLocalLinearizer>::value;
using FM = GetPropType<TypeTag, Properties::FluxModule>;
bool useTrans = std::is_same<FM, Opm::TransFluxModule<TypeTag>>::value;
std::ostringstream oss;
oss << "lens_" << Model::name()
<< "_" << Model::discretizationName()
<< "_" << (useAutoDiff?"ad":"fd");
if (useTrans)
oss << "_trans";
return oss.str();
}
/*!
* \copydoc FvBaseProblem::beginTimeStep
*/
void beginTimeStep()
{ }
/*!
* \copydoc FvBaseProblem::beginIteration
*/
void beginIteration()
{ }
/*!
* \copydoc FvBaseProblem::endTimeStep
*/
void endTimeStep()
{
#ifndef NDEBUG
//this->model().checkConservativeness();
// Calculate storage terms
EqVector storage;
this->model().globalStorage(storage);
// Write mass balance information for rank 0
if (this->gridView().comm().rank() == 0) {
std::cout << "Storage: " << storage << std::endl << std::flush;
}
#endif // NDEBUG
}
//! \}
/*!
* \name Boundary conditions
*/
//! \{
/*!
* \copydoc FvBaseProblem::boundary
*/
template <class Context>
void boundary(BoundaryRateVector& values,
const Context& context,
unsigned spaceIdx,
unsigned timeIdx) const
{
const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);
if (onLeftBoundary_(pos) || onRightBoundary_(pos)) {
// free flow boundary. we assume incompressible fluids
Scalar densityW = WettingPhase::density(temperature_, /*pressure=*/Scalar(1e5));
Scalar densityN = NonwettingPhase::density(temperature_, /*pressure=*/Scalar(1e5));
Scalar T = temperature(context, spaceIdx, timeIdx);
Scalar pw, Sw;
// set wetting phase pressure and saturation
if (onLeftBoundary_(pos)) {
Scalar height = this->boundingBoxMax()[1] - this->boundingBoxMin()[1];
Scalar depth = this->boundingBoxMax()[1] - pos[1];
Scalar alpha = (1 + 1.5 / height);
// hydrostatic pressure scaled by alpha
pw = 1e5 - alpha * densityW * this->gravity()[1] * depth;
Sw = 1.0;
}
else {
Scalar depth = this->boundingBoxMax()[1] - pos[1];
// hydrostatic pressure
pw = 1e5 - densityW * this->gravity()[1] * depth;
Sw = 1.0;
}
// specify a full fluid state using pw and Sw
const MaterialLawParams& matParams = this->materialLawParams(context, spaceIdx, timeIdx);
Opm::ImmiscibleFluidState<Scalar, FluidSystem,
/*storeEnthalpy=*/false> fs;
fs.setSaturation(wettingPhaseIdx, Sw);
fs.setSaturation(nonWettingPhaseIdx, 1 - Sw);
fs.setTemperature(T);
Scalar pC[numPhases];
MaterialLaw::capillaryPressures(pC, matParams, fs);
fs.setPressure(wettingPhaseIdx, pw);
fs.setPressure(nonWettingPhaseIdx, pw + pC[nonWettingPhaseIdx] - pC[wettingPhaseIdx]);
fs.setDensity(wettingPhaseIdx, densityW);
fs.setDensity(nonWettingPhaseIdx, densityN);
fs.setViscosity(wettingPhaseIdx, WettingPhase::viscosity(temperature_, fs.pressure(wettingPhaseIdx)));
fs.setViscosity(nonWettingPhaseIdx, NonwettingPhase::viscosity(temperature_, fs.pressure(nonWettingPhaseIdx)));
// impose an freeflow boundary condition
values.setFreeFlow(context, spaceIdx, timeIdx, fs);
}
else if (onInlet_(pos)) {
RateVector massRate(0.0);
massRate = 0.0;
massRate[contiNEqIdx] = -0.04; // kg / (m^2 * s)
// impose a forced flow boundary
values.setMassRate(massRate);
}
else {
// no flow boundary
values.setNoFlow();
}
}
//! \}
/*!
* \name Volumetric terms
*/
//! \{
/*!
* \copydoc FvBaseProblem::initial
*/
template <class Context>
void initial(PrimaryVariables& values, const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{
const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);
Scalar depth = this->boundingBoxMax()[1] - pos[1];
Opm::ImmiscibleFluidState<Scalar, FluidSystem> fs;
fs.setPressure(wettingPhaseIdx, /*pressure=*/1e5);
Scalar Sw = 1.0;
fs.setSaturation(wettingPhaseIdx, Sw);
fs.setSaturation(nonWettingPhaseIdx, 1 - Sw);
fs.setTemperature(temperature_);
typename FluidSystem::template ParameterCache<Scalar> paramCache;
paramCache.updatePhase(fs, wettingPhaseIdx);
Scalar densityW = FluidSystem::density(fs, paramCache, wettingPhaseIdx);
// hydrostatic pressure (assuming incompressibility)
Scalar pw = 1e5 - densityW * this->gravity()[1] * depth;
// calculate the capillary pressure
const MaterialLawParams& matParams = this->materialLawParams(context, spaceIdx, timeIdx);
Scalar pC[numPhases];
MaterialLaw::capillaryPressures(pC, matParams, fs);
// make a full fluid state
fs.setPressure(wettingPhaseIdx, pw);
fs.setPressure(nonWettingPhaseIdx, pw + (pC[wettingPhaseIdx] - pC[nonWettingPhaseIdx]));
// assign the primary variables
values.assignNaive(fs);
}
/*!
* \copydoc FvBaseProblem::source
*
* For this problem, the source term of all components is 0
* everywhere.
*/
template <class Context>
void source(RateVector& rate,
const Context& /*context*/,
unsigned /*spaceIdx*/,
unsigned /*timeIdx*/) const
{ rate = Scalar(0.0); }
//! \}
private:
bool isInLens_(const GlobalPosition& pos) const
{
for (unsigned i = 0; i < dim; ++i) {
if (pos[i] < lensLowerLeft_[i] - eps_ || pos[i] > lensUpperRight_[i]
+ eps_)
return false;
}
return true;
}
bool onLeftBoundary_(const GlobalPosition& pos) const
{ return pos[0] < this->boundingBoxMin()[0] + eps_; }
bool onRightBoundary_(const GlobalPosition& pos) const
{ return pos[0] > this->boundingBoxMax()[0] - eps_; }
bool onLowerBoundary_(const GlobalPosition& pos) const
{ return pos[1] < this->boundingBoxMin()[1] + eps_; }
bool onUpperBoundary_(const GlobalPosition& pos) const
{ return pos[1] > this->boundingBoxMax()[1] - eps_; }
bool onInlet_(const GlobalPosition& pos) const
{
Scalar width = this->boundingBoxMax()[0] - this->boundingBoxMin()[0];
Scalar lambda = (this->boundingBoxMax()[0] - pos[0]) / width;
return onUpperBoundary_(pos) && 0.5 < lambda && lambda < 2.0 / 3.0;
}
GlobalPosition lensLowerLeft_;
GlobalPosition lensUpperRight_;
DimMatrix lensK_;
DimMatrix outerK_;
MaterialLawParams lensMaterialParams_;
MaterialLawParams outerMaterialParams_;
Scalar temperature_;
Scalar eps_;
};
} // namespace Opm
#endif