mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-12-30 11:06:55 -06:00
505 lines
19 KiB
C++
505 lines
19 KiB
C++
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
// vi: set et ts=4 sw=4 sts=4:
|
|
/*
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Consult the COPYING file in the top-level source directory of this
|
|
module for the precise wording of the license and the list of
|
|
copyright holders.
|
|
*/
|
|
/**
|
|
* \file
|
|
*
|
|
* \copydoc Opm::EclTracerModel
|
|
*/
|
|
#ifndef EWOMS_ECL_TRACER_MODEL_HH
|
|
#define EWOMS_ECL_TRACER_MODEL_HH
|
|
|
|
#include <opm/parser/eclipse/EclipseState/Tables/TracerVdTable.hpp>
|
|
|
|
#include <opm/models/blackoil/blackoilmodel.hh>
|
|
|
|
#include <dune/istl/operators.hh>
|
|
#include <dune/istl/solvers.hh>
|
|
#include <dune/istl/preconditioners.hh>
|
|
|
|
#include <dune/common/version.hh>
|
|
|
|
#include <string>
|
|
#include <vector>
|
|
#include <iostream>
|
|
|
|
BEGIN_PROPERTIES
|
|
|
|
NEW_PROP_TAG(EnableTracerModel);
|
|
|
|
END_PROPERTIES
|
|
|
|
namespace Opm {
|
|
|
|
/*!
|
|
* \ingroup EclBlackOilSimulator
|
|
*
|
|
* \brief A class which handles tracers as specified in by ECL
|
|
*
|
|
* TODO: MPI parallelism.
|
|
*/
|
|
template <class TypeTag>
|
|
class EclTracerModel
|
|
{
|
|
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
|
|
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
|
|
typedef typename GET_PROP_TYPE(TypeTag, Grid) Grid;
|
|
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
|
|
typedef typename GET_PROP_TYPE(TypeTag, Stencil) Stencil;
|
|
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
|
|
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
|
|
typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
|
|
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
|
|
|
|
typedef Opm::DenseAd::Evaluation<Scalar,1> TracerEvaluation;
|
|
|
|
enum { numEq = GET_PROP_VALUE(TypeTag, NumEq) };
|
|
enum { numPhases = FluidSystem::numPhases };
|
|
enum { waterPhaseIdx = FluidSystem::waterPhaseIdx };
|
|
enum { oilPhaseIdx = FluidSystem::oilPhaseIdx };
|
|
enum { gasPhaseIdx = FluidSystem::gasPhaseIdx };
|
|
|
|
typedef typename GridView::template Codim<0>::Entity Element;
|
|
typedef typename GridView::template Codim<0>::Iterator ElementIterator;
|
|
|
|
typedef Dune::BCRSMatrix<Dune::FieldMatrix<Scalar, 1, 1>> TracerMatrix;
|
|
typedef Dune::BlockVector<Dune::FieldVector<Scalar,1>> TracerVector;
|
|
|
|
public:
|
|
EclTracerModel(Simulator& simulator)
|
|
: simulator_(simulator)
|
|
{ }
|
|
|
|
|
|
/*!
|
|
* \brief Initialize all internal data structures needed by the tracer module
|
|
*/
|
|
void init()
|
|
{
|
|
const auto& tracers = simulator_.vanguard().eclState().tracer();
|
|
const auto& comm = simulator_.gridView().comm();
|
|
|
|
if (tracers.size() == 0)
|
|
return; // tracer treatment is supposed to be disabled
|
|
|
|
if (!EWOMS_GET_PARAM(TypeTag, bool, EnableTracerModel)) {
|
|
if (simulator_.gridView().comm().rank() == 0) {
|
|
std::cout << "Warning: Tracer model is disabled but the deck contains the TRACERS keyword\n"
|
|
<< "The tracer model must be explictly activated using --enable-tracer-model=true\n"
|
|
<< std::flush;
|
|
}
|
|
return; // Tracer transport must be enabled by the user
|
|
}
|
|
|
|
if (comm.size() > 1) {
|
|
tracerNames_.resize(0);
|
|
if (comm.rank() == 0)
|
|
std::cout << "Warning: The tracer model currently does not work for parallel runs\n"
|
|
<< std::flush;
|
|
return;
|
|
}
|
|
|
|
// retrieve the number of tracers from the deck
|
|
const size_t numTracers = tracers.size();
|
|
tracerNames_.resize(numTracers);
|
|
tracerConcentration_.resize(numTracers);
|
|
storageOfTimeIndex1_.resize(numTracers);
|
|
|
|
// the phase where the tracer is
|
|
tracerPhaseIdx_.resize(numTracers);
|
|
size_t numGridDof = simulator_.model().numGridDof();
|
|
size_t tracerIdx = 0;
|
|
for (const auto& tracer : tracers) {
|
|
tracerNames_[tracerIdx] = tracer.name;
|
|
if (tracer.phase == Phase::WATER)
|
|
tracerPhaseIdx_[tracerIdx] = waterPhaseIdx;
|
|
else if (tracer.phase == Phase::OIL)
|
|
tracerPhaseIdx_[tracerIdx] = oilPhaseIdx;
|
|
else if (tracer.phase == Phase::GAS)
|
|
tracerPhaseIdx_[tracerIdx] = gasPhaseIdx;
|
|
|
|
tracerConcentration_[tracerIdx].resize(numGridDof);
|
|
storageOfTimeIndex1_[tracerIdx].resize(numGridDof);
|
|
|
|
|
|
//TBLK keyword
|
|
if (!tracer.concentration.empty()){
|
|
const auto& cartMapper = simulator_.vanguard().cartesianIndexMapper();
|
|
int tblkDatasize = tracer.concentration.size();
|
|
if (tblkDatasize < simulator_.vanguard().cartesianSize()){
|
|
throw std::runtime_error("Wrong size of TBLK for" + tracer.name);
|
|
}
|
|
for (size_t globalDofIdx = 0; globalDofIdx < numGridDof; ++globalDofIdx){
|
|
int cartDofIdx = cartMapper.cartesianIndex(globalDofIdx);
|
|
tracerConcentration_[tracerIdx][globalDofIdx] = tracer.concentration[cartDofIdx];
|
|
}
|
|
}
|
|
//TVDPF keyword
|
|
else {
|
|
const auto& eclGrid = simulator_.vanguard().eclState().getInputGrid();
|
|
const auto& cartMapper = simulator_.vanguard().cartesianIndexMapper();
|
|
|
|
for (size_t globalDofIdx = 0; globalDofIdx < numGridDof; ++globalDofIdx){
|
|
int cartDofIdx = cartMapper.cartesianIndex(globalDofIdx);
|
|
const auto& center = eclGrid.getCellCenter(cartDofIdx);
|
|
tracerConcentration_[tracerIdx][globalDofIdx] = tracer.tvdpf.evaluate("TRACER_CONCENTRATION", center[2]);
|
|
}
|
|
}
|
|
++tracerIdx;
|
|
}
|
|
|
|
// initial tracer concentration
|
|
tracerConcentrationInitial_ = tracerConcentration_;
|
|
|
|
// residual of tracers
|
|
tracerResidual_.resize(numGridDof);
|
|
|
|
// allocate matrix for storing the Jacobian of the tracer residual
|
|
tracerMatrix_ = new TracerMatrix(numGridDof, numGridDof, TracerMatrix::random);
|
|
|
|
// find the sparsity pattern of the tracer matrix
|
|
typedef std::set<unsigned> NeighborSet;
|
|
std::vector<NeighborSet> neighbors(numGridDof);
|
|
|
|
Stencil stencil(simulator_.gridView(), simulator_.model().dofMapper() );
|
|
ElementIterator elemIt = simulator_.gridView().template begin<0>();
|
|
const ElementIterator elemEndIt = simulator_.gridView().template end<0>();
|
|
for (; elemIt != elemEndIt; ++elemIt) {
|
|
const Element& elem = *elemIt;
|
|
stencil.update(elem);
|
|
|
|
for (unsigned primaryDofIdx = 0; primaryDofIdx < stencil.numPrimaryDof(); ++primaryDofIdx) {
|
|
unsigned myIdx = stencil.globalSpaceIndex(primaryDofIdx);
|
|
|
|
for (unsigned dofIdx = 0; dofIdx < stencil.numDof(); ++dofIdx) {
|
|
unsigned neighborIdx = stencil.globalSpaceIndex(dofIdx);
|
|
neighbors[myIdx].insert(neighborIdx);
|
|
}
|
|
}
|
|
}
|
|
|
|
// allocate space for the rows of the matrix
|
|
for (unsigned dofIdx = 0; dofIdx < numGridDof; ++ dofIdx)
|
|
tracerMatrix_->setrowsize(dofIdx, neighbors[dofIdx].size());
|
|
tracerMatrix_->endrowsizes();
|
|
|
|
// fill the rows with indices. each degree of freedom talks to
|
|
// all of its neighbors. (it also talks to itself since
|
|
// degrees of freedom are sometimes quite egocentric.)
|
|
for (unsigned dofIdx = 0; dofIdx < numGridDof; ++ dofIdx) {
|
|
typename NeighborSet::iterator nIt = neighbors[dofIdx].begin();
|
|
typename NeighborSet::iterator nEndIt = neighbors[dofIdx].end();
|
|
for (; nIt != nEndIt; ++nIt)
|
|
tracerMatrix_->addindex(dofIdx, *nIt);
|
|
}
|
|
tracerMatrix_->endindices();
|
|
|
|
const int sizeCartGrid = simulator_.vanguard().cartesianSize();
|
|
cartToGlobal_.resize(sizeCartGrid);
|
|
for (unsigned i = 0; i < numGridDof; ++i) {
|
|
int cartIdx = simulator_.vanguard().cartesianIndex(i);
|
|
cartToGlobal_[cartIdx] = i;
|
|
}
|
|
|
|
}
|
|
|
|
/*!
|
|
* \brief Return the number of tracers considered by the tracerModel.
|
|
*/
|
|
int numTracers() const
|
|
{ return tracerNames_.size(); }
|
|
|
|
/*!
|
|
* \brief Return the tracer name
|
|
*/
|
|
const std::string& tracerName(int tracerIdx) const
|
|
{
|
|
if (numTracers()==0)
|
|
throw std::logic_error("This method should never be called when there are no tracers in the model");
|
|
|
|
return tracerNames_[tracerIdx];
|
|
}
|
|
|
|
/*!
|
|
* \brief Return the tracer concentration for tracer index and global DofIdx
|
|
*/
|
|
Scalar tracerConcentration(int tracerIdx, int globalDofIdx) const
|
|
{
|
|
if (numTracers()==0)
|
|
return 0.0;
|
|
|
|
return tracerConcentration_[tracerIdx][globalDofIdx];
|
|
}
|
|
|
|
void beginTimeStep()
|
|
{
|
|
if (numTracers()==0)
|
|
return;
|
|
|
|
tracerConcentrationInitial_ = tracerConcentration_;
|
|
|
|
// compute storageCache
|
|
ElementContext elemCtx(simulator_);
|
|
auto elemIt = simulator_.gridView().template begin</*codim=*/0>();
|
|
auto elemEndIt = simulator_.gridView().template end</*codim=*/0>();
|
|
for (; elemIt != elemEndIt; ++ elemIt) {
|
|
elemCtx.updateAll(*elemIt);
|
|
int globalDofIdx = elemCtx.globalSpaceIndex(0, 0);
|
|
for (int tracerIdx = 0; tracerIdx < numTracers(); ++ tracerIdx){
|
|
Scalar storageOfTimeIndex1;
|
|
computeStorage_(storageOfTimeIndex1, elemCtx, 0, /*timIdx=*/0, tracerIdx);
|
|
storageOfTimeIndex1_[tracerIdx][globalDofIdx] = storageOfTimeIndex1;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* \brief Informs the tracer model that a time step has just been finished.
|
|
*/
|
|
void endTimeStep()
|
|
{
|
|
if (numTracers()==0)
|
|
return;
|
|
|
|
for (int tracerIdx = 0; tracerIdx < numTracers(); ++ tracerIdx){
|
|
|
|
TracerVector dx(tracerResidual_.size());
|
|
// Newton step (currently the system is linear, converge in one iteration)
|
|
for (int iter = 0; iter < 5; ++ iter){
|
|
linearize_(tracerIdx);
|
|
linearSolve_(*tracerMatrix_, dx, tracerResidual_);
|
|
tracerConcentration_[tracerIdx] -= dx;
|
|
|
|
if (dx.two_norm()<1e-2)
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* \brief This method writes the complete state of all tracer
|
|
* to the hard disk.
|
|
*/
|
|
template <class Restarter>
|
|
void serialize(Restarter& res OPM_UNUSED)
|
|
{ /* not implemented */ }
|
|
|
|
/*!
|
|
* \brief This method restores the complete state of the tracer
|
|
* from disk.
|
|
*
|
|
* It is the inverse of the serialize() method.
|
|
*/
|
|
template <class Restarter>
|
|
void deserialize(Restarter& res OPM_UNUSED)
|
|
{ /* not implemented */ }
|
|
|
|
protected:
|
|
// evaluate storage term for all tracers in a single cell
|
|
template <class LhsEval>
|
|
void computeStorage_(LhsEval& tracerStorage,
|
|
const ElementContext& elemCtx,
|
|
unsigned scvIdx,
|
|
unsigned timeIdx,
|
|
const int tracerIdx)
|
|
{
|
|
int globalDofIdx = elemCtx.globalSpaceIndex(scvIdx, timeIdx);
|
|
|
|
const auto& intQuants = elemCtx.intensiveQuantities(scvIdx, timeIdx);
|
|
const auto& fs = intQuants.fluidState();
|
|
Scalar phaseVolume =
|
|
Opm::decay<Scalar>(fs.saturation(tracerPhaseIdx_[tracerIdx]))
|
|
*Opm::decay<Scalar>(fs.invB(tracerPhaseIdx_[tracerIdx]))
|
|
*Opm::decay<Scalar>(intQuants.porosity());
|
|
|
|
// avoid singular matrix if no water is present.
|
|
phaseVolume = Opm::max(phaseVolume, 1e-10);
|
|
|
|
if (std::is_same<LhsEval, Scalar>::value)
|
|
tracerStorage = phaseVolume * tracerConcentrationInitial_[tracerIdx][globalDofIdx];
|
|
else
|
|
tracerStorage =
|
|
phaseVolume
|
|
* Opm::variable<LhsEval>(tracerConcentration_[tracerIdx][globalDofIdx][0], 0);
|
|
}
|
|
|
|
// evaluate the tracerflux over one face
|
|
void computeFlux_(TracerEvaluation & tracerFlux,
|
|
const ElementContext& elemCtx,
|
|
unsigned scvfIdx,
|
|
unsigned timeIdx,
|
|
const int tracerIdx)
|
|
|
|
{
|
|
const auto& stencil = elemCtx.stencil(timeIdx);
|
|
const auto& scvf = stencil.interiorFace(scvfIdx);
|
|
|
|
const auto& extQuants = elemCtx.extensiveQuantities(scvfIdx, timeIdx);
|
|
unsigned inIdx = extQuants.interiorIndex();
|
|
|
|
const int tracerPhaseIdx = tracerPhaseIdx_[tracerIdx];
|
|
|
|
unsigned upIdx = extQuants.upstreamIndex(tracerPhaseIdx);
|
|
int globalUpIdx = elemCtx.globalSpaceIndex(upIdx, timeIdx);
|
|
|
|
const auto& intQuants = elemCtx.intensiveQuantities(upIdx, timeIdx);
|
|
const auto& fs = intQuants.fluidState();
|
|
|
|
Scalar A = scvf.area();
|
|
Scalar v = Opm::decay<Scalar>(extQuants.volumeFlux(tracerPhaseIdx));
|
|
Scalar b = Opm::decay<Scalar>(fs.invB(tracerPhaseIdx_[tracerIdx]));
|
|
Scalar c = tracerConcentration_[tracerIdx][globalUpIdx];
|
|
|
|
if (inIdx == upIdx)
|
|
tracerFlux = A*v*b*Opm::variable<TracerEvaluation>(c, 0);
|
|
else
|
|
tracerFlux = A*v*b*c;
|
|
|
|
}
|
|
|
|
bool linearSolve_(const TracerMatrix& M, TracerVector& x, TracerVector& b)
|
|
{
|
|
#if ! DUNE_VERSION_NEWER(DUNE_COMMON, 2,7)
|
|
Dune::FMatrixPrecision<Scalar>::set_singular_limit(1.e-30);
|
|
Dune::FMatrixPrecision<Scalar>::set_absolute_limit(1.e-30);
|
|
#endif
|
|
x = 0.0;
|
|
Scalar tolerance = 1e-2;
|
|
int maxIter = 100;
|
|
|
|
int verbosity = 0;
|
|
typedef Dune::BiCGSTABSolver<TracerVector> TracerSolver;
|
|
typedef Dune::MatrixAdapter<TracerMatrix, TracerVector , TracerVector > TracerOperator;
|
|
typedef Dune::SeqScalarProduct< TracerVector > TracerScalarProduct ;
|
|
typedef Dune::SeqILU< TracerMatrix, TracerVector, TracerVector > TracerPreconditioner;
|
|
|
|
TracerOperator tracerOperator(M);
|
|
TracerScalarProduct tracerScalarProduct;
|
|
TracerPreconditioner tracerPreconditioner(M, 0, 1); // results in ILU0
|
|
|
|
TracerSolver solver (tracerOperator, tracerScalarProduct,
|
|
tracerPreconditioner, tolerance, maxIter,
|
|
verbosity);
|
|
|
|
Dune::InverseOperatorResult result;
|
|
solver.apply(x, b, result);
|
|
|
|
// return the result of the solver
|
|
return result.converged;
|
|
}
|
|
|
|
void linearize_(int tracerIdx)
|
|
{
|
|
(*tracerMatrix_) = 0.0;
|
|
tracerResidual_ = 0.0;
|
|
|
|
size_t numGridDof = simulator_.model().numGridDof();
|
|
std::vector<double> volumes(numGridDof, 0.0);
|
|
ElementContext elemCtx(simulator_);
|
|
auto elemIt = simulator_.gridView().template begin</*codim=*/0>();
|
|
auto elemEndIt = simulator_.gridView().template end</*codim=*/0>();
|
|
for (; elemIt != elemEndIt; ++ elemIt) {
|
|
elemCtx.updateAll(*elemIt);
|
|
|
|
Scalar extrusionFactor =
|
|
elemCtx.intensiveQuantities(/*dofIdx=*/ 0, /*timeIdx=*/0).extrusionFactor();
|
|
Opm::Valgrind::CheckDefined(extrusionFactor);
|
|
assert(Opm::isfinite(extrusionFactor));
|
|
assert(extrusionFactor > 0.0);
|
|
Scalar scvVolume =
|
|
elemCtx.stencil(/*timeIdx=*/0).subControlVolume(/*dofIdx=*/ 0).volume()
|
|
* extrusionFactor;
|
|
Scalar dt = elemCtx.simulator().timeStepSize();
|
|
|
|
size_t I = elemCtx.globalSpaceIndex(/*dofIdx=*/ 0, /*timIdx=*/0);
|
|
volumes[I] = scvVolume;
|
|
TracerEvaluation localStorage;
|
|
TracerEvaluation storageOfTimeIndex0;
|
|
Scalar storageOfTimeIndex1;
|
|
computeStorage_(storageOfTimeIndex0, elemCtx, 0, /*timIdx=*/0, tracerIdx);
|
|
if (elemCtx.enableStorageCache())
|
|
storageOfTimeIndex1 = storageOfTimeIndex1_[tracerIdx][I];
|
|
else
|
|
computeStorage_(storageOfTimeIndex1, elemCtx, 0, /*timIdx=*/1, tracerIdx);
|
|
|
|
localStorage = (storageOfTimeIndex0 - storageOfTimeIndex1) * scvVolume/dt;
|
|
tracerResidual_[I][0] += localStorage.value(); //residual + flux
|
|
(*tracerMatrix_)[I][I][0][0] = localStorage.derivative(0);
|
|
size_t numInteriorFaces = elemCtx.numInteriorFaces(/*timIdx=*/0);
|
|
for (unsigned scvfIdx = 0; scvfIdx < numInteriorFaces; scvfIdx++) {
|
|
TracerEvaluation flux;
|
|
const auto& face = elemCtx.stencil(0).interiorFace(scvfIdx);
|
|
unsigned j = face.exteriorIndex();
|
|
unsigned J = elemCtx.globalSpaceIndex(/*dofIdx=*/ j, /*timIdx=*/0);
|
|
computeFlux_(flux, elemCtx, scvfIdx, 0, tracerIdx);
|
|
tracerResidual_[I][0] += flux.value(); //residual + flux
|
|
(*tracerMatrix_)[J][I][0][0] = -flux.derivative(0);
|
|
(*tracerMatrix_)[I][J][0][0] = flux.derivative(0);
|
|
}
|
|
|
|
}
|
|
|
|
// Wells
|
|
const int episodeIdx = simulator_.episodeIndex();
|
|
const auto& wells = simulator_.vanguard().schedule().getWells(episodeIdx);
|
|
for (const auto& well : wells) {
|
|
|
|
if (well.getStatus() == Opm::Well::Status::SHUT)
|
|
continue;
|
|
|
|
const double wtracer = well.getTracerProperties().getConcentration(tracerNames_[tracerIdx]);
|
|
std::array<int, 3> cartesianCoordinate;
|
|
for (auto& connection : well.getConnections()) {
|
|
|
|
if (connection.state() == Opm::Connection::State::SHUT)
|
|
continue;
|
|
|
|
cartesianCoordinate[0] = connection.getI();
|
|
cartesianCoordinate[1] = connection.getJ();
|
|
cartesianCoordinate[2] = connection.getK();
|
|
const size_t cartIdx = simulator_.vanguard().cartesianIndex(cartesianCoordinate);
|
|
const int I = cartToGlobal_[cartIdx];
|
|
Scalar rate = simulator_.problem().wellModel().well(well.name())->volumetricSurfaceRateForConnection(I, tracerPhaseIdx_[tracerIdx]);
|
|
if (rate > 0)
|
|
tracerResidual_[I][0] -= rate*wtracer;
|
|
else if (rate < 0)
|
|
tracerResidual_[I][0] -= rate*tracerConcentration_[tracerIdx][I];
|
|
}
|
|
}
|
|
}
|
|
|
|
Simulator& simulator_;
|
|
|
|
std::vector<std::string> tracerNames_;
|
|
std::vector<int> tracerPhaseIdx_;
|
|
std::vector<Dune::BlockVector<Dune::FieldVector<Scalar, 1>>> tracerConcentration_;
|
|
std::vector<Dune::BlockVector<Dune::FieldVector<Scalar, 1>>> tracerConcentrationInitial_;
|
|
TracerMatrix *tracerMatrix_;
|
|
TracerVector tracerResidual_;
|
|
std::vector<int> cartToGlobal_;
|
|
std::vector<Dune::BlockVector<Dune::FieldVector<Scalar, 1>>> storageOfTimeIndex1_;
|
|
|
|
};
|
|
} // namespace Opm
|
|
|
|
#endif
|