opm-simulators/examples/tutorialproblem_decoupled.hh

300 lines
12 KiB
C++

// $Id$
/*****************************************************************************
* Copyright (C) 2007-2008 by Klaus Mosthaf *
* Copyright (C) 2007-2008 by Bernd Flemisch *
* Copyright (C) 2008-2009 by Andreas Lauser *
* Institute of Hydraulic Engineering *
* University of Stuttgart, Germany *
* email: <givenname>.<name>@iws.uni-stuttgart.de *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version, as long as this copyright notice *
* is included in its original form. *
* *
* This program is distributed WITHOUT ANY WARRANTY. *
*****************************************************************************/
#ifndef DUMUX_TUTORIALPROBLEM_DECOUPLED_HH
#define DUMUX_TUTORIALPROBLEM_DECOUPLED_HH
// the grid includes
#include <dune/grid/sgrid.hh>
// dumux 2p-decoupled environment
#include <dumux/decoupled/2p/impes/impesproblem2p.hh> /*@\label{tutorial-decoupled:parent-problem}@*/
#include <dumux/decoupled/2p/diffusion/fv/fvvelocity2p.hh>
#include <dumux/decoupled/2p/transport/fv/fvsaturation2p.hh>
#include <dumux/decoupled/2p/transport/fv/capillarydiffusion.hh>
// assign parameters dependent on space (e.g. spatial parameters)
#include "tutorialspatialparameters_decoupled.hh" /*@\label{tutorial-decoupled:spatialparameters}@*/
namespace Dumux
{
template<class TypeTag>
class TutorialProblemDecoupled;
//////////
// Specify the properties for the lens problem
//////////
namespace Properties
{
// create a new type tag for the problem
NEW_TYPE_TAG(TutorialProblemDecoupled, INHERITS_FROM(DecoupledTwoP)); /*@\label{tutorial-decoupled:create-type-tag}@*/
// Set the problem property
SET_PROP(TutorialProblemDecoupled, Problem) /*@\label{tutorial-decoupled:set-problem}@*/
{
public:
typedef Dumux::TutorialProblemDecoupled<TTAG(TutorialProblemDecoupled)> type;
};
// Set the grid type
SET_PROP(TutorialProblemDecoupled, Grid) /*@\label{tutorial-decoupled:grid-begin}@*/
{
typedef Dune::SGrid<2, 2> type; /*@\label{tutorial-decoupled:set-grid-type}@*/
static type *create() /*@\label{tutorial-decoupled:create-grid-method}@*/
{
typedef typename type::ctype ctype;
Dune::FieldVector<int, 2> cellRes;
Dune::FieldVector<ctype, 2> lowerLeft(0.0);
Dune::FieldVector<ctype, 2> upperRight;
upperRight[0] = 300;
upperRight[1] = 60;
cellRes[0] = 100;
cellRes[1] = 1;
return new Dune::SGrid<2,2>(cellRes,
lowerLeft,
upperRight);
} /*@\label{tutorial-decoupled:grid-end}@*/
};
// Set the wetting phase
SET_PROP(TutorialProblemDecoupled, WettingPhase) /*@\label{tutorial-decoupled:2p-system-start}@*/
{
private:
typedef typename GET_PROP_TYPE(TypeTag, PTAG(Scalar)) Scalar;
public:
typedef Dumux::LiquidPhase<Scalar, Dumux::H2O<Scalar> > type; /*@\label{tutorial-decoupled:wettingPhase}@*/
};
// Set the non-wetting phase
SET_PROP(TutorialProblemDecoupled, NonwettingPhase)
{
private:
typedef typename GET_PROP_TYPE(TypeTag, PTAG(Scalar)) Scalar;
public:
typedef Dumux::LiquidPhase<Scalar, Dumux::Oil<Scalar> > type; /*@\label{tutorial-decoupled:nonwettingPhase}@*/
}; /*@\label{tutorial-decoupled:2p-system-end}@*/
// Set the spatial parameters
SET_PROP(TutorialProblemDecoupled, SpatialParameters) /*@\label{tutorial-decoupled:set-spatialparameters}@*/
{
private:
typedef typename GET_PROP_TYPE(TypeTag, PTAG(Grid)) Grid;
typedef typename GET_PROP_TYPE(TypeTag, PTAG(Scalar)) Scalar;
public:
typedef Dumux::TutorialSpatialParametersDecoupled<TypeTag> type;
};
// Set the model properties
SET_PROP(TutorialProblemDecoupled, TransportModel) /*@\label{tutorial-decoupled:TransportModel}@*/
{
typedef Dumux::FVSaturation2P<TTAG(TutorialProblemDecoupled)> type;
};
SET_PROP(TutorialProblemDecoupled, PressureModel) /*@\label{tutorial-decoupled:PressureModel}@*/
{
typedef Dumux::FVVelocity2P<TTAG(TutorialProblemDecoupled)> type;
};
// model-specific settings
SET_INT_PROP(TutorialProblemDecoupled, VelocityFormulation,
GET_PROP_TYPE(TypeTag, PTAG(TwoPIndices))::velocityW); /*@\label{tutorial-decoupled:velocityFormulation}@*/
SET_TYPE_PROP(TutorialProblemDecoupled, DiffusivePart,
Dumux::CapillaryDiffusion<TypeTag>); /*@\label{tutorial-decoupled:DiffusivePart}@*/
SET_SCALAR_PROP(TutorialProblemDecoupled, CFLFactor, 0.5); /*@\label{tutorial-decoupled:cfl}@*/
// Disable gravity
SET_BOOL_PROP(TutorialProblemDecoupled, EnableGravity, false); /*@\label{tutorial-decoupled:gravity}@*/
} /*@\label{tutorial-decoupled:propertysystem-end}@*/
/*! \ingroup DecoupledProblems
* @brief Problem class for the decoupled tutorial
*/
template<class TypeTag = TTAG(TutorialProblemDecoupled)>
class TutorialProblemDecoupled: public IMPESProblem2P<TypeTag, TutorialProblemDecoupled<TypeTag> > /*@\label{tutorial-decoupled:def-problem}@*/
{
typedef TutorialProblemDecoupled<TypeTag> ThisType;
typedef IMPESProblem2P<TypeTag, ThisType> ParentType;
typedef typename GET_PROP_TYPE(TypeTag, PTAG(GridView)) GridView;
typedef typename GET_PROP_TYPE(TypeTag, PTAG(TwoPIndices)) Indices;
typedef typename GET_PROP_TYPE(TypeTag, PTAG(FluidSystem)) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, PTAG(FluidState)) FluidState;
enum
{
dim = GridView::dimension, dimWorld = GridView::dimensionworld
};
enum
{
wPhaseIdx = Indices::wPhaseIdx, nPhaseIdx = Indices::nPhaseIdx
};
typedef typename GET_PROP_TYPE(TypeTag, PTAG(Scalar)) Scalar;
typedef typename GridView::Traits::template Codim<0>::Entity Element;
typedef typename GridView::Intersection Intersection;
typedef Dune::FieldVector<Scalar, dimWorld> GlobalPosition;
typedef Dune::FieldVector<Scalar, dim> LocalPosition;
public:
TutorialProblemDecoupled(const GridView &gridView, const GlobalPosition lowerLeft = GlobalPosition(0.),
const GlobalPosition upperRight = GlobalPosition(0.)) : ParentType(gridView) /*@\label{tutorial-decoupled:constructor-problem}@*/
{ }
//! The problem name.
/*! This is used as a prefix for files generated by the simulation.
*/
const char *name() const /*@\label{tutorial-decoupled:name}@*/
{
return "tutorial_decoupled";
}
//! Returns true if a restart file should be written.
/* The default behaviour is to write no restart file.
*/
bool shouldWriteRestartFile() const /*@\label{tutorial-decoupled:restart}@*/
{
return false;
}
//! Returns true if the current solution should be written to disk (i.e. as a VTK file)
/*! The default behaviour is to write out every the solution for
* very time step. Else, change divisor.
*/
bool shouldWriteOutput() const /*@\label{tutorial-decoupled:output}@*/
{
return this->timeManager().timeStepIndex() > 0 &&
(this->timeManager().timeStepIndex() % 1 == 0);
}
//! Returns the temperature within the domain.
/*! This problem assumes a temperature of 10 degrees Celsius.
*/
Scalar temperature(const GlobalPosition& globalPos, const Element& element) const /*@\label{tutorial-decoupled:temperature}@*/
{
return 273.15 + 10; // -> 10°C
}
//! Returns a constant pressure to enter material laws
/* For incrompressible simulations, a constant pressure is necessary
* to enter the material laws to gain a constant density etc.
*/
Scalar referencePressure(const GlobalPosition& globalPos, const Element& element) const /*@\label{tutorial-decoupled:refPressure}@*/
{
return 2e5;
}
//! Source of mass \f$ [\frac{kg}{m^3 \cdot s}] \f$
/*! Evaluate the source term for all phases within a given
* volume. The method returns the mass generated (positive) or
* annihilated (negative) per volume unit.
*/
std::vector<Scalar> source(const GlobalPosition& globalPos, const Element& element) /*@\label{tutorial-decoupled:source}@*/
{
return std::vector<Scalar>(2, 0.);
}
//! Type of pressure boundary condition.
/*! Defines the type the boundary condition for the pressure equation,
* either pressure (dirichlet) or flux (neumann).
*/
typename BoundaryConditions::Flags bctypePress(const GlobalPosition& globalPos, const Intersection& intersection) const /*@\label{tutorial-decoupled:bctypePress}@*/
{
if ((globalPos[0] < this->bboxMin()[0] + eps_))
return BoundaryConditions::dirichlet;
// all other boundaries
return BoundaryConditions::neumann;
}
//! Type of Transport boundary condition.
/*! Defines the type the boundary condition for the transport equation,
* either saturation (dirichlet) or flux (neumann).
*/
BoundaryConditions::Flags bctypeSat(const GlobalPosition& globalPos, const Intersection& intersection) const /*@\label{tutorial-decoupled:bctypeSat}@*/
{
if (globalPos[0] < this->bboxMin()[0] + eps_)
return Dumux::BoundaryConditions::dirichlet;
else
return Dumux::BoundaryConditions::neumann;
}
//! Value for dirichlet pressure boundary condition \f$ [Pa] \f$.
/*! In case of a dirichlet BC for the pressure equation, the pressure
* have to be defined on boundaries.
*/
Scalar dirichletPress(const GlobalPosition& globalPos, const Intersection& intersection) const /*@\label{tutorial-decoupled:dirichletPress}@*/
{
if (globalPos[0] < this->bboxMin()[0] + eps_)
return 2e5;
// all other boundaries
return 0;
}
//! Value for transport dirichlet boundary condition (dimensionless).
/*! In case of a dirichlet BC for the transport equation, a saturation
* have to be defined on boundaries.
*/
Scalar dirichletSat(const GlobalPosition& globalPos, const Intersection& intersection) const /*@\label{tutorial-decoupled:dirichletSat}@*/
{
if (globalPos[0] < this->bboxMin()[0] + eps_)
return 1;
// all other boundaries
return 0;
}
//! Value for pressure neumann boundary condition \f$ [\frac{kg}{m^3 \cdot s}] \f$.
/*! In case of a neumann boundary condition, the flux of matter
* is returned as a vector.
*/
std::vector<Scalar> neumannPress(const GlobalPosition& globalPos, const Intersection& intersection) const /*@\label{tutorial-decoupled:neumannPress}@*/
{
std::vector<Scalar> neumannFlux(2,0.0);
if (globalPos[0] > this->bboxMax()[0] - eps_)
{
neumannFlux[nPhaseIdx] = 3e-4;
}
return neumannFlux;
}
//! Value for transport neumann boundary condition \f$ [\frac{kg}{m^3 \cdot s}] \f$.
/*! In case of a neumann boundary condition for the transport equation
* the flux of matter for the primary variable is returned as a scalar.
*/
Scalar neumannSat(const GlobalPosition& globalPos, const Intersection& intersection, Scalar factor) const /*@\label{tutorial-decoupled:neumannSat}@*/
{
return 0;
}
//! Saturation initial condition (dimensionless)
/*! The problem is initialized with the following saturation.
*/
Scalar initSat(const GlobalPosition& globalPos, const Element& element) const /*@\label{tutorial-decoupled:initSat}@*/
{
return 0;
}
private:
GlobalPosition lowerLeft_;
GlobalPosition upperRight_;
static const Scalar eps_ = 1e-6;
};
} //end namespace
#endif