mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-12-27 09:40:59 -06:00
901 lines
31 KiB
C++
901 lines
31 KiB
C++
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
// vi: set et ts=4 sw=4 sts=4:
|
|
/*
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Consult the COPYING file in the top-level source directory of this
|
|
module for the precise wording of the license and the list of
|
|
copyright holders.
|
|
*/
|
|
/*!
|
|
* \file
|
|
* \copydoc Opm::NewtonMethod
|
|
*/
|
|
#ifndef EWOMS_NEWTON_METHOD_HH
|
|
#define EWOMS_NEWTON_METHOD_HH
|
|
|
|
#include "nullconvergencewriter.hh"
|
|
|
|
#include "newtonmethodproperties.hh"
|
|
|
|
#include <opm/common/Exceptions.hpp>
|
|
|
|
#include <opm/material/densead/Math.hpp>
|
|
|
|
#include <opm/models/discretization/common/fvbaseproperties.hh>
|
|
#include <opm/models/utils/timer.hh>
|
|
#include <opm/models/utils/timerguard.hh>
|
|
|
|
#include <opm/simulators/linalg/linalgproperties.hh>
|
|
|
|
#include <dune/istl/istlexception.hh>
|
|
#include <dune/common/classname.hh>
|
|
#include <dune/common/parallel/mpihelper.hh>
|
|
|
|
#include <iostream>
|
|
#include <sstream>
|
|
|
|
#include <unistd.h>
|
|
|
|
namespace Opm {
|
|
// forward declaration of classes
|
|
template <class TypeTag>
|
|
class NewtonMethod;
|
|
}
|
|
|
|
namespace Opm {
|
|
// forward declaration of property tags
|
|
} // namespace Opm
|
|
|
|
namespace Opm::Properties {
|
|
|
|
namespace TTag {
|
|
|
|
//! The type tag on which the default properties for the Newton method
|
|
//! are attached
|
|
struct NewtonMethod {};
|
|
|
|
} // namespace TTag
|
|
|
|
// set default values for the properties
|
|
template<class TypeTag>
|
|
struct NewtonMethod<TypeTag, TTag::NewtonMethod> { using type = ::Opm::NewtonMethod<TypeTag>; };
|
|
template<class TypeTag>
|
|
struct NewtonConvergenceWriter<TypeTag, TTag::NewtonMethod> { using type = NullConvergenceWriter<TypeTag>; };
|
|
template<class TypeTag>
|
|
struct NewtonWriteConvergence<TypeTag, TTag::NewtonMethod> { static constexpr bool value = false; };
|
|
template<class TypeTag>
|
|
struct NewtonVerbose<TypeTag, TTag::NewtonMethod> { static constexpr bool value = true; };
|
|
template<class TypeTag>
|
|
struct NewtonTolerance<TypeTag, TTag::NewtonMethod>
|
|
{
|
|
using type = GetPropType<TypeTag, Scalar>;
|
|
static constexpr type value = 1e-8;
|
|
};
|
|
// set the abortion tolerace to some very large value. if not
|
|
// overwritten at run-time this basically disables abortions
|
|
template<class TypeTag>
|
|
struct NewtonMaxError<TypeTag, TTag::NewtonMethod>
|
|
{
|
|
using type = GetPropType<TypeTag, Scalar>;
|
|
static constexpr type value = 1e100;
|
|
};
|
|
template<class TypeTag>
|
|
struct NewtonTargetIterations<TypeTag, TTag::NewtonMethod> { static constexpr int value = 10; };
|
|
template<class TypeTag>
|
|
struct NewtonMaxIterations<TypeTag, TTag::NewtonMethod> { static constexpr int value = 20; };
|
|
|
|
} // namespace Opm::Properties
|
|
|
|
namespace Opm {
|
|
/*!
|
|
* \ingroup Newton
|
|
* \brief The multi-dimensional Newton method.
|
|
*
|
|
* This class uses static polymorphism to allow implementations to
|
|
* implement different update/convergence strategies.
|
|
*/
|
|
template <class TypeTag>
|
|
class NewtonMethod
|
|
{
|
|
using Implementation = GetPropType<TypeTag, Properties::NewtonMethod>;
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
|
|
using Problem = GetPropType<TypeTag, Properties::Problem>;
|
|
using Model = GetPropType<TypeTag, Properties::Model>;
|
|
|
|
using SolutionVector = GetPropType<TypeTag, Properties::SolutionVector>;
|
|
using GlobalEqVector = GetPropType<TypeTag, Properties::GlobalEqVector>;
|
|
using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
|
|
using Constraints = GetPropType<TypeTag, Properties::Constraints>;
|
|
using EqVector = GetPropType<TypeTag, Properties::EqVector>;
|
|
using Linearizer = GetPropType<TypeTag, Properties::Linearizer>;
|
|
using LinearSolverBackend = GetPropType<TypeTag, Properties::LinearSolverBackend>;
|
|
using ConvergenceWriter = GetPropType<TypeTag, Properties::NewtonConvergenceWriter>;
|
|
|
|
using Communicator = typename Dune::MPIHelper::MPICommunicator;
|
|
using CollectiveCommunication = typename Dune::Communication<typename Dune::MPIHelper::MPICommunicator>;
|
|
|
|
public:
|
|
NewtonMethod(Simulator& simulator)
|
|
: simulator_(simulator)
|
|
, endIterMsgStream_(std::ostringstream::out)
|
|
, linearSolver_(simulator)
|
|
, comm_(Dune::MPIHelper::getCommunicator())
|
|
, convergenceWriter_(asImp_())
|
|
{
|
|
lastError_ = 1e100;
|
|
error_ = 1e100;
|
|
tolerance_ = Parameters::get<TypeTag, Properties::NewtonTolerance>();
|
|
|
|
numIterations_ = 0;
|
|
}
|
|
|
|
/*!
|
|
* \brief Register all run-time parameters for the Newton method.
|
|
*/
|
|
static void registerParameters()
|
|
{
|
|
LinearSolverBackend::registerParameters();
|
|
|
|
Parameters::registerParam<TypeTag, Properties::NewtonVerbose>
|
|
("Specify whether the Newton method should inform "
|
|
"the user about its progress or not");
|
|
Parameters::registerParam<TypeTag, Properties::NewtonWriteConvergence>
|
|
("Write the convergence behaviour of the Newton "
|
|
"method to a VTK file");
|
|
Parameters::registerParam<TypeTag, Properties::NewtonTargetIterations>
|
|
("The 'optimum' number of Newton iterations per time step");
|
|
Parameters::registerParam<TypeTag, Properties::NewtonMaxIterations>
|
|
("The maximum number of Newton iterations per time step");
|
|
Parameters::registerParam<TypeTag, Properties::NewtonTolerance>
|
|
("The maximum raw error tolerated by the Newton"
|
|
"method for considering a solution to be converged");
|
|
Parameters::registerParam<TypeTag, Properties::NewtonMaxError>
|
|
("The maximum error tolerated by the Newton "
|
|
"method to which does not cause an abort");
|
|
}
|
|
|
|
/*!
|
|
* \brief Finialize the construction of the object.
|
|
*
|
|
* At this point, it can be assumed that all objects featured by the simulator have
|
|
* been allocated. (But not that they have been fully initialized yet.)
|
|
*/
|
|
void finishInit()
|
|
{ }
|
|
|
|
/*!
|
|
* \brief Returns true if the error of the solution is below the
|
|
* tolerance.
|
|
*/
|
|
bool converged() const
|
|
{ return error_ <= tolerance(); }
|
|
|
|
/*!
|
|
* \brief Returns a reference to the object describing the current physical problem.
|
|
*/
|
|
Problem& problem()
|
|
{ return simulator_.problem(); }
|
|
|
|
/*!
|
|
* \brief Returns a reference to the object describing the current physical problem.
|
|
*/
|
|
const Problem& problem() const
|
|
{ return simulator_.problem(); }
|
|
|
|
/*!
|
|
* \brief Returns a reference to the numeric model.
|
|
*/
|
|
Model& model()
|
|
{ return simulator_.model(); }
|
|
|
|
/*!
|
|
* \brief Returns a reference to the numeric model.
|
|
*/
|
|
const Model& model() const
|
|
{ return simulator_.model(); }
|
|
|
|
/*!
|
|
* \brief Returns the number of iterations done since the Newton method
|
|
* was invoked.
|
|
*/
|
|
int numIterations() const
|
|
{ return numIterations_; }
|
|
|
|
/*!
|
|
* \brief Set the index of current iteration.
|
|
*
|
|
* Normally this does not need to be called, but if the non-linear solver is
|
|
* implemented externally, it needs to be set in order for the model to do the Right
|
|
* Thing (TM) while linearizing.
|
|
*/
|
|
void setIterationIndex(int value)
|
|
{ numIterations_ = value; }
|
|
|
|
/*!
|
|
* \brief Return the current tolerance at which the Newton method considers itself to
|
|
* be converged.
|
|
*/
|
|
Scalar tolerance() const
|
|
{ return tolerance_; }
|
|
|
|
/*!
|
|
* \brief Set the current tolerance at which the Newton method considers itself to
|
|
* be converged.
|
|
*/
|
|
void setTolerance(Scalar value)
|
|
{ tolerance_ = value; }
|
|
|
|
/*!
|
|
* \brief Run the Newton method.
|
|
*
|
|
* The actual implementation can influence all the strategic
|
|
* decisions via callbacks using static polymorphism.
|
|
*/
|
|
bool apply()
|
|
{
|
|
// Clear the current line using an ansi escape
|
|
// sequence. For an explanation see
|
|
// http://en.wikipedia.org/wiki/ANSI_escape_code
|
|
const char *clearRemainingLine = "\n";
|
|
if (isatty(fileno(stdout))) {
|
|
static const char blubb[] = { 0x1b, '[', 'K', '\r', 0 };
|
|
clearRemainingLine = blubb;
|
|
}
|
|
|
|
// make sure all timers are prestine
|
|
prePostProcessTimer_.halt();
|
|
linearizeTimer_.halt();
|
|
solveTimer_.halt();
|
|
updateTimer_.halt();
|
|
|
|
SolutionVector& nextSolution = model().solution(/*historyIdx=*/0);
|
|
SolutionVector currentSolution(nextSolution);
|
|
GlobalEqVector solutionUpdate(nextSolution.size());
|
|
|
|
Linearizer& linearizer = model().linearizer();
|
|
|
|
TimerGuard prePostProcessTimerGuard(prePostProcessTimer_);
|
|
|
|
// tell the implementation that we begin solving
|
|
prePostProcessTimer_.start();
|
|
asImp_().begin_(nextSolution);
|
|
prePostProcessTimer_.stop();
|
|
|
|
try {
|
|
TimerGuard innerPrePostProcessTimerGuard(prePostProcessTimer_);
|
|
TimerGuard linearizeTimerGuard(linearizeTimer_);
|
|
TimerGuard updateTimerGuard(updateTimer_);
|
|
TimerGuard solveTimerGuard(solveTimer_);
|
|
|
|
// execute the method as long as the implementation thinks
|
|
// that we should do another iteration
|
|
while (asImp_().proceed_()) {
|
|
// linearize the problem at the current solution
|
|
|
|
// notify the implementation that we're about to start
|
|
// a new iteration
|
|
prePostProcessTimer_.start();
|
|
asImp_().beginIteration_();
|
|
prePostProcessTimer_.stop();
|
|
|
|
// make the current solution to the old one
|
|
currentSolution = nextSolution;
|
|
|
|
if (asImp_().verbose_()) {
|
|
std::cout << "Linearize: r(x^k) = dS/dt + div F - q; M = grad r"
|
|
<< clearRemainingLine
|
|
<< std::flush;
|
|
}
|
|
|
|
// do the actual linearization
|
|
linearizeTimer_.start();
|
|
asImp_().linearizeDomain_();
|
|
asImp_().linearizeAuxiliaryEquations_();
|
|
linearizeTimer_.stop();
|
|
|
|
solveTimer_.start();
|
|
auto& residual = linearizer.residual();
|
|
const auto& jacobian = linearizer.jacobian();
|
|
linearSolver_.prepare(jacobian, residual);
|
|
linearSolver_.setResidual(residual);
|
|
linearSolver_.getResidual(residual);
|
|
solveTimer_.stop();
|
|
|
|
// The preSolve_() method usually computes the errors, but it can do
|
|
// something else in addition. TODO: should its costs be counted to
|
|
// the linearization or to the update?
|
|
updateTimer_.start();
|
|
asImp_().preSolve_(currentSolution, residual);
|
|
updateTimer_.stop();
|
|
|
|
if (!asImp_().proceed_()) {
|
|
if (asImp_().verbose_() && isatty(fileno(stdout)))
|
|
std::cout << clearRemainingLine
|
|
<< std::flush;
|
|
|
|
// tell the implementation that we're done with this iteration
|
|
prePostProcessTimer_.start();
|
|
asImp_().endIteration_(nextSolution, currentSolution);
|
|
prePostProcessTimer_.stop();
|
|
|
|
break;
|
|
}
|
|
|
|
// solve the resulting linear equation system
|
|
if (asImp_().verbose_()) {
|
|
std::cout << "Solve: M deltax^k = r"
|
|
<< clearRemainingLine
|
|
<< std::flush;
|
|
}
|
|
|
|
solveTimer_.start();
|
|
// solve A x = b, where b is the residual, A is its Jacobian and x is the
|
|
// update of the solution
|
|
linearSolver_.setMatrix(jacobian);
|
|
solutionUpdate = 0.0;
|
|
bool converged = linearSolver_.solve(solutionUpdate);
|
|
solveTimer_.stop();
|
|
|
|
if (!converged) {
|
|
solveTimer_.stop();
|
|
if (asImp_().verbose_())
|
|
std::cout << "Newton: Linear solver did not converge\n" << std::flush;
|
|
|
|
prePostProcessTimer_.start();
|
|
asImp_().failed_();
|
|
prePostProcessTimer_.stop();
|
|
|
|
return false;
|
|
}
|
|
|
|
// update the solution
|
|
if (asImp_().verbose_()) {
|
|
std::cout << "Update: x^(k+1) = x^k - deltax^k"
|
|
<< clearRemainingLine
|
|
<< std::flush;
|
|
}
|
|
|
|
// update the current solution (i.e. uOld) with the delta
|
|
// (i.e. u). The result is stored in u
|
|
updateTimer_.start();
|
|
asImp_().postSolve_(currentSolution,
|
|
residual,
|
|
solutionUpdate);
|
|
asImp_().update_(nextSolution, currentSolution, solutionUpdate, residual);
|
|
updateTimer_.stop();
|
|
|
|
if (asImp_().verbose_() && isatty(fileno(stdout)))
|
|
// make sure that the line currently holding the cursor is prestine
|
|
std::cout << clearRemainingLine
|
|
<< std::flush;
|
|
|
|
// tell the implementation that we're done with this iteration
|
|
prePostProcessTimer_.start();
|
|
asImp_().endIteration_(nextSolution, currentSolution);
|
|
prePostProcessTimer_.stop();
|
|
}
|
|
}
|
|
catch (const Dune::Exception& e)
|
|
{
|
|
if (asImp_().verbose_())
|
|
std::cout << "Newton method caught exception: \""
|
|
<< e.what() << "\"\n" << std::flush;
|
|
|
|
prePostProcessTimer_.start();
|
|
asImp_().failed_();
|
|
prePostProcessTimer_.stop();
|
|
|
|
return false;
|
|
}
|
|
catch (const NumericalProblem& e)
|
|
{
|
|
if (asImp_().verbose_())
|
|
std::cout << "Newton method caught exception: \""
|
|
<< e.what() << "\"\n" << std::flush;
|
|
|
|
prePostProcessTimer_.start();
|
|
asImp_().failed_();
|
|
prePostProcessTimer_.stop();
|
|
|
|
return false;
|
|
}
|
|
|
|
// clear current line on terminal
|
|
if (asImp_().verbose_() && isatty(fileno(stdout)))
|
|
std::cout << clearRemainingLine
|
|
<< std::flush;
|
|
|
|
// tell the implementation that we're done
|
|
prePostProcessTimer_.start();
|
|
asImp_().end_();
|
|
prePostProcessTimer_.stop();
|
|
|
|
// print the timing summary of the time step
|
|
if (asImp_().verbose_()) {
|
|
Scalar elapsedTot =
|
|
linearizeTimer_.realTimeElapsed()
|
|
+ solveTimer_.realTimeElapsed()
|
|
+ updateTimer_.realTimeElapsed();
|
|
std::cout << "Linearization/solve/update time: "
|
|
<< linearizeTimer_.realTimeElapsed() << "("
|
|
<< 100 * linearizeTimer_.realTimeElapsed()/elapsedTot << "%)/"
|
|
<< solveTimer_.realTimeElapsed() << "("
|
|
<< 100 * solveTimer_.realTimeElapsed()/elapsedTot << "%)/"
|
|
<< updateTimer_.realTimeElapsed() << "("
|
|
<< 100 * updateTimer_.realTimeElapsed()/elapsedTot << "%)"
|
|
<< "\n" << std::flush;
|
|
}
|
|
|
|
|
|
// if we're not converged, tell the implementation that we've failed
|
|
if (!asImp_().converged()) {
|
|
prePostProcessTimer_.start();
|
|
asImp_().failed_();
|
|
prePostProcessTimer_.stop();
|
|
return false;
|
|
}
|
|
|
|
// if we converged, tell the implementation that we've succeeded
|
|
prePostProcessTimer_.start();
|
|
asImp_().succeeded_();
|
|
prePostProcessTimer_.stop();
|
|
|
|
return true;
|
|
}
|
|
|
|
/*!
|
|
* \brief Suggest a new time-step size based on the old time-step
|
|
* size.
|
|
*
|
|
* The default behavior is to suggest the old time-step size
|
|
* scaled by the ratio between the target iterations and the
|
|
* iterations required to actually solve the last time-step.
|
|
*/
|
|
Scalar suggestTimeStepSize(Scalar oldDt) const
|
|
{
|
|
// be aggressive reducing the time-step size but
|
|
// conservative when increasing it. the rationale is
|
|
// that we want to avoid failing in the next time
|
|
// integration which would be quite expensive
|
|
if (numIterations_ > targetIterations_()) {
|
|
Scalar percent = Scalar(numIterations_ - targetIterations_())/targetIterations_();
|
|
Scalar nextDt = std::max(problem().minTimeStepSize(),
|
|
oldDt/(1.0 + percent));
|
|
return nextDt;
|
|
}
|
|
|
|
Scalar percent = Scalar(targetIterations_() - numIterations_)/targetIterations_();
|
|
Scalar nextDt = std::max(problem().minTimeStepSize(),
|
|
oldDt*(1.0 + percent/1.2));
|
|
return nextDt;
|
|
}
|
|
|
|
/*!
|
|
* \brief Message that should be printed for the user after the
|
|
* end of an iteration.
|
|
*/
|
|
std::ostringstream& endIterMsg()
|
|
{ return endIterMsgStream_; }
|
|
|
|
/*!
|
|
* \brief Causes the solve() method to discared the structure of the linear system of
|
|
* equations the next time it is called.
|
|
*/
|
|
void eraseMatrix()
|
|
{ linearSolver_.eraseMatrix(); }
|
|
|
|
/*!
|
|
* \brief Returns the linear solver backend object for external use.
|
|
*/
|
|
LinearSolverBackend& linearSolver()
|
|
{ return linearSolver_; }
|
|
|
|
/*!
|
|
* \copydoc linearSolver()
|
|
*/
|
|
const LinearSolverBackend& linearSolver() const
|
|
{ return linearSolver_; }
|
|
|
|
const Timer& prePostProcessTimer() const
|
|
{ return prePostProcessTimer_; }
|
|
|
|
const Timer& linearizeTimer() const
|
|
{ return linearizeTimer_; }
|
|
|
|
const Timer& solveTimer() const
|
|
{ return solveTimer_; }
|
|
|
|
const Timer& updateTimer() const
|
|
{ return updateTimer_; }
|
|
|
|
protected:
|
|
/*!
|
|
* \brief Returns true if the Newton method ought to be chatty.
|
|
*/
|
|
bool verbose_() const
|
|
{
|
|
return Parameters::get<TypeTag, Properties::NewtonVerbose>() && (comm_.rank() == 0);
|
|
}
|
|
|
|
/*!
|
|
* \brief Called before the Newton method is applied to an
|
|
* non-linear system of equations.
|
|
*
|
|
* \param u The initial solution
|
|
*/
|
|
void begin_(const SolutionVector&)
|
|
{
|
|
numIterations_ = 0;
|
|
|
|
if (Parameters::get<TypeTag, Properties::NewtonWriteConvergence>())
|
|
convergenceWriter_.beginTimeStep();
|
|
}
|
|
|
|
/*!
|
|
* \brief Indicates the beginning of a Newton iteration.
|
|
*/
|
|
void beginIteration_()
|
|
{
|
|
// start with a clean message stream
|
|
endIterMsgStream_.str("");
|
|
const auto& comm = simulator_.gridView().comm();
|
|
bool succeeded = true;
|
|
try {
|
|
problem().beginIteration();
|
|
}
|
|
catch (const std::exception& e) {
|
|
succeeded = false;
|
|
|
|
std::cout << "rank " << simulator_.gridView().comm().rank()
|
|
<< " caught an exception while pre-processing the problem:" << e.what()
|
|
<< "\n" << std::flush;
|
|
}
|
|
|
|
succeeded = comm.min(succeeded);
|
|
|
|
if (!succeeded)
|
|
throw NumericalProblem("pre processing of the problem failed");
|
|
|
|
lastError_ = error_;
|
|
}
|
|
|
|
/*!
|
|
* \brief Linearize the global non-linear system of equations associated with the
|
|
* spatial domain.
|
|
*/
|
|
void linearizeDomain_()
|
|
{
|
|
model().linearizer().linearizeDomain();
|
|
}
|
|
|
|
void linearizeAuxiliaryEquations_()
|
|
{
|
|
model().linearizer().linearizeAuxiliaryEquations();
|
|
model().linearizer().finalize();
|
|
}
|
|
|
|
void preSolve_(const SolutionVector&,
|
|
const GlobalEqVector& currentResidual)
|
|
{
|
|
const auto& constraintsMap = model().linearizer().constraintsMap();
|
|
lastError_ = error_;
|
|
Scalar newtonMaxError = Parameters::get<TypeTag, Properties::NewtonMaxError>();
|
|
|
|
// calculate the error as the maximum weighted tolerance of
|
|
// the solution's residual
|
|
error_ = 0;
|
|
for (unsigned dofIdx = 0; dofIdx < currentResidual.size(); ++dofIdx) {
|
|
// do not consider auxiliary DOFs for the error
|
|
if (dofIdx >= model().numGridDof() || model().dofTotalVolume(dofIdx) <= 0.0)
|
|
continue;
|
|
|
|
// also do not consider DOFs which are constraint
|
|
if (enableConstraints_()) {
|
|
if (constraintsMap.count(dofIdx) > 0)
|
|
continue;
|
|
}
|
|
|
|
const auto& r = currentResidual[dofIdx];
|
|
for (unsigned eqIdx = 0; eqIdx < r.size(); ++eqIdx)
|
|
error_ = max(std::abs(r[eqIdx] * model().eqWeight(dofIdx, eqIdx)), error_);
|
|
}
|
|
|
|
// take the other processes into account
|
|
error_ = comm_.max(error_);
|
|
|
|
// make sure that the error never grows beyond the maximum
|
|
// allowed one
|
|
if (error_ > newtonMaxError)
|
|
throw NumericalProblem("Newton: Error "+std::to_string(double(error_))
|
|
+ " is larger than maximum allowed error of "
|
|
+ std::to_string(double(newtonMaxError)));
|
|
}
|
|
|
|
/*!
|
|
* \brief Update the error of the solution given the previous
|
|
* iteration.
|
|
*
|
|
* For our purposes, the error of a solution is defined as the
|
|
* maximum of the weighted residual of a given solution.
|
|
*
|
|
* \param currentSolution The solution at the beginning the current iteration
|
|
* \param currentResidual The residual (i.e., right-hand-side) of the current
|
|
* iteration's solution.
|
|
* \param solutionUpdate The difference between the current and the next solution
|
|
*/
|
|
void postSolve_(const SolutionVector&,
|
|
const GlobalEqVector&,
|
|
GlobalEqVector& solutionUpdate)
|
|
{
|
|
// loop over the auxiliary modules and ask them to post process the solution
|
|
// vector.
|
|
auto& model = simulator_.model();
|
|
const auto& comm = simulator_.gridView().comm();
|
|
for (unsigned i = 0; i < model.numAuxiliaryModules(); ++i) {
|
|
auto& auxMod = *model.auxiliaryModule(i);
|
|
|
|
bool succeeded = true;
|
|
try {
|
|
auxMod.postSolve(solutionUpdate);
|
|
}
|
|
catch (const std::exception& e) {
|
|
succeeded = false;
|
|
|
|
std::cout << "rank " << simulator_.gridView().comm().rank()
|
|
<< " caught an exception while post processing an auxiliary module:" << e.what()
|
|
<< "\n" << std::flush;
|
|
}
|
|
|
|
succeeded = comm.min(succeeded);
|
|
|
|
if (!succeeded)
|
|
throw NumericalProblem("post processing of an auxilary equation failed");
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* \brief Update the current solution with a delta vector.
|
|
*
|
|
* Different update strategies, such as chopped updates can be
|
|
* implemented by overriding this method. The default behavior is
|
|
* use the standard Newton-Raphson update strategy, i.e.
|
|
* \f[ u^{k+1} = u^k - \Delta u^k \f]
|
|
*
|
|
* \param nextSolution The solution vector after the current iteration
|
|
* \param currentSolution The solution vector after the last iteration
|
|
* \param solutionUpdate The delta vector as calculated by solving the linear system
|
|
* of equations
|
|
* \param currentResidual The residual vector of the current Newton-Raphson iteraton
|
|
*/
|
|
void update_(SolutionVector& nextSolution,
|
|
const SolutionVector& currentSolution,
|
|
const GlobalEqVector& solutionUpdate,
|
|
const GlobalEqVector& currentResidual)
|
|
{
|
|
const auto& constraintsMap = model().linearizer().constraintsMap();
|
|
|
|
// first, write out the current solution to make convergence
|
|
// analysis possible
|
|
asImp_().writeConvergence_(currentSolution, solutionUpdate);
|
|
|
|
// make sure not to swallow non-finite values at this point
|
|
if (!std::isfinite(solutionUpdate.one_norm()))
|
|
throw NumericalProblem("Non-finite update!");
|
|
|
|
size_t numGridDof = model().numGridDof();
|
|
for (unsigned dofIdx = 0; dofIdx < numGridDof; ++dofIdx) {
|
|
if (enableConstraints_()) {
|
|
if (constraintsMap.count(dofIdx) > 0) {
|
|
const auto& constraints = constraintsMap.at(dofIdx);
|
|
asImp_().updateConstraintDof_(dofIdx,
|
|
nextSolution[dofIdx],
|
|
constraints);
|
|
}
|
|
else
|
|
asImp_().updatePrimaryVariables_(dofIdx,
|
|
nextSolution[dofIdx],
|
|
currentSolution[dofIdx],
|
|
solutionUpdate[dofIdx],
|
|
currentResidual[dofIdx]);
|
|
}
|
|
else
|
|
asImp_().updatePrimaryVariables_(dofIdx,
|
|
nextSolution[dofIdx],
|
|
currentSolution[dofIdx],
|
|
solutionUpdate[dofIdx],
|
|
currentResidual[dofIdx]);
|
|
}
|
|
|
|
// update the DOFs of the auxiliary equations
|
|
size_t numDof = model().numTotalDof();
|
|
for (size_t dofIdx = numGridDof; dofIdx < numDof; ++dofIdx) {
|
|
nextSolution[dofIdx] = currentSolution[dofIdx];
|
|
nextSolution[dofIdx] -= solutionUpdate[dofIdx];
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* \brief Update the primary variables for a degree of freedom which is constraint.
|
|
*/
|
|
void updateConstraintDof_(unsigned,
|
|
PrimaryVariables& nextValue,
|
|
const Constraints& constraints)
|
|
{ nextValue = constraints; }
|
|
|
|
/*!
|
|
* \brief Update a single primary variables object.
|
|
*/
|
|
void updatePrimaryVariables_(unsigned,
|
|
PrimaryVariables& nextValue,
|
|
const PrimaryVariables& currentValue,
|
|
const EqVector& update,
|
|
const EqVector&)
|
|
{
|
|
nextValue = currentValue;
|
|
nextValue -= update;
|
|
}
|
|
|
|
/*!
|
|
* \brief Write the convergence behaviour of the newton method to
|
|
* disk.
|
|
*
|
|
* This method is called as part of the update proceedure.
|
|
*/
|
|
void writeConvergence_(const SolutionVector& currentSolution,
|
|
const GlobalEqVector& solutionUpdate)
|
|
{
|
|
if (Parameters::get<TypeTag, Properties::NewtonWriteConvergence>()) {
|
|
convergenceWriter_.beginIteration();
|
|
convergenceWriter_.writeFields(currentSolution, solutionUpdate);
|
|
convergenceWriter_.endIteration();
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* \brief Indicates that one Newton iteration was finished.
|
|
*
|
|
* \param nextSolution The solution after the current Newton iteration
|
|
* \param currentSolution The solution at the beginning of the current Newton iteration
|
|
*/
|
|
void endIteration_(const SolutionVector&,
|
|
const SolutionVector&)
|
|
{
|
|
++numIterations_;
|
|
|
|
const auto& comm = simulator_.gridView().comm();
|
|
bool succeeded = true;
|
|
try {
|
|
problem().endIteration();
|
|
}
|
|
catch (const std::exception& e) {
|
|
succeeded = false;
|
|
|
|
std::cout << "rank " << simulator_.gridView().comm().rank()
|
|
<< " caught an exception while letting the problem post-process:" << e.what()
|
|
<< "\n" << std::flush;
|
|
}
|
|
|
|
succeeded = comm.min(succeeded);
|
|
|
|
if (!succeeded)
|
|
throw NumericalProblem("post processing of the problem failed");
|
|
|
|
if (asImp_().verbose_()) {
|
|
std::cout << "Newton iteration " << numIterations_ << ""
|
|
<< " error: " << error_
|
|
<< endIterMsg().str() << "\n" << std::flush;
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* \brief Returns true iff another Newton iteration should be done.
|
|
*/
|
|
bool proceed_() const
|
|
{
|
|
if (asImp_().numIterations() < 1)
|
|
return true; // we always do at least one full iteration
|
|
else if (asImp_().converged()) {
|
|
// we are below the specified tolerance, so we don't have to
|
|
// do more iterations
|
|
return false;
|
|
}
|
|
else if (asImp_().numIterations() >= asImp_().maxIterations_()) {
|
|
// we have exceeded the allowed number of steps. If the
|
|
// error was reduced by a factor of at least 4,
|
|
// in the last iterations we proceed even if we are above
|
|
// the maximum number of steps
|
|
return error_ * 4.0 < lastError_;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/*!
|
|
* \brief Indicates that we're done solving the non-linear system
|
|
* of equations.
|
|
*/
|
|
void end_()
|
|
{
|
|
if (Parameters::get<TypeTag, Properties::NewtonWriteConvergence>())
|
|
convergenceWriter_.endTimeStep();
|
|
}
|
|
|
|
/*!
|
|
* \brief Called if the Newton method broke down.
|
|
*
|
|
* This method is called _after_ end_()
|
|
*/
|
|
void failed_()
|
|
{ numIterations_ = targetIterations_() * 2; }
|
|
|
|
/*!
|
|
* \brief Called if the Newton method was successful.
|
|
*
|
|
* This method is called _after_ end_()
|
|
*/
|
|
void succeeded_()
|
|
{}
|
|
|
|
// optimal number of iterations we want to achieve
|
|
int targetIterations_() const
|
|
{ return Parameters::get<TypeTag, Properties::NewtonTargetIterations>(); }
|
|
// maximum number of iterations we do before giving up
|
|
int maxIterations_() const
|
|
{ return Parameters::get<TypeTag, Properties::NewtonMaxIterations>(); }
|
|
|
|
static bool enableConstraints_()
|
|
{ return getPropValue<TypeTag, Properties::EnableConstraints>(); }
|
|
|
|
Simulator& simulator_;
|
|
|
|
Timer prePostProcessTimer_;
|
|
Timer linearizeTimer_;
|
|
Timer solveTimer_;
|
|
Timer updateTimer_;
|
|
|
|
std::ostringstream endIterMsgStream_;
|
|
|
|
Scalar error_;
|
|
Scalar lastError_;
|
|
Scalar tolerance_;
|
|
|
|
// actual number of iterations done so far
|
|
int numIterations_;
|
|
|
|
// the linear solver
|
|
LinearSolverBackend linearSolver_;
|
|
|
|
// the collective communication used by the simulation (i.e. fake
|
|
// or MPI)
|
|
CollectiveCommunication comm_;
|
|
|
|
// the object which writes the convergence behaviour of the Newton
|
|
// method to disk
|
|
ConvergenceWriter convergenceWriter_;
|
|
|
|
private:
|
|
Implementation& asImp_()
|
|
{ return *static_cast<Implementation *>(this); }
|
|
const Implementation& asImp_() const
|
|
{ return *static_cast<const Implementation *>(this); }
|
|
};
|
|
|
|
} // namespace Opm
|
|
|
|
#endif
|