opm-simulators/opm/simulators/wells/BlackoilWellModelGeneric.hpp
2022-10-28 15:20:09 +02:00

443 lines
16 KiB
C++

/*
Copyright 2016 SINTEF ICT, Applied Mathematics.
Copyright 2016 - 2017 Statoil ASA.
Copyright 2017 Dr. Blatt - HPC-Simulation-Software & Services
Copyright 2016 - 2018 IRIS AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_BLACKOILWELLMODEL_GENERIC_HEADER_INCLUDED
#define OPM_BLACKOILWELLMODEL_GENERIC_HEADER_INCLUDED
#include <opm/output/data/GuideRateValue.hpp>
#include <opm/input/eclipse/Schedule/Well/WellTestState.hpp>
#include <opm/input/eclipse/Schedule/Group/GuideRate.hpp>
#include <opm/simulators/utils/DeferredLoggingErrorHelpers.hpp>
#include <opm/simulators/wells/PerforationData.hpp>
#include <opm/simulators/wells/WellProdIndexCalculator.hpp>
#include <opm/simulators/wells/WGState.hpp>
#include <functional>
#include <map>
#include <memory>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <vector>
namespace Opm {
class DeferredLogger;
class EclipseState;
class GasLiftSingleWellGeneric;
class GasLiftWellState;
class Group;
class GuideRateConfig;
class ParallelWellInfo;
class RestartValue;
class Schedule;
class SummaryConfig;
class VFPProperties;
class WellInterfaceGeneric;
class WellState;
} // namespace Opm
namespace Opm { namespace data {
struct GroupData;
struct GroupGuideRates;
class GroupAndNetworkValues;
struct NodeData;
}} // namespace Opm::data
namespace Opm {
/// Class for handling the blackoil well model.
class BlackoilWellModelGeneric
{
public:
// --------- Types ---------
using GLiftOptWells = std::map<std::string, std::unique_ptr<GasLiftSingleWellGeneric>>;
using GLiftProdWells = std::map<std::string, const WellInterfaceGeneric*>;
using GLiftWellStateMap = std::map<std::string, std::unique_ptr<GasLiftWellState>>;
BlackoilWellModelGeneric(Schedule& schedule,
const SummaryState& summaryState,
const EclipseState& eclState,
const PhaseUsage& phase_usage,
const Parallel::Communication& comm);
virtual ~BlackoilWellModelGeneric() = default;
int numLocalWells() const;
int numPhases() const;
/// return true if wells are available in the reservoir
bool wellsActive() const;
bool hasWell(const std::string& wname);
// whether there exists any multisegment well open on this process
bool anyMSWellOpenLocal() const;
const Well& getWellEcl(const std::string& well_name) const;
std::vector<Well> getLocalWells(const int timeStepIdx) const;
const Schedule& schedule() const { return schedule_; }
const PhaseUsage& phaseUsage() const { return phase_usage_; }
const GroupState& groupState() const { return this->active_wgstate_.group_state; }
/*
Immutable version of the currently active wellstate.
*/
const WellState& wellState() const
{
return this->active_wgstate_.well_state;
}
/*
Mutable version of the currently active wellstate.
*/
WellState& wellState()
{
return this->active_wgstate_.well_state;
}
GroupState& groupState() { return this->active_wgstate_.group_state; }
WellTestState& wellTestState() { return this->active_wgstate_.well_test_state; }
const WellTestState& wellTestState() const { return this->active_wgstate_.well_test_state; }
double wellPI(const int well_index) const;
double wellPI(const std::string& well_name) const;
void updateEclWells(const int timeStepIdx,
const std::unordered_set<std::string>& wells,
const SummaryState& st);
void loadRestartData(const data::Wells& rst_wells,
const data::GroupAndNetworkValues& grpNwrkValues,
const PhaseUsage& phases,
const bool handle_ms_well,
WellState& well_state);
void initFromRestartFile(const RestartValue& restartValues,
WellTestState wtestState,
const size_t numCells,
bool handle_ms_well);
/*
Will assign the internal member last_valid_well_state_ to the
current value of the this->active_well_state_. The state stored
with storeWellState() can then subsequently be recovered with the
resetWellState() method.
*/
void commitWGState()
{
this->last_valid_wgstate_ = this->active_wgstate_;
}
data::GroupAndNetworkValues groupAndNetworkData(const int reportStepIdx) const;
/// Return true if any well has a THP constraint.
bool hasTHPConstraints() const;
/// Shut down any single well
/// Returns true if the well was actually found and shut.
bool forceShutWellByName(const std::string& wellname,
const double simulation_time);
protected:
/*
The dynamic state of the well model is maintained with an instance
of the WellState class. Currently we have
three different wellstate instances:
1. The currently active wellstate is in the active_well_state_
member. That is the state which is mutated by the simulator.
2. In the case timestep fails to converge and we must go back and
try again with a smaller timestep we need to recover the last
valid wellstate. This is maintained with the
last_valid_well_state_ member and the functions
commitWellState() and resetWellState().
3. For the NUPCOL functionality we should either use the
currently active wellstate or a wellstate frozen at max
nupcol iterations. This is handled with the member
nupcol_well_state_ and the initNupcolWellState() function.
*/
/*
Will return the last good wellstate. This is typcially used when
initializing a new report step where the Schedule object might
have introduced new wells. The wellstate returned by
prevWellState() must have been stored with the commitWellState()
function first.
*/
const WellState& prevWellState() const
{
return this->last_valid_wgstate_.well_state;
}
const WGState& prevWGState() const
{
return this->last_valid_wgstate_;
}
/*
Will return the currently active nupcolWellState; must initialize
the internal nupcol wellstate with initNupcolWellState() first.
*/
const WellState& nupcolWellState() const
{
return this->nupcol_wgstate_.well_state;
}
/*
Will store a copy of the input argument well_state in the
last_valid_well_state_ member, that state can then be recovered
with a subsequent call to resetWellState().
*/
void commitWGState(WGState wgstate)
{
this->last_valid_wgstate_ = std::move(wgstate);
}
/*
Will update the internal variable active_well_state_ to whatever
was stored in the last_valid_well_state_ member. This function
works in pair with commitWellState() which should be called first.
*/
void resetWGState()
{
this->active_wgstate_ = this->last_valid_wgstate_;
}
/*
Will store the current active wellstate in the nupcol_well_state_
member. This can then be subsequently retrieved with accessor
nupcolWellState().
*/
void updateNupcolWGState()
{
this->nupcol_wgstate_ = this->active_wgstate_;
}
/// \brief Create the parallel well information
/// \param localWells The local wells from ECL schedule
std::vector<std::reference_wrapper<ParallelWellInfo>> createLocalParallelWellInfo(const std::vector<Well>& wells);
void initializeWellProdIndCalculators();
void initializeWellPerfData();
bool wasDynamicallyShutThisTimeStep(const int well_index) const;
std::pair<bool, double> updateNetworkPressures(const int reportStepIdx);
void updateWsolvent(const Group& group,
const int reportStepIdx,
const WellState& wellState);
void setWsolvent(const Group& group,
const int reportStepIdx,
double wsolvent);
virtual void calcRates(const int fipnum,
const int pvtreg,
std::vector<double>& resv_coeff) = 0;
virtual void calcInjRates(const int fipnum,
const int pvtreg,
std::vector<double>& resv_coeff) = 0;
data::GuideRateValue getGuideRateValues(const Group& group) const;
data::GuideRateValue getGuideRateValues(const Well& well) const;
data::GuideRateValue getGuideRateInjectionGroupValues(const Group& group) const;
void getGuideRateValues(const GuideRate::RateVector& qs,
const bool is_inj,
const std::string& wgname,
data::GuideRateValue& grval) const;
void assignWellGuideRates(data::Wells& wsrpt,
const int reportStepIdx) const;
void assignShutConnections(data::Wells& wsrpt,
const int reportStepIndex) const;
void assignGroupControl(const Group& group,
data::GroupData& gdata) const;
void assignGroupGuideRates(const Group& group,
const std::unordered_map<std::string, data::GroupGuideRates>& groupGuideRates,
data::GroupData& gdata) const;
void assignGroupValues(const int reportStepIdx,
std::map<std::string, data::GroupData>& gvalues) const;
void assignNodeValues(std::map<std::string, data::NodeData>& nodevalues) const;
void loadRestartGuideRates(const int report_step,
const GuideRateModel::Target target,
const data::Wells& rst_wells);
void loadRestartGuideRates(const int report_step,
const GuideRateConfig& config,
const std::map<std::string, data::GroupData>& rst_groups);
std::unordered_map<std::string, data::GroupGuideRates>
calculateAllGroupGuiderates(const int reportStepIdx) const;
void calculateEfficiencyFactors(const int reportStepIdx);
bool checkGroupConstraints(const Group& group,
const int reportStepIdx,
DeferredLogger& deferred_logger) const;
std::pair<Group::InjectionCMode, double> checkGroupInjectionConstraints(const Group& group,
const int reportStepIdx,
const Phase& phase) const;
std::pair<Group::ProductionCMode, double> checkGroupProductionConstraints(const Group& group,
const int reportStepIdx,
DeferredLogger& deferred_logger) const;
void checkGconsaleLimits(const Group& group,
WellState& well_state,
const int reportStepIdx,
DeferredLogger& deferred_logger);
bool checkGroupHigherConstraints(const Group& group,
DeferredLogger& deferred_logger,
const int reportStepIdx);
bool updateGroupIndividualControl(const Group& group,
DeferredLogger& deferred_logger,
const int reportStepIdx);
void actionOnBrokenConstraints(const Group& group,
const Group::ExceedAction& exceed_action,
const Group::ProductionCMode& newControl,
DeferredLogger& deferred_logger);
void actionOnBrokenConstraints(const Group& group,
const Group::InjectionCMode& newControl,
const Phase& controlPhase,
DeferredLogger& deferred_logger);
void updateAndCommunicateGroupData(const int reportStepIdx,
const int iterationIdx);
void inferLocalShutWells();
void setRepRadiusPerfLength();
void gliftDebug(const std::string& msg,
DeferredLogger& deferred_logger) const;
void gliftDebugShowALQ(DeferredLogger& deferred_logger);
void gasLiftOptimizationStage2(DeferredLogger& deferred_logger,
GLiftProdWells& prod_wells,
GLiftOptWells& glift_wells,
GLiftWellStateMap& map,
const int episodeIndex);
virtual void computePotentials(const std::size_t widx,
const WellState& well_state_copy,
std::string& exc_msg,
ExceptionType::ExcEnum& exc_type,
DeferredLogger& deferred_logger) = 0;
// Calculating well potentials for each well
void updateWellPotentials(const int reportStepIdx,
const bool onlyAfterEvent,
const SummaryConfig& summaryConfig,
DeferredLogger& deferred_logger);
bool guideRateUpdateIsNeeded(const int reportStepIdx) const;
// create the well container
virtual void createWellContainer(const int time_step) = 0;
virtual void initWellContainer(const int reportStepIdx) = 0;
virtual void calculateProductivityIndexValuesShutWells(const int reportStepIdx,
DeferredLogger& deferred_logger) = 0;
virtual void calculateProductivityIndexValues(DeferredLogger& deferred_logger) = 0;
void runWellPIScaling(const int timeStepIdx,
DeferredLogger& local_deferredLogger);
/// \brief get compressed index for interior cells (-1, otherwise
virtual int compressedIndexForInterior(int cartesian_cell_idx) const = 0;
Schedule& schedule_;
const SummaryState& summaryState_;
const EclipseState& eclState_;
const Parallel::Communication& comm_;
PhaseUsage phase_usage_;
bool terminal_output_{false};
bool wells_active_{false};
bool initial_step_{};
bool report_step_starts_{};
std::optional<int> last_run_wellpi_{};
std::vector<Well> wells_ecl_;
std::vector<std::vector<PerforationData>> well_perf_data_;
std::function<bool(const Well&)> not_on_process_{};
// a vector of all the wells.
std::vector<WellInterfaceGeneric*> well_container_generic_{};
std::vector<int> local_shut_wells_{};
std::vector<ParallelWellInfo> parallel_well_info_;
std::vector<std::reference_wrapper<ParallelWellInfo>> local_parallel_well_info_;
std::vector<WellProdIndexCalculator> prod_index_calc_;
std::vector<int> pvt_region_idx_;
mutable std::unordered_set<std::string> closed_this_step_;
GuideRate guideRate_;
std::unique_ptr<VFPProperties> vfp_properties_{};
std::map<std::string, double> node_pressures_; // Storing network pressures for output.
/*
The various wellState members should be accessed and modified
through the accessor functions wellState(), prevWellState(),
commitWellState(), resetWellState(), nupcolWellState() and
updateNupcolWellState().
*/
WGState active_wgstate_;
WGState last_valid_wgstate_;
WGState nupcol_wgstate_;
bool glift_debug = false;
double last_glift_opt_time_ = -1.0;
std::map<std::string, std::string> switched_prod_groups_;
std::map<std::pair<std::string, Opm::Phase>, std::string> switched_inj_groups_;
private:
WellInterfaceGeneric* getGenWell(const std::string& well_name);
};
} // namespace Opm
#endif