2019-01-26 08:02:59 -06:00
|
|
|
import os
|
|
|
|
import cv2
|
2019-02-09 08:51:11 -06:00
|
|
|
import imutils
|
2019-01-26 08:02:59 -06:00
|
|
|
import time
|
|
|
|
import datetime
|
|
|
|
import ctypes
|
|
|
|
import logging
|
|
|
|
import multiprocessing as mp
|
2019-03-25 06:24:36 -05:00
|
|
|
import queue
|
2019-02-04 06:18:49 -06:00
|
|
|
import threading
|
2019-02-10 12:00:52 -06:00
|
|
|
import json
|
2019-03-28 07:30:58 -05:00
|
|
|
import yaml
|
2019-01-26 08:02:59 -06:00
|
|
|
from contextlib import closing
|
|
|
|
import numpy as np
|
|
|
|
from object_detection.utils import visualization_utils as vis_util
|
2019-02-27 20:55:07 -06:00
|
|
|
from flask import Flask, Response, make_response, send_file
|
2019-02-10 12:00:52 -06:00
|
|
|
import paho.mqtt.client as mqtt
|
2019-01-26 08:02:59 -06:00
|
|
|
|
2019-02-25 20:27:02 -06:00
|
|
|
from frigate.util import tonumpyarray
|
|
|
|
from frigate.mqtt import MqttMotionPublisher, MqttObjectPublisher
|
2019-02-27 20:55:07 -06:00
|
|
|
from frigate.objects import ObjectParser, ObjectCleaner, BestPersonFrame
|
2019-02-25 20:27:02 -06:00
|
|
|
from frigate.motion import detect_motion
|
2019-03-29 20:49:27 -05:00
|
|
|
from frigate.video import fetch_frames, FrameTracker, Camera
|
2019-03-28 07:30:58 -05:00
|
|
|
from frigate.object_detection import FramePrepper, PreppedQueueProcessor
|
2019-01-26 08:02:59 -06:00
|
|
|
|
2019-03-28 07:30:58 -05:00
|
|
|
with open('/config/config.yml') as f:
|
|
|
|
# use safe_load instead load
|
|
|
|
CONFIG = yaml.safe_load(f)
|
2019-01-26 08:02:59 -06:00
|
|
|
|
2019-03-28 07:30:58 -05:00
|
|
|
MQTT_HOST = CONFIG['mqtt']['host']
|
|
|
|
MQTT_PORT = CONFIG.get('mqtt', {}).get('port', 1883)
|
2019-03-29 20:49:27 -05:00
|
|
|
MQTT_TOPIC_PREFIX = CONFIG.get('mqtt', {}).get('topic_prefix', 'frigate')
|
2019-03-28 07:30:58 -05:00
|
|
|
MQTT_USER = CONFIG.get('mqtt', {}).get('user')
|
|
|
|
MQTT_PASS = CONFIG.get('mqtt', {}).get('password')
|
2019-02-01 21:38:13 -06:00
|
|
|
|
2019-03-28 07:30:58 -05:00
|
|
|
WEB_PORT = CONFIG.get('web_port', 5000)
|
|
|
|
DEBUG = (CONFIG.get('debug', '0') == '1')
|
2019-02-24 08:41:03 -06:00
|
|
|
|
2019-01-26 08:02:59 -06:00
|
|
|
def main():
|
2019-02-25 20:27:02 -06:00
|
|
|
# connect to mqtt and setup last will
|
2019-03-27 06:17:00 -05:00
|
|
|
def on_connect(client, userdata, flags, rc):
|
2019-02-28 06:30:34 -06:00
|
|
|
print("On connect called")
|
|
|
|
# publish a message to signal that the service is running
|
|
|
|
client.publish(MQTT_TOPIC_PREFIX+'/available', 'online', retain=True)
|
2019-02-17 12:59:51 -06:00
|
|
|
client = mqtt.Client()
|
2019-02-28 06:30:34 -06:00
|
|
|
client.on_connect = on_connect
|
2019-02-17 12:59:51 -06:00
|
|
|
client.will_set(MQTT_TOPIC_PREFIX+'/available', payload='offline', qos=1, retain=True)
|
2019-03-09 13:41:35 -06:00
|
|
|
if not MQTT_USER is None:
|
|
|
|
client.username_pw_set(MQTT_USER, password=MQTT_PASS)
|
2019-03-28 07:30:58 -05:00
|
|
|
client.connect(MQTT_HOST, MQTT_PORT, 60)
|
2019-02-17 12:59:51 -06:00
|
|
|
client.loop_start()
|
2019-03-29 20:49:27 -05:00
|
|
|
|
|
|
|
# Queue for prepped frames
|
|
|
|
# TODO: set length to 1.5x the number of total regions
|
|
|
|
prepped_frame_queue = queue.Queue(6)
|
|
|
|
|
2019-02-17 12:59:51 -06:00
|
|
|
|
2019-03-29 20:49:27 -05:00
|
|
|
camera = Camera('back', CONFIG['cameras']['back'], prepped_frame_queue, client, MQTT_TOPIC_PREFIX)
|
2019-02-10 12:00:52 -06:00
|
|
|
|
2019-03-29 20:49:27 -05:00
|
|
|
cameras = {
|
|
|
|
'back': camera
|
|
|
|
}
|
|
|
|
|
|
|
|
prepped_queue_processor = PreppedQueueProcessor(
|
|
|
|
cameras,
|
|
|
|
prepped_frame_queue
|
|
|
|
)
|
|
|
|
prepped_queue_processor.start()
|
2019-02-25 20:27:02 -06:00
|
|
|
|
2019-03-29 20:49:27 -05:00
|
|
|
camera.start()
|
|
|
|
camera.join()
|
2019-02-09 08:51:11 -06:00
|
|
|
|
2019-02-25 20:27:02 -06:00
|
|
|
# create a flask app that encodes frames a mjpeg on demand
|
2019-03-29 20:49:27 -05:00
|
|
|
# app = Flask(__name__)
|
|
|
|
|
|
|
|
# @app.route('/best_person.jpg')
|
|
|
|
# def best_person():
|
|
|
|
# frame = np.zeros(frame_shape, np.uint8) if camera.get_best_person() is None else camera.get_best_person()
|
|
|
|
# ret, jpg = cv2.imencode('.jpg', frame)
|
|
|
|
# response = make_response(jpg.tobytes())
|
|
|
|
# response.headers['Content-Type'] = 'image/jpg'
|
|
|
|
# return response
|
|
|
|
|
|
|
|
# @app.route('/')
|
|
|
|
# def index():
|
|
|
|
# # return a multipart response
|
|
|
|
# return Response(imagestream(),
|
|
|
|
# mimetype='multipart/x-mixed-replace; boundary=frame')
|
|
|
|
# def imagestream():
|
|
|
|
# while True:
|
|
|
|
# # max out at 5 FPS
|
|
|
|
# time.sleep(0.2)
|
|
|
|
# # make a copy of the current detected objects
|
|
|
|
# detected_objects = DETECTED_OBJECTS.copy()
|
|
|
|
# # lock and make a copy of the current frame
|
|
|
|
# with frame_lock:
|
|
|
|
# frame = frame_arr.copy()
|
|
|
|
# # convert to RGB for drawing
|
|
|
|
# frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
|
|
|
# # draw the bounding boxes on the screen
|
|
|
|
# for obj in detected_objects:
|
|
|
|
# vis_util.draw_bounding_box_on_image_array(frame,
|
|
|
|
# obj['ymin'],
|
|
|
|
# obj['xmin'],
|
|
|
|
# obj['ymax'],
|
|
|
|
# obj['xmax'],
|
|
|
|
# color='red',
|
|
|
|
# thickness=2,
|
|
|
|
# display_str_list=["{}: {}%".format(obj['name'],int(obj['score']*100))],
|
|
|
|
# use_normalized_coordinates=False)
|
|
|
|
|
|
|
|
# for region in regions:
|
|
|
|
# color = (255,255,255)
|
|
|
|
# cv2.rectangle(frame, (region['x_offset'], region['y_offset']),
|
|
|
|
# (region['x_offset']+region['size'], region['y_offset']+region['size']),
|
|
|
|
# color, 2)
|
|
|
|
|
|
|
|
# # convert back to BGR
|
|
|
|
# frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
|
|
|
|
# # encode the image into a jpg
|
|
|
|
# ret, jpg = cv2.imencode('.jpg', frame)
|
|
|
|
# yield (b'--frame\r\n'
|
|
|
|
# b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n')
|
|
|
|
|
|
|
|
# app.run(host='0.0.0.0', port=WEB_PORT, debug=False)
|
2019-01-26 08:02:59 -06:00
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
main()
|