2019-01-26 08:02:59 -06:00
|
|
|
import os
|
|
|
|
import cv2
|
|
|
|
import time
|
|
|
|
import datetime
|
|
|
|
import ctypes
|
|
|
|
import logging
|
|
|
|
import multiprocessing as mp
|
|
|
|
from contextlib import closing
|
|
|
|
import numpy as np
|
|
|
|
import tensorflow as tf
|
|
|
|
from object_detection.utils import label_map_util
|
|
|
|
from object_detection.utils import visualization_utils as vis_util
|
|
|
|
from flask import Flask, Response, make_response
|
|
|
|
|
|
|
|
RTSP_URL = os.getenv('RTSP_URL')
|
|
|
|
|
|
|
|
# Path to frozen detection graph. This is the actual model that is used for the object detection.
|
|
|
|
PATH_TO_CKPT = '/frozen_inference_graph.pb'
|
|
|
|
|
|
|
|
# List of the strings that is used to add correct label for each box.
|
|
|
|
PATH_TO_LABELS = '/label_map.pbtext'
|
|
|
|
|
|
|
|
# TODO: make dynamic?
|
|
|
|
NUM_CLASSES = 90
|
|
|
|
|
2019-02-01 21:38:13 -06:00
|
|
|
REGION_SIZE = 700
|
|
|
|
REGION_X_OFFSET = 950
|
|
|
|
REGION_Y_OFFSET = 380
|
|
|
|
|
2019-01-26 08:02:59 -06:00
|
|
|
# Loading label map
|
|
|
|
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
|
|
|
|
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES,
|
|
|
|
use_display_name=True)
|
|
|
|
category_index = label_map_util.create_category_index(categories)
|
|
|
|
|
2019-02-01 21:38:13 -06:00
|
|
|
def detect_objects(cropped_frame, sess, detection_graph):
|
2019-01-26 08:02:59 -06:00
|
|
|
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
|
2019-02-01 06:35:48 -06:00
|
|
|
image_np_expanded = np.expand_dims(cropped_frame, axis=0)
|
2019-01-26 08:02:59 -06:00
|
|
|
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
|
|
|
|
|
|
|
|
# Each box represents a part of the image where a particular object was detected.
|
|
|
|
boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
|
|
|
|
|
|
|
|
# Each score represent how level of confidence for each of the objects.
|
|
|
|
# Score is shown on the result image, together with the class label.
|
|
|
|
scores = detection_graph.get_tensor_by_name('detection_scores:0')
|
|
|
|
classes = detection_graph.get_tensor_by_name('detection_classes:0')
|
|
|
|
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
|
|
|
|
|
|
|
|
# Actual detection.
|
|
|
|
(boxes, scores, classes, num_detections) = sess.run(
|
|
|
|
[boxes, scores, classes, num_detections],
|
|
|
|
feed_dict={image_tensor: image_np_expanded})
|
|
|
|
|
|
|
|
# build an array of detected objects
|
|
|
|
objects = []
|
|
|
|
for index, value in enumerate(classes[0]):
|
2019-02-01 21:38:13 -06:00
|
|
|
score = scores[0, index]
|
|
|
|
if score > 0.1:
|
|
|
|
objects += [value, scores[0, index]] + boxes[0, index].tolist()
|
2019-01-26 08:02:59 -06:00
|
|
|
|
2019-02-01 21:38:13 -06:00
|
|
|
return objects
|
2019-01-26 08:02:59 -06:00
|
|
|
|
|
|
|
def main():
|
|
|
|
# capture a single frame and check the frame shape so the correct array
|
|
|
|
# size can be allocated in memory
|
|
|
|
video = cv2.VideoCapture(RTSP_URL)
|
|
|
|
ret, frame = video.read()
|
|
|
|
if ret:
|
|
|
|
frame_shape = frame.shape
|
|
|
|
else:
|
|
|
|
print("Unable to capture video stream")
|
|
|
|
exit(1)
|
|
|
|
video.release()
|
|
|
|
|
|
|
|
# create shared value for storing the time the frame was captured
|
|
|
|
# note: this must be a double even though the value you are storing
|
|
|
|
# is a float. otherwise it stops updating the value in shared
|
|
|
|
# memory. probably something to do with the size of the memory block
|
|
|
|
shared_frame_time = mp.Value('d', 0.0)
|
|
|
|
# compute the flattened array length from the array shape
|
|
|
|
flat_array_length = frame_shape[0] * frame_shape[1] * frame_shape[2]
|
2019-02-01 06:35:48 -06:00
|
|
|
# create shared array for storing the full frame image data
|
2019-01-26 08:02:59 -06:00
|
|
|
shared_arr = mp.Array(ctypes.c_uint16, flat_array_length)
|
2019-02-01 21:38:13 -06:00
|
|
|
# shape current frame so it can be treated as an image
|
|
|
|
frame_arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
2019-02-01 06:35:48 -06:00
|
|
|
# create shared array for storing the cropped frame image data
|
|
|
|
# TODO: make dynamic
|
2019-02-01 21:38:13 -06:00
|
|
|
shared_cropped_arr = mp.Array(ctypes.c_uint16, REGION_SIZE*REGION_SIZE*3)
|
2019-01-26 08:02:59 -06:00
|
|
|
# create shared array for passing the image data from detect_objects to flask
|
2019-02-01 21:38:13 -06:00
|
|
|
shared_output_arr = mp.Array(ctypes.c_double, 6*10)
|
2019-01-26 08:02:59 -06:00
|
|
|
|
2019-02-01 06:35:48 -06:00
|
|
|
capture_process = mp.Process(target=fetch_frames, args=(shared_arr, shared_cropped_arr, shared_frame_time, frame_shape))
|
2019-01-26 08:02:59 -06:00
|
|
|
capture_process.daemon = True
|
|
|
|
|
2019-02-01 06:35:48 -06:00
|
|
|
detection_process = mp.Process(target=process_frames, args=(shared_arr, shared_cropped_arr, shared_output_arr, shared_frame_time, frame_shape))
|
2019-01-26 08:02:59 -06:00
|
|
|
detection_process.daemon = True
|
|
|
|
|
|
|
|
capture_process.start()
|
|
|
|
print("capture_process pid ", capture_process.pid)
|
|
|
|
detection_process.start()
|
|
|
|
print("detection_process pid ", detection_process.pid)
|
|
|
|
|
|
|
|
app = Flask(__name__)
|
|
|
|
|
|
|
|
@app.route('/')
|
|
|
|
def index():
|
|
|
|
# return a multipart response
|
|
|
|
return Response(imagestream(),
|
|
|
|
mimetype='multipart/x-mixed-replace; boundary=frame')
|
|
|
|
def imagestream():
|
|
|
|
while True:
|
|
|
|
# max out at 5 FPS
|
|
|
|
time.sleep(0.2)
|
2019-02-01 21:38:13 -06:00
|
|
|
frame = frame_arr.copy()
|
|
|
|
# draw the bounding boxes on the screen
|
|
|
|
object_index = 0
|
|
|
|
while(object_index < 60 and shared_output_arr[object_index] > 0):
|
|
|
|
object_class = shared_output_arr[object_index]
|
|
|
|
score = shared_output_arr[object_index+1]
|
|
|
|
ymin = int(((shared_output_arr[object_index+2] * REGION_SIZE) + REGION_Y_OFFSET))
|
|
|
|
xmin = int(((shared_output_arr[object_index+3] * REGION_SIZE) + REGION_X_OFFSET))
|
|
|
|
ymax = int(((shared_output_arr[object_index+4] * REGION_SIZE) + REGION_Y_OFFSET))
|
|
|
|
xmax = int(((shared_output_arr[object_index+5] * REGION_SIZE) + REGION_X_OFFSET))
|
|
|
|
cv2.rectangle(frame, (xmin, ymin), (xmax, ymax), (255,0,0), 2)
|
|
|
|
object_index += 6
|
|
|
|
print(category_index.get(object_class).get('name').encode('utf8'), score)
|
2019-01-26 08:02:59 -06:00
|
|
|
# encode the image into a jpg
|
2019-02-01 21:38:13 -06:00
|
|
|
|
|
|
|
cv2.rectangle(frame, (REGION_X_OFFSET, REGION_Y_OFFSET), (REGION_X_OFFSET+REGION_SIZE, REGION_Y_OFFSET+REGION_SIZE), (255,255,255), 2)
|
|
|
|
ret, jpg = cv2.imencode('.jpg', frame)
|
2019-01-26 08:02:59 -06:00
|
|
|
yield (b'--frame\r\n'
|
|
|
|
b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n')
|
|
|
|
|
|
|
|
app.run(host='0.0.0.0', debug=False)
|
|
|
|
|
|
|
|
capture_process.join()
|
|
|
|
detection_process.join()
|
|
|
|
|
|
|
|
# convert shared memory array into numpy array
|
|
|
|
def tonumpyarray(mp_arr):
|
|
|
|
return np.frombuffer(mp_arr.get_obj(), dtype=np.uint16)
|
|
|
|
|
|
|
|
# fetch the frames as fast a possible, only decoding the frames when the
|
|
|
|
# detection_process has consumed the current frame
|
2019-02-01 06:35:48 -06:00
|
|
|
def fetch_frames(shared_arr, shared_cropped_arr, shared_frame_time, frame_shape):
|
2019-01-26 08:02:59 -06:00
|
|
|
# convert shared memory array into numpy and shape into image array
|
|
|
|
arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
2019-02-01 21:38:13 -06:00
|
|
|
cropped_frame = tonumpyarray(shared_cropped_arr).reshape(REGION_SIZE,REGION_SIZE,3)
|
2019-01-26 08:02:59 -06:00
|
|
|
|
|
|
|
# start the video capture
|
|
|
|
video = cv2.VideoCapture(RTSP_URL)
|
|
|
|
# keep the buffer small so we minimize old data
|
|
|
|
video.set(cv2.CAP_PROP_BUFFERSIZE,1)
|
|
|
|
|
|
|
|
while True:
|
|
|
|
# grab the frame, but dont decode it yet
|
|
|
|
ret = video.grab()
|
|
|
|
# snapshot the time the frame was grabbed
|
|
|
|
frame_time = datetime.datetime.now()
|
|
|
|
if ret:
|
|
|
|
# if the detection_process is ready for the next frame decode it
|
|
|
|
# otherwise skip this frame and move onto the next one
|
|
|
|
if shared_frame_time.value == 0.0:
|
|
|
|
# go ahead and decode the current frame
|
|
|
|
ret, frame = video.retrieve()
|
|
|
|
if ret:
|
|
|
|
# copy the frame into the numpy array
|
2019-02-01 06:35:48 -06:00
|
|
|
# Position 1
|
|
|
|
# cropped_frame[:] = frame[270:720, 550:1000]
|
|
|
|
# Position 2
|
|
|
|
# frame_cropped = frame[270:720, 100:550]
|
|
|
|
# Car
|
2019-02-01 21:38:13 -06:00
|
|
|
cropped_frame[:] = frame[REGION_Y_OFFSET:REGION_Y_OFFSET+REGION_SIZE, REGION_X_OFFSET:REGION_X_OFFSET+REGION_SIZE]
|
2019-01-26 08:02:59 -06:00
|
|
|
arr[:] = frame
|
|
|
|
# signal to the detection_process by setting the shared_frame_time
|
|
|
|
shared_frame_time.value = frame_time.timestamp()
|
|
|
|
|
|
|
|
video.release()
|
|
|
|
|
|
|
|
# do the actual object detection
|
2019-02-01 06:35:48 -06:00
|
|
|
def process_frames(shared_arr, shared_cropped_arr, shared_output_arr, shared_frame_time, frame_shape):
|
2019-01-26 08:02:59 -06:00
|
|
|
# shape shared input array into frame for processing
|
|
|
|
arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
2019-02-01 21:38:13 -06:00
|
|
|
shared_cropped_frame = tonumpyarray(shared_cropped_arr).reshape(REGION_SIZE,REGION_SIZE,3)
|
2019-01-26 08:02:59 -06:00
|
|
|
|
|
|
|
# Load a (frozen) Tensorflow model into memory before the processing loop
|
|
|
|
detection_graph = tf.Graph()
|
|
|
|
with detection_graph.as_default():
|
|
|
|
od_graph_def = tf.GraphDef()
|
|
|
|
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
|
|
|
|
serialized_graph = fid.read()
|
|
|
|
od_graph_def.ParseFromString(serialized_graph)
|
|
|
|
tf.import_graph_def(od_graph_def, name='')
|
|
|
|
sess = tf.Session(graph=detection_graph)
|
|
|
|
|
|
|
|
no_frames_available = -1
|
|
|
|
while True:
|
|
|
|
# if there isnt a frame ready for processing
|
|
|
|
if shared_frame_time.value == 0.0:
|
|
|
|
# save the first time there were no frames available
|
|
|
|
if no_frames_available == -1:
|
|
|
|
no_frames_available = datetime.datetime.now().timestamp()
|
|
|
|
# if there havent been any frames available in 30 seconds,
|
|
|
|
# sleep to avoid using so much cpu if the camera feed is down
|
|
|
|
if no_frames_available > 0 and (datetime.datetime.now().timestamp() - no_frames_available) > 30:
|
|
|
|
time.sleep(1)
|
|
|
|
print("sleeping because no frames have been available in a while")
|
2019-02-01 06:35:10 -06:00
|
|
|
else:
|
|
|
|
# rest a little bit to avoid maxing out the CPU
|
|
|
|
time.sleep(0.01)
|
2019-01-26 08:02:59 -06:00
|
|
|
continue
|
|
|
|
|
|
|
|
# we got a valid frame, so reset the timer
|
|
|
|
no_frames_available = -1
|
|
|
|
|
|
|
|
# if the frame is more than 0.5 second old, discard it
|
|
|
|
if (datetime.datetime.now().timestamp() - shared_frame_time.value) > 0.5:
|
|
|
|
# signal that we need a new frame
|
|
|
|
shared_frame_time.value = 0.0
|
2019-02-01 06:35:10 -06:00
|
|
|
# rest a little bit to avoid maxing out the CPU
|
|
|
|
time.sleep(0.01)
|
2019-01-26 08:02:59 -06:00
|
|
|
continue
|
|
|
|
|
|
|
|
# make a copy of the frame
|
2019-02-01 21:38:13 -06:00
|
|
|
# frame = arr.copy()
|
2019-02-01 06:35:48 -06:00
|
|
|
cropped_frame = shared_cropped_frame.copy()
|
2019-01-26 08:02:59 -06:00
|
|
|
frame_time = shared_frame_time.value
|
|
|
|
# signal that the frame has been used so a new one will be ready
|
|
|
|
shared_frame_time.value = 0.0
|
|
|
|
|
|
|
|
# convert to RGB
|
2019-02-01 06:35:48 -06:00
|
|
|
cropped_frame_rgb = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2RGB)
|
2019-01-26 08:02:59 -06:00
|
|
|
# do the object detection
|
2019-02-01 21:38:13 -06:00
|
|
|
objects = detect_objects(cropped_frame_rgb, sess, detection_graph)
|
|
|
|
# copy the detected objects to the output array, filling the array when needed
|
|
|
|
shared_output_arr[:] = objects + [0.0] * (60-len(objects))
|
2019-01-26 08:02:59 -06:00
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
mp.freeze_support()
|
|
|
|
main()
|