frigate/detect_objects.py

241 lines
10 KiB
Python
Raw Normal View History

2019-01-26 08:02:59 -06:00
import os
import cv2
import time
import datetime
import ctypes
import logging
import multiprocessing as mp
from contextlib import closing
import numpy as np
import tensorflow as tf
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as vis_util
from flask import Flask, Response, make_response
RTSP_URL = os.getenv('RTSP_URL')
# Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_CKPT = '/frozen_inference_graph.pb'
# List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = '/label_map.pbtext'
# TODO: make dynamic?
NUM_CLASSES = 90
REGION_SIZE = 700
REGION_X_OFFSET = 950
REGION_Y_OFFSET = 380
2019-01-26 08:02:59 -06:00
# Loading label map
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES,
use_display_name=True)
category_index = label_map_util.create_category_index(categories)
def detect_objects(cropped_frame, sess, detection_graph):
2019-01-26 08:02:59 -06:00
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
image_np_expanded = np.expand_dims(cropped_frame, axis=0)
2019-01-26 08:02:59 -06:00
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
# Each box represents a part of the image where a particular object was detected.
boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
# Each score represent how level of confidence for each of the objects.
# Score is shown on the result image, together with the class label.
scores = detection_graph.get_tensor_by_name('detection_scores:0')
classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
# Actual detection.
(boxes, scores, classes, num_detections) = sess.run(
[boxes, scores, classes, num_detections],
feed_dict={image_tensor: image_np_expanded})
# build an array of detected objects
objects = []
for index, value in enumerate(classes[0]):
score = scores[0, index]
if score > 0.1:
objects += [value, scores[0, index]] + boxes[0, index].tolist()
2019-01-26 08:02:59 -06:00
return objects
2019-01-26 08:02:59 -06:00
def main():
# capture a single frame and check the frame shape so the correct array
# size can be allocated in memory
video = cv2.VideoCapture(RTSP_URL)
ret, frame = video.read()
if ret:
frame_shape = frame.shape
else:
print("Unable to capture video stream")
exit(1)
video.release()
# create shared value for storing the time the frame was captured
# note: this must be a double even though the value you are storing
# is a float. otherwise it stops updating the value in shared
# memory. probably something to do with the size of the memory block
shared_frame_time = mp.Value('d', 0.0)
# compute the flattened array length from the array shape
flat_array_length = frame_shape[0] * frame_shape[1] * frame_shape[2]
# create shared array for storing the full frame image data
2019-01-26 08:02:59 -06:00
shared_arr = mp.Array(ctypes.c_uint16, flat_array_length)
# shape current frame so it can be treated as an image
frame_arr = tonumpyarray(shared_arr).reshape(frame_shape)
# create shared array for storing the cropped frame image data
# TODO: make dynamic
shared_cropped_arr = mp.Array(ctypes.c_uint16, REGION_SIZE*REGION_SIZE*3)
2019-01-26 08:02:59 -06:00
# create shared array for passing the image data from detect_objects to flask
shared_output_arr = mp.Array(ctypes.c_double, 6*10)
2019-01-26 08:02:59 -06:00
capture_process = mp.Process(target=fetch_frames, args=(shared_arr, shared_cropped_arr, shared_frame_time, frame_shape))
2019-01-26 08:02:59 -06:00
capture_process.daemon = True
detection_process = mp.Process(target=process_frames, args=(shared_arr, shared_cropped_arr, shared_output_arr, shared_frame_time, frame_shape))
2019-01-26 08:02:59 -06:00
detection_process.daemon = True
capture_process.start()
print("capture_process pid ", capture_process.pid)
detection_process.start()
print("detection_process pid ", detection_process.pid)
app = Flask(__name__)
@app.route('/')
def index():
# return a multipart response
return Response(imagestream(),
mimetype='multipart/x-mixed-replace; boundary=frame')
def imagestream():
while True:
# max out at 5 FPS
time.sleep(0.2)
frame = frame_arr.copy()
# draw the bounding boxes on the screen
object_index = 0
while(object_index < 60 and shared_output_arr[object_index] > 0):
object_class = shared_output_arr[object_index]
score = shared_output_arr[object_index+1]
ymin = int(((shared_output_arr[object_index+2] * REGION_SIZE) + REGION_Y_OFFSET))
xmin = int(((shared_output_arr[object_index+3] * REGION_SIZE) + REGION_X_OFFSET))
ymax = int(((shared_output_arr[object_index+4] * REGION_SIZE) + REGION_Y_OFFSET))
xmax = int(((shared_output_arr[object_index+5] * REGION_SIZE) + REGION_X_OFFSET))
cv2.rectangle(frame, (xmin, ymin), (xmax, ymax), (255,0,0), 2)
object_index += 6
print(category_index.get(object_class).get('name').encode('utf8'), score)
2019-01-26 08:02:59 -06:00
# encode the image into a jpg
cv2.rectangle(frame, (REGION_X_OFFSET, REGION_Y_OFFSET), (REGION_X_OFFSET+REGION_SIZE, REGION_Y_OFFSET+REGION_SIZE), (255,255,255), 2)
ret, jpg = cv2.imencode('.jpg', frame)
2019-01-26 08:02:59 -06:00
yield (b'--frame\r\n'
b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n')
app.run(host='0.0.0.0', debug=False)
capture_process.join()
detection_process.join()
# convert shared memory array into numpy array
def tonumpyarray(mp_arr):
return np.frombuffer(mp_arr.get_obj(), dtype=np.uint16)
# fetch the frames as fast a possible, only decoding the frames when the
# detection_process has consumed the current frame
def fetch_frames(shared_arr, shared_cropped_arr, shared_frame_time, frame_shape):
2019-01-26 08:02:59 -06:00
# convert shared memory array into numpy and shape into image array
arr = tonumpyarray(shared_arr).reshape(frame_shape)
cropped_frame = tonumpyarray(shared_cropped_arr).reshape(REGION_SIZE,REGION_SIZE,3)
2019-01-26 08:02:59 -06:00
# start the video capture
video = cv2.VideoCapture(RTSP_URL)
# keep the buffer small so we minimize old data
video.set(cv2.CAP_PROP_BUFFERSIZE,1)
while True:
# grab the frame, but dont decode it yet
ret = video.grab()
# snapshot the time the frame was grabbed
frame_time = datetime.datetime.now()
if ret:
# if the detection_process is ready for the next frame decode it
# otherwise skip this frame and move onto the next one
if shared_frame_time.value == 0.0:
# go ahead and decode the current frame
ret, frame = video.retrieve()
if ret:
# copy the frame into the numpy array
# Position 1
# cropped_frame[:] = frame[270:720, 550:1000]
# Position 2
# frame_cropped = frame[270:720, 100:550]
# Car
cropped_frame[:] = frame[REGION_Y_OFFSET:REGION_Y_OFFSET+REGION_SIZE, REGION_X_OFFSET:REGION_X_OFFSET+REGION_SIZE]
2019-01-26 08:02:59 -06:00
arr[:] = frame
# signal to the detection_process by setting the shared_frame_time
shared_frame_time.value = frame_time.timestamp()
video.release()
# do the actual object detection
def process_frames(shared_arr, shared_cropped_arr, shared_output_arr, shared_frame_time, frame_shape):
2019-01-26 08:02:59 -06:00
# shape shared input array into frame for processing
arr = tonumpyarray(shared_arr).reshape(frame_shape)
shared_cropped_frame = tonumpyarray(shared_cropped_arr).reshape(REGION_SIZE,REGION_SIZE,3)
2019-01-26 08:02:59 -06:00
# Load a (frozen) Tensorflow model into memory before the processing loop
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
sess = tf.Session(graph=detection_graph)
no_frames_available = -1
while True:
# if there isnt a frame ready for processing
if shared_frame_time.value == 0.0:
# save the first time there were no frames available
if no_frames_available == -1:
no_frames_available = datetime.datetime.now().timestamp()
# if there havent been any frames available in 30 seconds,
# sleep to avoid using so much cpu if the camera feed is down
if no_frames_available > 0 and (datetime.datetime.now().timestamp() - no_frames_available) > 30:
time.sleep(1)
print("sleeping because no frames have been available in a while")
2019-02-01 06:35:10 -06:00
else:
# rest a little bit to avoid maxing out the CPU
time.sleep(0.01)
2019-01-26 08:02:59 -06:00
continue
# we got a valid frame, so reset the timer
no_frames_available = -1
# if the frame is more than 0.5 second old, discard it
if (datetime.datetime.now().timestamp() - shared_frame_time.value) > 0.5:
# signal that we need a new frame
shared_frame_time.value = 0.0
2019-02-01 06:35:10 -06:00
# rest a little bit to avoid maxing out the CPU
time.sleep(0.01)
2019-01-26 08:02:59 -06:00
continue
# make a copy of the frame
# frame = arr.copy()
cropped_frame = shared_cropped_frame.copy()
2019-01-26 08:02:59 -06:00
frame_time = shared_frame_time.value
# signal that the frame has been used so a new one will be ready
shared_frame_time.value = 0.0
# convert to RGB
cropped_frame_rgb = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2RGB)
2019-01-26 08:02:59 -06:00
# do the object detection
objects = detect_objects(cropped_frame_rgb, sess, detection_graph)
# copy the detected objects to the output array, filling the array when needed
shared_output_arr[:] = objects + [0.0] * (60-len(objects))
2019-01-26 08:02:59 -06:00
if __name__ == '__main__':
mp.freeze_support()
main()