frigate/detect_objects.py

290 lines
11 KiB
Python
Raw Normal View History

2019-01-26 08:02:59 -06:00
import os
import cv2
2019-02-09 08:51:11 -06:00
import imutils
2019-01-26 08:02:59 -06:00
import time
import datetime
import ctypes
import logging
import multiprocessing as mp
2019-03-25 06:24:36 -05:00
import queue
import threading
2019-02-10 12:00:52 -06:00
import json
2019-01-26 08:02:59 -06:00
from contextlib import closing
import numpy as np
from object_detection.utils import visualization_utils as vis_util
from flask import Flask, Response, make_response, send_file
2019-02-10 12:00:52 -06:00
import paho.mqtt.client as mqtt
2019-01-26 08:02:59 -06:00
2019-02-25 20:27:02 -06:00
from frigate.util import tonumpyarray
from frigate.mqtt import MqttMotionPublisher, MqttObjectPublisher
from frigate.objects import ObjectParser, ObjectCleaner, BestPersonFrame
2019-02-25 20:27:02 -06:00
from frigate.motion import detect_motion
from frigate.video import fetch_frames, FrameTracker
2019-03-25 06:24:36 -05:00
from frigate.object_detection import FramePrepper, PreppedQueueProcessor, detect_objects
2019-01-26 08:02:59 -06:00
2019-02-25 20:27:02 -06:00
RTSP_URL = os.getenv('RTSP_URL')
2019-01-26 08:02:59 -06:00
2019-02-10 12:00:52 -06:00
MQTT_HOST = os.getenv('MQTT_HOST')
MQTT_USER = os.getenv('MQTT_USER')
MQTT_PASS = os.getenv('MQTT_PASS')
MQTT_TOPIC_PREFIX = os.getenv('MQTT_TOPIC_PREFIX')
2019-02-10 12:00:52 -06:00
2019-03-25 20:35:44 -05:00
REGIONS = "300,0,0,2000,200,no-mask-300.bmp:300,300,0,2000,200,no-mask-300.bmp:300,600,0,2000,200,no-mask-300.bmp:300,900,0,2000,200,no-mask-300.bmp"
2019-02-09 20:38:11 -06:00
# REGIONS = "400,350,250,50"
2019-03-25 20:35:44 -05:00
# REGIONS = os.getenv('REGIONS')
2019-02-24 08:41:03 -06:00
DEBUG = (os.getenv('DEBUG') == '1')
2019-01-26 08:02:59 -06:00
def main():
2019-02-25 20:27:02 -06:00
DETECTED_OBJECTS = []
recent_motion_frames = {}
# Parse selected regions
regions = []
for region_string in REGIONS.split(':'):
region_parts = region_string.split(',')
2019-02-25 06:48:01 -06:00
region_mask_image = cv2.imread("/config/{}".format(region_parts[5]), cv2.IMREAD_GRAYSCALE)
region_mask = np.where(region_mask_image==[0])
regions.append({
'size': int(region_parts[0]),
'x_offset': int(region_parts[1]),
2019-02-09 20:38:11 -06:00
'y_offset': int(region_parts[2]),
2019-02-25 06:48:01 -06:00
'min_person_area': int(region_parts[3]),
'min_object_size': int(region_parts[4]),
'mask': region_mask,
# Event for motion detection signaling
'motion_detected': mp.Event(),
# array for prepped frame with shape (1, 300, 300, 3)
'prepped_frame_array': mp.Array(ctypes.c_uint8, 300*300*3),
# shared value for storing the prepped_frame_time
'prepped_frame_time': mp.Value('d', 0.0),
# Lock to control access to the prepped frame
'prepped_frame_lock': mp.Lock()
})
# capture a single frame and check the frame shape so the correct array
# size can be allocated in memory
video = cv2.VideoCapture(RTSP_URL)
ret, frame = video.read()
if ret:
frame_shape = frame.shape
else:
print("Unable to capture video stream")
exit(1)
video.release()
2019-03-25 20:35:44 -05:00
2019-01-26 08:02:59 -06:00
# compute the flattened array length from the array shape
flat_array_length = frame_shape[0] * frame_shape[1] * frame_shape[2]
# create shared array for storing the full frame image data
shared_arr = mp.Array(ctypes.c_uint8, flat_array_length)
# create shared value for storing the frame_time
shared_frame_time = mp.Value('d', 0.0)
2019-02-25 20:27:02 -06:00
# Lock to control access to the frame
frame_lock = mp.Lock()
# Condition for notifying that a new frame is ready
frame_ready = mp.Condition()
# Condition for notifying that motion status changed globally
motion_changed = mp.Condition()
2019-03-25 06:24:36 -05:00
prepped_frame_array = mp.Array(ctypes.c_uint8, 300*300*3)
# create shared value for storing the frame_time
prepped_frame_time = mp.Value('d', 0.0)
# Event for notifying that object detection needs a new frame
prepped_frame_grabbed = mp.Event()
prepped_frame_ready = mp.Event()
# Condition for notifying that objects were parsed
objects_parsed = mp.Condition()
# Queue for detected objects
object_queue = mp.Queue()
2019-03-25 06:24:36 -05:00
# Queue for prepped frames
2019-03-25 20:35:44 -05:00
prepped_frame_queue = queue.Queue(len(regions)*2)
2019-03-25 06:24:36 -05:00
prepped_frame_box = mp.Array(ctypes.c_uint16, 3)
2019-02-25 20:27:02 -06:00
# shape current frame so it can be treated as an image
frame_arr = tonumpyarray(shared_arr).reshape(frame_shape)
2019-01-26 08:02:59 -06:00
2019-02-25 20:27:02 -06:00
# start the process to capture frames from the RTSP stream and store in a shared array
capture_process = mp.Process(target=fetch_frames, args=(shared_arr,
2019-02-25 20:27:02 -06:00
shared_frame_time, frame_lock, frame_ready, frame_shape, RTSP_URL))
2019-01-26 08:02:59 -06:00
capture_process.daemon = True
2019-02-25 20:27:02 -06:00
# for each region, start a separate process for motion detection and object detection
2019-03-25 06:24:36 -05:00
detection_prep_threads = []
motion_processes = []
for region in regions:
2019-03-25 06:24:36 -05:00
detection_prep_threads.append(FramePrepper(
frame_arr,
shared_frame_time,
2019-03-25 06:24:36 -05:00
frame_ready,
frame_lock,
region['motion_detected'],
region['size'], region['x_offset'], region['y_offset'],
2019-03-25 06:24:36 -05:00
prepped_frame_queue
))
2019-01-26 08:02:59 -06:00
motion_process = mp.Process(target=detect_motion, args=(shared_arr,
shared_frame_time,
frame_lock, frame_ready,
region['motion_detected'],
motion_changed,
2019-02-09 08:51:11 -06:00
frame_shape,
2019-02-09 20:38:11 -06:00
region['size'], region['x_offset'], region['y_offset'],
region['min_object_size'], region['mask'],
2019-02-24 08:41:03 -06:00
DEBUG))
2019-02-09 08:51:11 -06:00
motion_process.daemon = True
motion_processes.append(motion_process)
2019-03-25 06:24:36 -05:00
prepped_queue_processor = PreppedQueueProcessor(
prepped_frame_array,
prepped_frame_time,
prepped_frame_ready,
prepped_frame_grabbed,
prepped_frame_box,
prepped_frame_queue
)
prepped_queue_processor.start()
2019-03-18 07:48:04 -05:00
# create a process for object detection
2019-03-25 06:24:36 -05:00
# if the coprocessor is doing the work, can this run as a thread
# since it is waiting for IO?
2019-03-18 07:48:04 -05:00
detection_process = mp.Process(target=detect_objects, args=(
2019-03-25 06:24:36 -05:00
prepped_frame_array,
prepped_frame_time,
prepped_frame_ready,
prepped_frame_grabbed,
prepped_frame_box,
object_queue, DEBUG
2019-03-18 07:48:04 -05:00
))
detection_process.daemon = True
# start a thread to store recent motion frames for processing
frame_tracker = FrameTracker(frame_arr, shared_frame_time, frame_ready, frame_lock,
recent_motion_frames, motion_changed, [region['motion_detected'] for region in regions])
frame_tracker.start()
# start a thread to store the highest scoring recent person frame
best_person_frame = BestPersonFrame(objects_parsed, recent_motion_frames, DETECTED_OBJECTS,
motion_changed, [region['motion_detected'] for region in regions])
best_person_frame.start()
2019-02-25 20:27:02 -06:00
# start a thread to parse objects from the queue
object_parser = ObjectParser(object_queue, objects_parsed, DETECTED_OBJECTS)
object_parser.start()
2019-02-25 20:27:02 -06:00
# start a thread to expire objects from the detected objects list
object_cleaner = ObjectCleaner(objects_parsed, DETECTED_OBJECTS,
motion_changed, [region['motion_detected'] for region in regions])
object_cleaner.start()
2019-02-25 20:27:02 -06:00
# connect to mqtt and setup last will
2019-02-28 06:30:34 -06:00
def on_connect(client, userdata, flags, rc):
print("On connect called")
# publish a message to signal that the service is running
client.publish(MQTT_TOPIC_PREFIX+'/available', 'online', retain=True)
client = mqtt.Client()
2019-02-28 06:30:34 -06:00
client.on_connect = on_connect
client.will_set(MQTT_TOPIC_PREFIX+'/available', payload='offline', qos=1, retain=True)
if not MQTT_USER is None:
client.username_pw_set(MQTT_USER, password=MQTT_PASS)
client.connect(MQTT_HOST, 1883, 60)
client.loop_start()
2019-02-25 20:27:02 -06:00
# start a thread to publish object scores (currently only person)
2019-02-28 06:49:27 -06:00
mqtt_publisher = MqttObjectPublisher(client, MQTT_TOPIC_PREFIX, objects_parsed, DETECTED_OBJECTS)
2019-02-10 12:00:52 -06:00
mqtt_publisher.start()
2019-02-25 20:27:02 -06:00
# start thread to publish motion status
mqtt_motion_publisher = MqttMotionPublisher(client, MQTT_TOPIC_PREFIX, motion_changed,
[region['motion_detected'] for region in regions])
mqtt_motion_publisher.start()
2019-02-25 20:27:02 -06:00
# start the process of capturing frames
2019-01-26 08:02:59 -06:00
capture_process.start()
print("capture_process pid ", capture_process.pid)
2019-02-25 20:27:02 -06:00
2019-03-18 07:48:04 -05:00
# start the object detection prep processes
2019-03-25 06:24:36 -05:00
for detection_prep_thread in detection_prep_threads:
detection_prep_thread.start()
2019-02-25 20:27:02 -06:00
2019-03-18 07:48:04 -05:00
detection_process.start()
print("detection_process pid ", detection_process.pid)
2019-02-25 20:27:02 -06:00
# start the motion detection processes
# for motion_process in motion_processes:
# motion_process.start()
# print("motion_process pid ", motion_process.pid)
# TEMP: short circuit the motion detection
for region in regions:
region['motion_detected'].set()
with motion_changed:
motion_changed.notify_all()
2019-02-09 08:51:11 -06:00
2019-02-25 20:27:02 -06:00
# create a flask app that encodes frames a mjpeg on demand
app = Flask(__name__)
@app.route('/best_person.jpg')
def best_person():
frame = np.zeros(frame_shape, np.uint8) if best_person_frame.best_frame is None else best_person_frame.best_frame
ret, jpg = cv2.imencode('.jpg', frame)
response = make_response(jpg.tobytes())
response.headers['Content-Type'] = 'image/jpg'
return response
@app.route('/')
def index():
# return a multipart response
return Response(imagestream(),
mimetype='multipart/x-mixed-replace; boundary=frame')
def imagestream():
while True:
# max out at 5 FPS
time.sleep(0.2)
# make a copy of the current detected objects
detected_objects = DETECTED_OBJECTS.copy()
# lock and make a copy of the current frame
with frame_lock:
frame = frame_arr.copy()
# convert to RGB for drawing
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# draw the bounding boxes on the screen
for obj in detected_objects:
vis_util.draw_bounding_box_on_image_array(frame,
obj['ymin'],
obj['xmin'],
obj['ymax'],
obj['xmax'],
color='red',
thickness=2,
display_str_list=["{}: {}%".format(obj['name'],int(obj['score']*100))],
use_normalized_coordinates=False)
for region in regions:
color = (255,255,255)
if region['motion_detected'].is_set():
color = (0,255,0)
cv2.rectangle(frame, (region['x_offset'], region['y_offset']),
(region['x_offset']+region['size'], region['y_offset']+region['size']),
color, 2)
# convert back to BGR
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
# encode the image into a jpg
ret, jpg = cv2.imencode('.jpg', frame)
yield (b'--frame\r\n'
b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n')
app.run(host='0.0.0.0', debug=False)
2019-01-26 08:02:59 -06:00
capture_process.join()
2019-03-25 06:24:36 -05:00
for detection_prep_thread in detection_prep_threads:
detection_prep_thread.join()
2019-02-09 08:51:11 -06:00
for motion_process in motion_processes:
motion_process.join()
2019-03-18 07:48:04 -05:00
detection_process.join()
frame_tracker.join()
best_person_frame.join()
object_parser.join()
object_cleaner.join()
2019-02-10 12:00:52 -06:00
mqtt_publisher.join()
2019-01-26 08:02:59 -06:00
if __name__ == '__main__':
main()