frigate/start_no_thread.py

508 lines
21 KiB
Python
Raw Normal View History

2020-01-28 07:24:02 -06:00
import datetime
import time
import threading
import queue
import itertools
from collections import defaultdict
2020-01-30 07:10:32 -06:00
from statistics import mean
2020-01-28 07:24:02 -06:00
import cv2
import imutils
import numpy as np
2020-01-30 07:10:32 -06:00
import subprocess as sp
import multiprocessing as mp
import SharedArray as sa
2020-01-28 07:24:02 -06:00
from scipy.spatial import distance as dist
import tflite_runtime.interpreter as tflite
from tflite_runtime.interpreter import load_delegate
2020-02-09 07:39:24 -06:00
from frigate.edgetpu import ObjectDetector, EdgeTPUProcess, RemoteObjectDetector, load_labels
from frigate.motion import MotionDetector
2020-01-28 07:24:02 -06:00
def draw_box_with_label(frame, x_min, y_min, x_max, y_max, label, info, thickness=2, color=None, position='ul'):
if color is None:
color = (0,0,255)
display_text = "{}: {}".format(label, info)
cv2.rectangle(frame, (x_min, y_min), (x_max, y_max), color, thickness)
font_scale = 0.5
font = cv2.FONT_HERSHEY_SIMPLEX
# get the width and height of the text box
size = cv2.getTextSize(display_text, font, fontScale=font_scale, thickness=2)
text_width = size[0][0]
text_height = size[0][1]
line_height = text_height + size[1]
# set the text start position
if position == 'ul':
text_offset_x = x_min
text_offset_y = 0 if y_min < line_height else y_min - (line_height+8)
elif position == 'ur':
text_offset_x = x_max - (text_width+8)
text_offset_y = 0 if y_min < line_height else y_min - (line_height+8)
elif position == 'bl':
text_offset_x = x_min
text_offset_y = y_max
elif position == 'br':
text_offset_x = x_max - (text_width+8)
text_offset_y = y_max
# make the coords of the box with a small padding of two pixels
textbox_coords = ((text_offset_x, text_offset_y), (text_offset_x + text_width + 2, text_offset_y + line_height))
cv2.rectangle(frame, textbox_coords[0], textbox_coords[1], color, cv2.FILLED)
cv2.putText(frame, display_text, (text_offset_x, text_offset_y + line_height - 3), font, fontScale=font_scale, color=(0, 0, 0), thickness=2)
def calculate_region(frame_shape, xmin, ymin, xmax, ymax, multiplier=2):
# size is larger than longest edge
size = int(max(xmax-xmin, ymax-ymin)*multiplier)
# if the size is too big to fit in the frame
if size > min(frame_shape[0], frame_shape[1]):
size = min(frame_shape[0], frame_shape[1])
# x_offset is midpoint of bounding box minus half the size
x_offset = int((xmax-xmin)/2.0+xmin-size/2.0)
# if outside the image
if x_offset < 0:
x_offset = 0
elif x_offset > (frame_shape[1]-size):
x_offset = (frame_shape[1]-size)
# y_offset is midpoint of bounding box minus half the size
y_offset = int((ymax-ymin)/2.0+ymin-size/2.0)
# if outside the image
if y_offset < 0:
y_offset = 0
elif y_offset > (frame_shape[0]-size):
y_offset = (frame_shape[0]-size)
return (x_offset, y_offset, x_offset+size, y_offset+size)
def intersection(box_a, box_b):
return (
max(box_a[0], box_b[0]),
max(box_a[1], box_b[1]),
min(box_a[2], box_b[2]),
min(box_a[3], box_b[3])
)
def area(box):
return (box[2]-box[0] + 1)*(box[3]-box[1] + 1)
def intersection_over_union(box_a, box_b):
# determine the (x, y)-coordinates of the intersection rectangle
intersect = intersection(box_a, box_b)
# compute the area of intersection rectangle
inter_area = max(0, intersect[2] - intersect[0] + 1) * max(0, intersect[3] - intersect[1] + 1)
if inter_area == 0:
return 0.0
# compute the area of both the prediction and ground-truth
# rectangles
box_a_area = (box_a[2] - box_a[0] + 1) * (box_a[3] - box_a[1] + 1)
box_b_area = (box_b[2] - box_b[0] + 1) * (box_b[3] - box_b[1] + 1)
# compute the intersection over union by taking the intersection
# area and dividing it by the sum of prediction + ground-truth
# areas - the interesection area
iou = inter_area / float(box_a_area + box_b_area - inter_area)
# return the intersection over union value
return iou
def clipped(obj, frame_shape):
# if the object is within 5 pixels of the region border, and the region is not on the edge
# consider the object to be clipped
box = obj[2]
region = obj[3]
if ((region[0] > 5 and box[0]-region[0] <= 5) or
(region[1] > 5 and box[1]-region[1] <= 5) or
(frame_shape[1]-region[2] > 5 and region[2]-box[2] <= 5) or
(frame_shape[0]-region[3] > 5 and region[3]-box[3] <= 5)):
return True
else:
return False
def filtered(obj):
if obj[0] != 'person':
return True
return False
def create_tensor_input(frame, region):
cropped_frame = frame[region[1]:region[3], region[0]:region[2]]
# Resize to 300x300 if needed
if cropped_frame.shape != (300, 300, 3):
# TODO: use Pillow-SIMD?
cropped_frame = cv2.resize(cropped_frame, dsize=(300, 300), interpolation=cv2.INTER_LINEAR)
# Expand dimensions since the model expects images to have shape: [1, 300, 300, 3]
return np.expand_dims(cropped_frame, axis=0)
class ObjectTracker():
def __init__(self, max_disappeared):
self.tracked_objects = {}
self.disappeared = {}
self.max_disappeared = max_disappeared
def register(self, index, frame_time, obj):
id = f"{frame_time}-{index}"
obj['id'] = id
obj['frame_time'] = frame_time
obj['top_score'] = obj['score']
self.add_history(obj)
self.tracked_objects[id] = obj
self.disappeared[id] = 0
def deregister(self, id):
del self.tracked_objects[id]
del self.disappeared[id]
def update(self, id, new_obj):
self.disappeared[id] = 0
self.tracked_objects[id].update(new_obj)
self.add_history(self.tracked_objects[id])
if self.tracked_objects[id]['score'] > self.tracked_objects[id]['top_score']:
self.tracked_objects[id]['top_score'] = self.tracked_objects[id]['score']
def add_history(self, obj):
entry = {
'score': obj['score'],
'box': obj['box'],
'region': obj['region'],
'centroid': obj['centroid'],
'frame_time': obj['frame_time']
}
if 'history' in obj:
obj['history'].append(entry)
else:
obj['history'] = [entry]
def match_and_update(self, frame_time, new_objects):
if len(new_objects) == 0:
for id in list(self.tracked_objects.keys()):
if self.disappeared[id] >= self.max_disappeared:
self.deregister(id)
else:
self.disappeared[id] += 1
return
# group by name
new_object_groups = defaultdict(lambda: [])
for obj in new_objects:
new_object_groups[obj[0]].append({
'label': obj[0],
'score': obj[1],
'box': obj[2],
'region': obj[3]
})
# track objects for each label type
for label, group in new_object_groups.items():
current_objects = [o for o in self.tracked_objects.values() if o['label'] == label]
current_ids = [o['id'] for o in current_objects]
current_centroids = np.array([o['centroid'] for o in current_objects])
# compute centroids of new objects
for obj in group:
centroid_x = int((obj['box'][0]+obj['box'][2]) / 2.0)
centroid_y = int((obj['box'][1]+obj['box'][3]) / 2.0)
obj['centroid'] = (centroid_x, centroid_y)
if len(current_objects) == 0:
for index, obj in enumerate(group):
self.register(index, frame_time, obj)
return
new_centroids = np.array([o['centroid'] for o in group])
# compute the distance between each pair of tracked
# centroids and new centroids, respectively -- our
# goal will be to match each new centroid to an existing
# object centroid
D = dist.cdist(current_centroids, new_centroids)
# in order to perform this matching we must (1) find the
# smallest value in each row and then (2) sort the row
# indexes based on their minimum values so that the row
# with the smallest value is at the *front* of the index
# list
rows = D.min(axis=1).argsort()
# next, we perform a similar process on the columns by
# finding the smallest value in each column and then
# sorting using the previously computed row index list
cols = D.argmin(axis=1)[rows]
# in order to determine if we need to update, register,
# or deregister an object we need to keep track of which
# of the rows and column indexes we have already examined
usedRows = set()
usedCols = set()
# loop over the combination of the (row, column) index
# tuples
for (row, col) in zip(rows, cols):
# if we have already examined either the row or
# column value before, ignore it
if row in usedRows or col in usedCols:
continue
# otherwise, grab the object ID for the current row,
# set its new centroid, and reset the disappeared
# counter
objectID = current_ids[row]
self.update(objectID, group[col])
# indicate that we have examined each of the row and
# column indexes, respectively
usedRows.add(row)
usedCols.add(col)
# compute the column index we have NOT yet examined
unusedRows = set(range(0, D.shape[0])).difference(usedRows)
unusedCols = set(range(0, D.shape[1])).difference(usedCols)
# in the event that the number of object centroids is
# equal or greater than the number of input centroids
# we need to check and see if some of these objects have
# potentially disappeared
if D.shape[0] >= D.shape[1]:
for row in unusedRows:
id = current_ids[row]
if self.disappeared[id] >= self.max_disappeared:
self.deregister(id)
else:
self.disappeared[id] += 1
# if the number of input centroids is greater
# than the number of existing object centroids we need to
# register each new input centroid as a trackable object
else:
for col in unusedCols:
self.register(col, frame_time, group[col])
def main():
frames = 0
# frame_queue = queue.Queue(maxsize=5)
# frame_cache = {}
2020-01-30 07:10:32 -06:00
frame_shape = (1080,1920,3)
# frame_shape = (720,1280,3)
2020-01-28 07:24:02 -06:00
frame_size = frame_shape[0]*frame_shape[1]*frame_shape[2]
frame = np.zeros(frame_shape, np.uint8)
2020-01-30 07:10:32 -06:00
motion_detector = MotionDetector(frame_shape, resize_factor=6)
2020-01-31 10:50:42 -06:00
# object_detector = ObjectDetector('/lab/mobilenet_ssd_v2_coco_quant_postprocess_edgetpu.tflite', '/lab/labelmap.txt')
# object_detector = RemoteObjectDetector('/lab/mobilenet_ssd_v2_coco_quant_postprocess_edgetpu.tflite', '/lab/labelmap.txt')
2020-01-28 07:24:02 -06:00
# object_detector = ObjectDetector('/lab/detect.tflite', '/lab/labelmap.txt')
2020-01-31 10:50:42 -06:00
object_detector = RemoteObjectDetector('/lab/detect.tflite', '/lab/labelmap.txt')
2020-01-28 07:24:02 -06:00
object_tracker = ObjectTracker(10)
# f = open('/debug/input/back.rgb24', 'rb')
2020-01-30 07:10:32 -06:00
# f = open('/debug/back.raw_video', 'rb')
2020-01-28 07:24:02 -06:00
# f = open('/debug/ali-jake.raw_video', 'rb')
2020-01-30 07:10:32 -06:00
# -hwaccel vaapi -hwaccel_device /dev/dri/renderD128 -hwaccel_output_format yuv420p -i output.mp4 -f rawvideo -pix_fmt rgb24 pipe:
ffmpeg_cmd = (['ffmpeg'] +
['-hide_banner','-loglevel','panic'] +
2020-01-31 10:50:42 -06:00
# ['-hwaccel','vaapi','-hwaccel_device','/dev/dri/renderD129','-hwaccel_output_format','yuv420p'] +
# ['-i', '/debug/input/output.mp4'] +
2020-01-31 10:50:42 -06:00
['-i', '/lab/debug/back-night.mp4'] +
2020-01-30 07:10:32 -06:00
['-f','rawvideo','-pix_fmt','rgb24'] +
['pipe:'])
print(" ".join(ffmpeg_cmd))
ffmpeg_process = sp.Popen(ffmpeg_cmd, stdout = sp.PIPE, bufsize=frame_size)
2020-01-28 07:24:02 -06:00
total_detections = 0
start = datetime.datetime.now().timestamp()
2020-01-30 07:10:32 -06:00
frame_times = []
2020-01-28 07:24:02 -06:00
while True:
2020-01-30 07:10:32 -06:00
start_frame = datetime.datetime.now().timestamp()
2020-01-28 07:24:02 -06:00
frame_detections = 0
2020-02-09 07:39:24 -06:00
frame_bytes = ffmpeg_process.stdout.read(frame_size)
2020-01-28 07:24:02 -06:00
if not frame_bytes:
break
frame_time = datetime.datetime.now().timestamp()
# Store frame in numpy array
frame[:] = (np
.frombuffer(frame_bytes, np.uint8)
.reshape(frame_shape))
frames += 1
# look for motion
motion_boxes = motion_detector.detect(frame)
tracked_objects = object_tracker.tracked_objects.values()
# merge areas of motion that intersect with a known tracked object into a single area to look at
areas_of_interest = []
used_motion_boxes = []
for obj in tracked_objects:
x_min, y_min, x_max, y_max = obj['box']
for m_index, motion_box in enumerate(motion_boxes):
if area(intersection(obj['box'], motion_box))/area(motion_box) > .5:
used_motion_boxes.append(m_index)
x_min = min(obj['box'][0], motion_box[0])
y_min = min(obj['box'][1], motion_box[1])
x_max = max(obj['box'][2], motion_box[2])
y_max = max(obj['box'][3], motion_box[3])
areas_of_interest.append((x_min, y_min, x_max, y_max))
unused_motion_boxes = set(range(0, len(motion_boxes))).difference(used_motion_boxes)
# compute motion regions
motion_regions = [calculate_region(frame_shape, motion_boxes[i][0], motion_boxes[i][1], motion_boxes[i][2], motion_boxes[i][3], 1.2)
for i in unused_motion_boxes]
# compute tracked object regions
object_regions = [calculate_region(frame_shape, a[0], a[1], a[2], a[3], 1.2)
for a in areas_of_interest]
# merge regions with high IOU
merged_regions = motion_regions+object_regions
while True:
max_iou = 0.0
max_indices = None
region_indices = range(len(merged_regions))
for a, b in itertools.combinations(region_indices, 2):
iou = intersection_over_union(merged_regions[a], merged_regions[b])
if iou > max_iou:
max_iou = iou
max_indices = (a, b)
if max_iou > 0.1:
a = merged_regions[max_indices[0]]
b = merged_regions[max_indices[1]]
merged_regions.append(calculate_region(frame_shape,
min(a[0], b[0]),
min(a[1], b[1]),
max(a[2], b[2]),
max(a[3], b[3]),
1
))
del merged_regions[max(max_indices[0], max_indices[1])]
del merged_regions[min(max_indices[0], max_indices[1])]
else:
break
# resize regions and detect
detections = []
for region in merged_regions:
tensor_input = create_tensor_input(frame, region)
region_detections = object_detector.detect(tensor_input)
frame_detections += 1
for d in region_detections:
if filtered(d):
continue
box = d[2]
size = region[2]-region[0]
x_min = int((box[1] * size) + region[0])
y_min = int((box[0] * size) + region[1])
x_max = int((box[3] * size) + region[0])
y_max = int((box[2] * size) + region[1])
detections.append((
d[0],
d[1],
(x_min, y_min, x_max, y_max),
region))
#########
# merge objects, check for clipped objects and look again up to N times
#########
refining = True
refine_count = 0
while refining and refine_count < 4:
refining = False
# group by name
detected_object_groups = defaultdict(lambda: [])
for detection in detections:
detected_object_groups[detection[0]].append(detection)
selected_objects = []
for group in detected_object_groups.values():
# apply non-maxima suppression to suppress weak, overlapping bounding boxes
boxes = [(o[2][0], o[2][1], o[2][2]-o[2][0], o[2][3]-o[2][1])
for o in group]
confidences = [o[1] for o in group]
idxs = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
for index in idxs:
obj = group[index[0]]
if clipped(obj, frame_shape): #obj['clipped']:
box = obj[2]
# calculate a new region that will hopefully get the entire object
region = calculate_region(frame_shape,
box[0], box[1],
box[2], box[3])
tensor_input = create_tensor_input(frame, region)
# run detection on new region
refined_detections = object_detector.detect(tensor_input)
frame_detections += 1
for d in refined_detections:
if filtered(d):
continue
box = d[2]
size = region[2]-region[0]
x_min = int((box[1] * size) + region[0])
y_min = int((box[0] * size) + region[1])
x_max = int((box[3] * size) + region[0])
y_max = int((box[2] * size) + region[1])
selected_objects.append((
d[0],
d[1],
(x_min, y_min, x_max, y_max),
region))
refining = True
else:
selected_objects.append(obj)
# set the detections list to only include top, complete objects
# and new detections
detections = selected_objects
if refining:
refine_count += 1
# now that we have refined our detections, we need to track objects
object_tracker.match_and_update(frame_time, detections)
total_detections += frame_detections
2020-01-30 07:10:32 -06:00
frame_times.append(datetime.datetime.now().timestamp()-start_frame)
2020-01-28 07:24:02 -06:00
# if (frames >= 700 and frames <= 1635) or (frames >= 2500):
2020-01-31 10:50:42 -06:00
# if (frames >= 300 and frames <= 600):
if (frames >= 0):
# row1 = cv2.hconcat([gray, cv2.convertScaleAbs(avg_frame)])
# row2 = cv2.hconcat([frameDelta, thresh])
# cv2.imwrite(f"/lab/debug/output/{frames}.jpg", cv2.vconcat([row1, row2]))
# # cv2.imwrite(f"/lab/debug/output/resized-frame-{frames}.jpg", resized_frame)
# for region in motion_regions:
# cv2.rectangle(frame, (region[0], region[1]), (region[2], region[3]), (255,128,0), 2)
# for region in object_regions:
# cv2.rectangle(frame, (region[0], region[1]), (region[2], region[3]), (0,128,255), 2)
for region in merged_regions:
cv2.rectangle(frame, (region[0], region[1]), (region[2], region[3]), (0,255,0), 2)
for box in motion_boxes:
cv2.rectangle(frame, (box[0], box[1]), (box[2], box[3]), (255,0,0), 2)
for detection in detections:
box = detection[2]
draw_box_with_label(frame, box[0], box[1], box[2], box[3], detection[0], f"{detection[1]*100}%")
for obj in object_tracker.tracked_objects.values():
box = obj['box']
draw_box_with_label(frame, box[0], box[1], box[2], box[3], obj['label'], obj['id'], thickness=1, color=(0,0,255), position='bl')
cv2.putText(frame, str(total_detections), (10, 10), cv2.FONT_HERSHEY_SIMPLEX, fontScale=0.5, color=(0, 0, 0), thickness=2)
cv2.putText(frame, str(frame_detections), (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=0.5, color=(0, 0, 0), thickness=2)
cv2.imwrite(f"/lab/debug/output/frame-{frames}.jpg", frame)
# break
2020-01-28 07:24:02 -06:00
duration = datetime.datetime.now().timestamp()-start
print(f"Processed {frames} frames for {duration:.2f} seconds and {(frames/duration):.2f} FPS.")
print(f"Total detections: {total_detections}")
2020-01-30 07:10:32 -06:00
print(f"Average frame processing time: {mean(frame_times)*1000:.2f}ms")
2020-01-28 07:24:02 -06:00
if __name__ == '__main__':
main()