mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-02-25 18:55:25 -06:00
use a small yolov9 model for detection
This commit is contained in:
parent
d6b5dc93cc
commit
0dcfcb2cf7
@ -5,6 +5,7 @@ from enum import Enum
|
||||
from io import BytesIO
|
||||
from typing import Dict, List, Optional, Union
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import requests
|
||||
from PIL import Image
|
||||
@ -32,6 +33,7 @@ disable_progress_bar()
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
FACE_EMBEDDING_SIZE = 160
|
||||
LPR_EMBEDDING_SIZE = 256
|
||||
|
||||
|
||||
class ModelTypeEnum(str, Enum):
|
||||
@ -41,6 +43,7 @@ class ModelTypeEnum(str, Enum):
|
||||
lpr_detect = "lpr_detect"
|
||||
lpr_classify = "lpr_classify"
|
||||
lpr_recognize = "lpr_recognize"
|
||||
yolov9_lpr_detect = "yolov9_lpr_detect"
|
||||
|
||||
|
||||
class GenericONNXEmbedding:
|
||||
@ -148,6 +151,8 @@ class GenericONNXEmbedding:
|
||||
self.feature_extractor = []
|
||||
elif self.model_type == ModelTypeEnum.lpr_recognize:
|
||||
self.feature_extractor = []
|
||||
elif self.model_type == ModelTypeEnum.yolov9_lpr_detect:
|
||||
self.feature_extractor = []
|
||||
|
||||
self.runner = ONNXModelRunner(
|
||||
os.path.join(self.download_path, self.model_file),
|
||||
@ -237,6 +242,45 @@ class GenericONNXEmbedding:
|
||||
for img in raw_inputs:
|
||||
processed.append({"x": img})
|
||||
return processed
|
||||
elif self.model_type == ModelTypeEnum.yolov9_lpr_detect:
|
||||
if isinstance(raw_inputs, list):
|
||||
raise ValueError(
|
||||
"License plate embedding does not support batch inputs."
|
||||
)
|
||||
# Get image as numpy array
|
||||
img = self._process_image(raw_inputs)
|
||||
height, width, channels = img.shape
|
||||
|
||||
# Resize maintaining aspect ratio
|
||||
if width > height:
|
||||
new_height = int(((height / width) * LPR_EMBEDDING_SIZE) // 4 * 4)
|
||||
img = cv2.resize(img, (LPR_EMBEDDING_SIZE, new_height))
|
||||
else:
|
||||
new_width = int(((width / height) * LPR_EMBEDDING_SIZE) // 4 * 4)
|
||||
img = cv2.resize(img, (new_width, LPR_EMBEDDING_SIZE))
|
||||
|
||||
# Get new dimensions after resize
|
||||
og_h, og_w, channels = img.shape
|
||||
|
||||
# Create black square frame
|
||||
frame = np.full(
|
||||
(LPR_EMBEDDING_SIZE, LPR_EMBEDDING_SIZE, channels),
|
||||
(0, 0, 0),
|
||||
dtype=np.float32,
|
||||
)
|
||||
|
||||
# Center the resized image in the square frame
|
||||
x_center = (LPR_EMBEDDING_SIZE - og_w) // 2
|
||||
y_center = (LPR_EMBEDDING_SIZE - og_h) // 2
|
||||
frame[y_center : y_center + og_h, x_center : x_center + og_w] = img
|
||||
|
||||
# Normalize to 0-1
|
||||
frame = frame / 255.0
|
||||
|
||||
# Convert from HWC to CHW format and add batch dimension
|
||||
frame = np.transpose(frame, (2, 0, 1))
|
||||
frame = np.expand_dims(frame, axis=0)
|
||||
return [{"images": frame}]
|
||||
else:
|
||||
raise ValueError(f"Unable to preprocess inputs for {self.model_type}")
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user