use a small yolov9 model for detection

This commit is contained in:
Josh Hawkins 2025-02-13 10:44:46 -06:00
parent d6b5dc93cc
commit 0dcfcb2cf7

View File

@ -5,6 +5,7 @@ from enum import Enum
from io import BytesIO
from typing import Dict, List, Optional, Union
import cv2
import numpy as np
import requests
from PIL import Image
@ -32,6 +33,7 @@ disable_progress_bar()
logger = logging.getLogger(__name__)
FACE_EMBEDDING_SIZE = 160
LPR_EMBEDDING_SIZE = 256
class ModelTypeEnum(str, Enum):
@ -41,6 +43,7 @@ class ModelTypeEnum(str, Enum):
lpr_detect = "lpr_detect"
lpr_classify = "lpr_classify"
lpr_recognize = "lpr_recognize"
yolov9_lpr_detect = "yolov9_lpr_detect"
class GenericONNXEmbedding:
@ -148,6 +151,8 @@ class GenericONNXEmbedding:
self.feature_extractor = []
elif self.model_type == ModelTypeEnum.lpr_recognize:
self.feature_extractor = []
elif self.model_type == ModelTypeEnum.yolov9_lpr_detect:
self.feature_extractor = []
self.runner = ONNXModelRunner(
os.path.join(self.download_path, self.model_file),
@ -237,6 +242,45 @@ class GenericONNXEmbedding:
for img in raw_inputs:
processed.append({"x": img})
return processed
elif self.model_type == ModelTypeEnum.yolov9_lpr_detect:
if isinstance(raw_inputs, list):
raise ValueError(
"License plate embedding does not support batch inputs."
)
# Get image as numpy array
img = self._process_image(raw_inputs)
height, width, channels = img.shape
# Resize maintaining aspect ratio
if width > height:
new_height = int(((height / width) * LPR_EMBEDDING_SIZE) // 4 * 4)
img = cv2.resize(img, (LPR_EMBEDDING_SIZE, new_height))
else:
new_width = int(((width / height) * LPR_EMBEDDING_SIZE) // 4 * 4)
img = cv2.resize(img, (new_width, LPR_EMBEDDING_SIZE))
# Get new dimensions after resize
og_h, og_w, channels = img.shape
# Create black square frame
frame = np.full(
(LPR_EMBEDDING_SIZE, LPR_EMBEDDING_SIZE, channels),
(0, 0, 0),
dtype=np.float32,
)
# Center the resized image in the square frame
x_center = (LPR_EMBEDDING_SIZE - og_w) // 2
y_center = (LPR_EMBEDDING_SIZE - og_h) // 2
frame[y_center : y_center + og_h, x_center : x_center + og_w] = img
# Normalize to 0-1
frame = frame / 255.0
# Convert from HWC to CHW format and add batch dimension
frame = np.transpose(frame, (2, 0, 1))
frame = np.expand_dims(frame, axis=0)
return [{"images": frame}]
else:
raise ValueError(f"Unable to preprocess inputs for {self.model_type}")