mirror of
https://github.com/blakeblackshear/frigate.git
synced 2024-11-27 03:10:34 -06:00
split into separate processes
This commit is contained in:
parent
ffa9534549
commit
569e07949f
@ -26,10 +26,11 @@ RUN apt -qq update && apt -qq install --no-install-recommends -y \
|
||||
scipy \
|
||||
&& python3.7 -m pip install -U \
|
||||
SharedArray \
|
||||
# Flask \
|
||||
# paho-mqtt \
|
||||
# PyYAML \
|
||||
# matplotlib \
|
||||
Flask \
|
||||
paho-mqtt \
|
||||
PyYAML \
|
||||
matplotlib \
|
||||
pyarrow \
|
||||
&& echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" > /etc/apt/sources.list.d/coral-edgetpu.list \
|
||||
&& wget -q -O - https://packages.cloud.google.com/apt/doc/apt-key.gpg | apt-key add - \
|
||||
&& apt -qq update \
|
||||
|
@ -2,13 +2,16 @@ import cv2
|
||||
import time
|
||||
import queue
|
||||
import yaml
|
||||
import multiprocessing as mp
|
||||
import subprocess as sp
|
||||
import numpy as np
|
||||
from flask import Flask, Response, make_response, jsonify
|
||||
import paho.mqtt.client as mqtt
|
||||
|
||||
from frigate.video import Camera
|
||||
from frigate.object_detection import PreppedQueueProcessor
|
||||
from frigate.video import track_camera
|
||||
from frigate.object_processing import TrackedObjectProcessor
|
||||
from frigate.util import EventsPerSecond
|
||||
from frigate.edgetpu import EdgeTPUProcess
|
||||
|
||||
with open('/config/config.yml') as f:
|
||||
CONFIG = yaml.safe_load(f)
|
||||
@ -38,8 +41,7 @@ FFMPEG_DEFAULT_CONFIG = {
|
||||
'-stimeout', '5000000',
|
||||
'-use_wallclock_as_timestamps', '1']),
|
||||
'output_args': FFMPEG_CONFIG.get('output_args',
|
||||
['-vf', 'mpdecimate',
|
||||
'-f', 'rawvideo',
|
||||
['-f', 'rawvideo',
|
||||
'-pix_fmt', 'rgb24'])
|
||||
}
|
||||
|
||||
@ -48,6 +50,10 @@ GLOBAL_OBJECT_CONFIG = CONFIG.get('objects', {})
|
||||
WEB_PORT = CONFIG.get('web_port', 5000)
|
||||
DEBUG = (CONFIG.get('debug', '0') == '1')
|
||||
|
||||
# MODEL_PATH = CONFIG.get('tflite_model', '/lab/mobilenet_ssd_v2_coco_quant_postprocess_edgetpu.tflite')
|
||||
MODEL_PATH = CONFIG.get('tflite_model', '/lab/detect.tflite')
|
||||
LABEL_MAP = CONFIG.get('label_map', '/lab/labelmap.txt')
|
||||
|
||||
def main():
|
||||
# connect to mqtt and setup last will
|
||||
def on_connect(client, userdata, flags, rc):
|
||||
@ -71,27 +77,43 @@ def main():
|
||||
client.connect(MQTT_HOST, MQTT_PORT, 60)
|
||||
client.loop_start()
|
||||
|
||||
# Queue for prepped frames, max size set to number of regions * 3
|
||||
prepped_frame_queue = queue.Queue()
|
||||
# start plasma store
|
||||
plasma_cmd = ['plasma_store', '-m', '400000000', '-s', '/tmp/plasma']
|
||||
plasma_process = sp.Popen(plasma_cmd, stdout=sp.DEVNULL, stderr=sp.DEVNULL)
|
||||
|
||||
cameras = {}
|
||||
##
|
||||
# Setup config defaults for cameras
|
||||
##
|
||||
for name, config in CONFIG['cameras'].items():
|
||||
cameras[name] = Camera(name, FFMPEG_DEFAULT_CONFIG, GLOBAL_OBJECT_CONFIG, config,
|
||||
prepped_frame_queue, client, MQTT_TOPIC_PREFIX)
|
||||
config['snapshots'] = {
|
||||
'show_timestamp': config.get('snapshots', {}).get('show_timestamp', True)
|
||||
}
|
||||
|
||||
fps_tracker = EventsPerSecond()
|
||||
# Queue for cameras to push tracked objects to
|
||||
tracked_objects_queue = mp.Queue()
|
||||
|
||||
prepped_queue_processor = PreppedQueueProcessor(
|
||||
cameras,
|
||||
prepped_frame_queue,
|
||||
fps_tracker
|
||||
)
|
||||
prepped_queue_processor.start()
|
||||
fps_tracker.start()
|
||||
# Start the shared tflite process
|
||||
tflite_process = EdgeTPUProcess(MODEL_PATH)
|
||||
|
||||
for name, camera in cameras.items():
|
||||
camera.start()
|
||||
print("Capture process for {}: {}".format(name, camera.get_capture_pid()))
|
||||
camera_processes = []
|
||||
camera_stats_values = {}
|
||||
for name, config in CONFIG['cameras'].items():
|
||||
camera_stats_values[name] = {
|
||||
'fps': mp.Value('d', 10.0),
|
||||
'avg_wait': mp.Value('d', 0.0)
|
||||
}
|
||||
camera_process = mp.Process(target=track_camera, args=(name, config, FFMPEG_DEFAULT_CONFIG, GLOBAL_OBJECT_CONFIG,
|
||||
tflite_process.detect_lock, tflite_process.detect_ready, tflite_process.frame_ready, tracked_objects_queue,
|
||||
camera_stats_values[name]['fps'], camera_stats_values[name]['avg_wait']))
|
||||
camera_process.daemon = True
|
||||
camera_processes.append(camera_process)
|
||||
|
||||
for camera_process in camera_processes:
|
||||
camera_process.start()
|
||||
print(f"Camera_process started {camera_process.pid}")
|
||||
|
||||
object_processor = TrackedObjectProcessor(CONFIG['cameras'], client, MQTT_TOPIC_PREFIX, tracked_objects_queue)
|
||||
object_processor.start()
|
||||
|
||||
# create a flask app that encodes frames a mjpeg on demand
|
||||
app = Flask(__name__)
|
||||
@ -105,21 +127,23 @@ def main():
|
||||
def stats():
|
||||
stats = {
|
||||
'coral': {
|
||||
'fps': fps_tracker.eps(),
|
||||
'inference_speed': prepped_queue_processor.avg_inference_speed,
|
||||
'queue_length': prepped_frame_queue.qsize()
|
||||
'fps': tflite_process.fps.value,
|
||||
'inference_speed': tflite_process.avg_inference_speed.value
|
||||
}
|
||||
}
|
||||
|
||||
for name, camera in cameras.items():
|
||||
stats[name] = camera.stats()
|
||||
for name, camera_stats in camera_stats_values.items():
|
||||
stats[name] = {
|
||||
'fps': camera_stats['fps'].value,
|
||||
'avg_wait': camera_stats['avg_wait'].value
|
||||
}
|
||||
|
||||
return jsonify(stats)
|
||||
|
||||
@app.route('/<camera_name>/<label>/best.jpg')
|
||||
def best(camera_name, label):
|
||||
if camera_name in cameras:
|
||||
best_frame = cameras[camera_name].get_best(label)
|
||||
if camera_name in CONFIG['cameras']:
|
||||
best_frame = object_processor.get_best(camera_name, label)
|
||||
if best_frame is None:
|
||||
best_frame = np.zeros((720,1280,3), np.uint8)
|
||||
best_frame = cv2.cvtColor(best_frame, cv2.COLOR_RGB2BGR)
|
||||
@ -132,7 +156,7 @@ def main():
|
||||
|
||||
@app.route('/<camera_name>')
|
||||
def mjpeg_feed(camera_name):
|
||||
if camera_name in cameras:
|
||||
if camera_name in CONFIG['cameras']:
|
||||
# return a multipart response
|
||||
return Response(imagestream(camera_name),
|
||||
mimetype='multipart/x-mixed-replace; boundary=frame')
|
||||
@ -143,13 +167,16 @@ def main():
|
||||
while True:
|
||||
# max out at 1 FPS
|
||||
time.sleep(1)
|
||||
frame = cameras[camera_name].get_current_frame_with_objects()
|
||||
frame = object_processor.current_frame_with_objects(camera_name)
|
||||
yield (b'--frame\r\n'
|
||||
b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n\r\n')
|
||||
|
||||
app.run(host='0.0.0.0', port=WEB_PORT, debug=False)
|
||||
|
||||
camera.join()
|
||||
for camera_process in camera_processes:
|
||||
camera_process.join()
|
||||
|
||||
plasma_process.terminate()
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
|
@ -1,8 +1,11 @@
|
||||
import os
|
||||
import datetime
|
||||
import multiprocessing as mp
|
||||
import numpy as np
|
||||
import SharedArray as sa
|
||||
import tflite_runtime.interpreter as tflite
|
||||
from tflite_runtime.interpreter import load_delegate
|
||||
from frigate.util import EventsPerSecond
|
||||
|
||||
def load_labels(path, encoding='utf-8'):
|
||||
"""Loads labels from file (with or without index numbers).
|
||||
@ -59,6 +62,7 @@ class ObjectDetector():
|
||||
|
||||
class EdgeTPUProcess():
|
||||
def __init__(self, model):
|
||||
# TODO: see if we can use the plasma store with a queue and maintain the same speeds
|
||||
try:
|
||||
sa.delete("frame")
|
||||
except:
|
||||
@ -74,22 +78,32 @@ class EdgeTPUProcess():
|
||||
self.detect_lock = mp.Lock()
|
||||
self.detect_ready = mp.Event()
|
||||
self.frame_ready = mp.Event()
|
||||
self.fps = mp.Value('d', 0.0)
|
||||
self.avg_inference_speed = mp.Value('d', 10.0)
|
||||
|
||||
def run_detector(model, detect_ready, frame_ready):
|
||||
def run_detector(model, detect_ready, frame_ready, fps, avg_speed):
|
||||
print(f"Starting detection process: {os.getpid()}")
|
||||
object_detector = ObjectDetector(model)
|
||||
input_frame = sa.attach("frame")
|
||||
detections = sa.attach("detections")
|
||||
fps_tracker = EventsPerSecond()
|
||||
fps_tracker.start()
|
||||
|
||||
while True:
|
||||
# wait until a frame is ready
|
||||
frame_ready.wait()
|
||||
start = datetime.datetime.now().timestamp()
|
||||
# signal that the process is busy
|
||||
frame_ready.clear()
|
||||
detections[:] = object_detector.detect_raw(input_frame)
|
||||
# signal that the process is ready to detect
|
||||
detect_ready.set()
|
||||
fps_tracker.update()
|
||||
fps.value = fps_tracker.eps()
|
||||
duration = datetime.datetime.now().timestamp()-start
|
||||
avg_speed.value = (avg_speed.value*9 + duration)/10
|
||||
|
||||
self.detect_process = mp.Process(target=run_detector, args=(model, self.detect_ready, self.frame_ready))
|
||||
self.detect_process = mp.Process(target=run_detector, args=(model, self.detect_ready, self.frame_ready, self.fps, self.avg_inference_speed))
|
||||
self.detect_process.daemon = True
|
||||
self.detect_process.start()
|
||||
|
||||
|
@ -3,14 +3,15 @@ import imutils
|
||||
import numpy as np
|
||||
|
||||
class MotionDetector():
|
||||
# TODO: add motion masking
|
||||
def __init__(self, frame_shape, resize_factor=4):
|
||||
def __init__(self, frame_shape, mask, resize_factor=4):
|
||||
self.resize_factor = resize_factor
|
||||
self.motion_frame_size = (int(frame_shape[0]/resize_factor), int(frame_shape[1]/resize_factor))
|
||||
self.avg_frame = np.zeros(self.motion_frame_size, np.float)
|
||||
self.avg_delta = np.zeros(self.motion_frame_size, np.float)
|
||||
self.motion_frame_count = 0
|
||||
self.frame_counter = 0
|
||||
resized_mask = cv2.resize(mask, dsize=(self.motion_frame_size[1], self.motion_frame_size[0]), interpolation=cv2.INTER_LINEAR)
|
||||
self.mask = np.where(resized_mask==[0])
|
||||
|
||||
def detect(self, frame):
|
||||
motion_boxes = []
|
||||
@ -21,6 +22,9 @@ class MotionDetector():
|
||||
# convert to grayscale
|
||||
gray = cv2.cvtColor(resized_frame, cv2.COLOR_BGR2GRAY)
|
||||
|
||||
# mask frame
|
||||
gray[self.mask] = [255]
|
||||
|
||||
# it takes ~30 frames to establish a baseline
|
||||
# dont bother looking for motion
|
||||
if self.frame_counter < 30:
|
||||
@ -58,7 +62,6 @@ class MotionDetector():
|
||||
# if the contour is big enough, count it as motion
|
||||
contour_area = cv2.contourArea(c)
|
||||
if contour_area > 100:
|
||||
# cv2.drawContours(resized_frame, [c], -1, (255,255,255), 2)
|
||||
x, y, w, h = cv2.boundingRect(c)
|
||||
motion_boxes.append((x*self.resize_factor, y*self.resize_factor, (x+w)*self.resize_factor, (y+h)*self.resize_factor))
|
||||
|
||||
|
@ -1,54 +0,0 @@
|
||||
import json
|
||||
import cv2
|
||||
import threading
|
||||
import prctl
|
||||
from collections import Counter, defaultdict
|
||||
import itertools
|
||||
|
||||
class MqttObjectPublisher(threading.Thread):
|
||||
def __init__(self, client, topic_prefix, camera):
|
||||
threading.Thread.__init__(self)
|
||||
self.client = client
|
||||
self.topic_prefix = topic_prefix
|
||||
self.camera = camera
|
||||
|
||||
def run(self):
|
||||
prctl.set_name(self.__class__.__name__)
|
||||
current_object_status = defaultdict(lambda: 'OFF')
|
||||
while True:
|
||||
# wait until objects have been tracked
|
||||
with self.camera.objects_tracked:
|
||||
self.camera.objects_tracked.wait()
|
||||
|
||||
# count objects with more than 2 entries in history by type
|
||||
obj_counter = Counter()
|
||||
for obj in self.camera.object_tracker.tracked_objects.values():
|
||||
if len(obj['history']) > 1:
|
||||
obj_counter[obj['name']] += 1
|
||||
|
||||
# report on detected objects
|
||||
for obj_name, count in obj_counter.items():
|
||||
new_status = 'ON' if count > 0 else 'OFF'
|
||||
if new_status != current_object_status[obj_name]:
|
||||
current_object_status[obj_name] = new_status
|
||||
self.client.publish(self.topic_prefix+'/'+obj_name, new_status, retain=False)
|
||||
# send the snapshot over mqtt if we have it as well
|
||||
if obj_name in self.camera.best_frames.best_frames:
|
||||
best_frame = cv2.cvtColor(self.camera.best_frames.best_frames[obj_name], cv2.COLOR_RGB2BGR)
|
||||
ret, jpg = cv2.imencode('.jpg', best_frame)
|
||||
if ret:
|
||||
jpg_bytes = jpg.tobytes()
|
||||
self.client.publish(self.topic_prefix+'/'+obj_name+'/snapshot', jpg_bytes, retain=True)
|
||||
|
||||
# expire any objects that are ON and no longer detected
|
||||
expired_objects = [obj_name for obj_name, status in current_object_status.items() if status == 'ON' and not obj_name in obj_counter]
|
||||
for obj_name in expired_objects:
|
||||
current_object_status[obj_name] = 'OFF'
|
||||
self.client.publish(self.topic_prefix+'/'+obj_name, 'OFF', retain=False)
|
||||
# send updated snapshot snapshot over mqtt if we have it as well
|
||||
if obj_name in self.camera.best_frames.best_frames:
|
||||
best_frame = cv2.cvtColor(self.camera.best_frames.best_frames[obj_name], cv2.COLOR_RGB2BGR)
|
||||
ret, jpg = cv2.imencode('.jpg', best_frame)
|
||||
if ret:
|
||||
jpg_bytes = jpg.tobytes()
|
||||
self.client.publish(self.topic_prefix+'/'+obj_name+'/snapshot', jpg_bytes, retain=True)
|
@ -3,7 +3,7 @@ import time
|
||||
import cv2
|
||||
import threading
|
||||
import copy
|
||||
import prctl
|
||||
# import prctl
|
||||
import numpy as np
|
||||
from edgetpu.detection.engine import DetectionEngine
|
||||
|
||||
|
146
frigate/object_processing.py
Normal file
146
frigate/object_processing.py
Normal file
@ -0,0 +1,146 @@
|
||||
import json
|
||||
import hashlib
|
||||
import datetime
|
||||
import copy
|
||||
import cv2
|
||||
import threading
|
||||
import numpy as np
|
||||
from collections import Counter, defaultdict
|
||||
import itertools
|
||||
import pyarrow.plasma as plasma
|
||||
import SharedArray as sa
|
||||
import matplotlib.pyplot as plt
|
||||
from frigate.util import draw_box_with_label, ReadLabelFile
|
||||
|
||||
PATH_TO_LABELS = '/lab/labelmap.txt'
|
||||
|
||||
LABELS = ReadLabelFile(PATH_TO_LABELS)
|
||||
cmap = plt.cm.get_cmap('tab10', len(LABELS.keys()))
|
||||
|
||||
COLOR_MAP = {}
|
||||
for key, val in LABELS.items():
|
||||
COLOR_MAP[val] = tuple(int(round(255 * c)) for c in cmap(key)[:3])
|
||||
|
||||
class TrackedObjectProcessor(threading.Thread):
|
||||
def __init__(self, config, client, topic_prefix, tracked_objects_queue):
|
||||
threading.Thread.__init__(self)
|
||||
self.config = config
|
||||
self.client = client
|
||||
self.topic_prefix = topic_prefix
|
||||
self.tracked_objects_queue = tracked_objects_queue
|
||||
self.plasma_client = plasma.connect("/tmp/plasma")
|
||||
self.camera_data = defaultdict(lambda: {
|
||||
'best_objects': {},
|
||||
'object_status': defaultdict(lambda: defaultdict(lambda: 'OFF')),
|
||||
'tracked_objects': {}
|
||||
})
|
||||
|
||||
def get_best(self, camera, label):
|
||||
if label in self.camera_data[camera]['best_objects']:
|
||||
return self.camera_data[camera]['best_objects'][label]['frame']
|
||||
else:
|
||||
return None
|
||||
|
||||
def get_frame(self, config, camera, obj):
|
||||
object_id_hash = hashlib.sha1(str.encode(f"{camera}{obj['frame_time']}"))
|
||||
object_id_bytes = object_id_hash.digest()
|
||||
object_id = plasma.ObjectID(object_id_bytes)
|
||||
best_frame = self.plasma_client.get(object_id)
|
||||
box = obj['box']
|
||||
draw_box_with_label(best_frame, box[0], box[1], box[2], box[3], obj['label'], f"{int(obj['score']*100)}% {int(obj['area'])}")
|
||||
# print a timestamp
|
||||
if config['snapshots']['show_timestamp']:
|
||||
time_to_show = datetime.datetime.fromtimestamp(obj['frame_time']).strftime("%m/%d/%Y %H:%M:%S")
|
||||
cv2.putText(best_frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
|
||||
return best_frame
|
||||
|
||||
def current_frame_with_objects(self, camera):
|
||||
frame_time = self.camera_data[camera]['current_frame']
|
||||
object_id_hash = hashlib.sha1(str.encode(f"{camera}{frame_time}"))
|
||||
object_id_bytes = object_id_hash.digest()
|
||||
object_id = plasma.ObjectID(object_id_bytes)
|
||||
current_frame = self.plasma_client.get(object_id)
|
||||
|
||||
tracked_objects = copy.deepcopy(self.camera_data[camera]['tracked_objects'])
|
||||
|
||||
# draw the bounding boxes on the screen
|
||||
for obj in tracked_objects.values():
|
||||
thickness = 2
|
||||
color = COLOR_MAP[obj['label']]
|
||||
|
||||
if obj['frame_time'] != frame_time:
|
||||
thickness = 1
|
||||
color = (255,0,0)
|
||||
|
||||
box = obj['box']
|
||||
draw_box_with_label(current_frame, box[0], box[1], box[2], box[3], obj['label'], f"{int(obj['score']*100)}% {int(obj['area'])}", thickness=thickness, color=color)
|
||||
|
||||
# # print fps
|
||||
# cv2.putText(frame, str(self.fps.eps())+'FPS', (10, 60), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
|
||||
|
||||
# convert to BGR
|
||||
frame = cv2.cvtColor(current_frame, cv2.COLOR_RGB2BGR)
|
||||
|
||||
# encode the image into a jpg
|
||||
ret, jpg = cv2.imencode('.jpg', frame)
|
||||
|
||||
return jpg.tobytes()
|
||||
|
||||
def run(self):
|
||||
while True:
|
||||
camera, frame_time, tracked_objects = self.tracked_objects_queue.get()
|
||||
|
||||
config = self.config[camera]
|
||||
best_objects = self.camera_data[camera]['best_objects']
|
||||
current_object_status = self.camera_data[camera]['object_status']
|
||||
self.camera_data[camera]['tracked_objects'] = tracked_objects
|
||||
self.camera_data[camera]['current_frame'] = frame_time
|
||||
|
||||
###
|
||||
# Maintain the highest scoring recent object and frame for each label
|
||||
###
|
||||
for obj in tracked_objects.values():
|
||||
if obj['label'] in best_objects:
|
||||
now = datetime.datetime.now().timestamp()
|
||||
# if the object is a higher score than the current best score
|
||||
# or the current object is more than 1 minute old, use the new object
|
||||
if obj['score'] > best_objects[obj['label']]['score'] or (now - best_objects[obj['label']]['frame_time']) > 60:
|
||||
obj['frame'] = self.get_frame(config, camera, obj)
|
||||
best_objects[obj['label']] = obj
|
||||
else:
|
||||
obj['frame'] = self.get_frame(config, camera, obj)
|
||||
best_objects[obj['label']] = obj
|
||||
|
||||
###
|
||||
# Report over MQTT
|
||||
###
|
||||
# count objects with more than 2 entries in history by type
|
||||
obj_counter = Counter()
|
||||
for obj in tracked_objects.values():
|
||||
if len(obj['history']) > 1:
|
||||
obj_counter[obj['label']] += 1
|
||||
|
||||
# report on detected objects
|
||||
for obj_name, count in obj_counter.items():
|
||||
new_status = 'ON' if count > 0 else 'OFF'
|
||||
if new_status != current_object_status[obj_name]:
|
||||
current_object_status[obj_name] = new_status
|
||||
self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}", new_status, retain=False)
|
||||
# send the best snapshot over mqtt
|
||||
best_frame = cv2.cvtColor(best_objects[obj_name]['frame'], cv2.COLOR_RGB2BGR)
|
||||
ret, jpg = cv2.imencode('.jpg', best_frame)
|
||||
if ret:
|
||||
jpg_bytes = jpg.tobytes()
|
||||
self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}/snapshot", jpg_bytes, retain=True)
|
||||
|
||||
# expire any objects that are ON and no longer detected
|
||||
expired_objects = [obj_name for obj_name, status in current_object_status.items() if status == 'ON' and not obj_name in obj_counter]
|
||||
for obj_name in expired_objects:
|
||||
current_object_status[obj_name] = 'OFF'
|
||||
self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}", 'OFF', retain=False)
|
||||
# send updated snapshot over mqtt
|
||||
best_frame = cv2.cvtColor(best_objects[obj_name]['frame'], cv2.COLOR_RGB2BGR)
|
||||
ret, jpg = cv2.imencode('.jpg', best_frame)
|
||||
if ret:
|
||||
jpg_bytes = jpg.tobytes()
|
||||
self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}/snapshot", jpg_bytes, retain=True)
|
@ -2,277 +2,266 @@ import time
|
||||
import datetime
|
||||
import threading
|
||||
import cv2
|
||||
import prctl
|
||||
# import prctl
|
||||
import itertools
|
||||
import copy
|
||||
import numpy as np
|
||||
import multiprocessing as mp
|
||||
from collections import defaultdict
|
||||
from scipy.spatial import distance as dist
|
||||
from frigate.util import draw_box_with_label, LABELS, compute_intersection_rectangle, compute_intersection_over_union, calculate_region
|
||||
from frigate.util import draw_box_with_label, LABELS, calculate_region
|
||||
|
||||
class ObjectCleaner(threading.Thread):
|
||||
def __init__(self, camera):
|
||||
threading.Thread.__init__(self)
|
||||
self.camera = camera
|
||||
# class ObjectCleaner(threading.Thread):
|
||||
# def __init__(self, camera):
|
||||
# threading.Thread.__init__(self)
|
||||
# self.camera = camera
|
||||
|
||||
def run(self):
|
||||
prctl.set_name("ObjectCleaner")
|
||||
while True:
|
||||
# def run(self):
|
||||
# prctl.set_name("ObjectCleaner")
|
||||
# while True:
|
||||
|
||||
# wait a bit before checking for expired frames
|
||||
time.sleep(0.2)
|
||||
# # wait a bit before checking for expired frames
|
||||
# time.sleep(0.2)
|
||||
|
||||
for frame_time in list(self.camera.detected_objects.keys()).copy():
|
||||
if not frame_time in self.camera.frame_cache:
|
||||
del self.camera.detected_objects[frame_time]
|
||||
# for frame_time in list(self.camera.detected_objects.keys()).copy():
|
||||
# if not frame_time in self.camera.frame_cache:
|
||||
# del self.camera.detected_objects[frame_time]
|
||||
|
||||
objects_deregistered = False
|
||||
with self.camera.object_tracker.tracked_objects_lock:
|
||||
now = datetime.datetime.now().timestamp()
|
||||
for id, obj in list(self.camera.object_tracker.tracked_objects.items()):
|
||||
# if the object is more than 10 seconds old
|
||||
# and not in the most recent frame, deregister
|
||||
if (now - obj['frame_time']) > 10 and self.camera.object_tracker.most_recent_frame_time > obj['frame_time']:
|
||||
self.camera.object_tracker.deregister(id)
|
||||
objects_deregistered = True
|
||||
# objects_deregistered = False
|
||||
# with self.camera.object_tracker.tracked_objects_lock:
|
||||
# now = datetime.datetime.now().timestamp()
|
||||
# for id, obj in list(self.camera.object_tracker.tracked_objects.items()):
|
||||
# # if the object is more than 10 seconds old
|
||||
# # and not in the most recent frame, deregister
|
||||
# if (now - obj['frame_time']) > 10 and self.camera.object_tracker.most_recent_frame_time > obj['frame_time']:
|
||||
# self.camera.object_tracker.deregister(id)
|
||||
# objects_deregistered = True
|
||||
|
||||
if objects_deregistered:
|
||||
with self.camera.objects_tracked:
|
||||
self.camera.objects_tracked.notify_all()
|
||||
# if objects_deregistered:
|
||||
# with self.camera.objects_tracked:
|
||||
# self.camera.objects_tracked.notify_all()
|
||||
|
||||
class DetectedObjectsProcessor(threading.Thread):
|
||||
def __init__(self, camera):
|
||||
threading.Thread.__init__(self)
|
||||
self.camera = camera
|
||||
# class DetectedObjectsProcessor(threading.Thread):
|
||||
# def __init__(self, camera):
|
||||
# threading.Thread.__init__(self)
|
||||
# self.camera = camera
|
||||
|
||||
def run(self):
|
||||
prctl.set_name(self.__class__.__name__)
|
||||
while True:
|
||||
frame = self.camera.detected_objects_queue.get()
|
||||
# def run(self):
|
||||
# prctl.set_name(self.__class__.__name__)
|
||||
# while True:
|
||||
# frame = self.camera.detected_objects_queue.get()
|
||||
|
||||
objects = frame['detected_objects']
|
||||
# objects = frame['detected_objects']
|
||||
|
||||
for raw_obj in objects:
|
||||
name = str(LABELS[raw_obj.label_id])
|
||||
# for raw_obj in objects:
|
||||
# name = str(LABELS[raw_obj.label_id])
|
||||
|
||||
if not name in self.camera.objects_to_track:
|
||||
continue
|
||||
# if not name in self.camera.objects_to_track:
|
||||
# continue
|
||||
|
||||
obj = {
|
||||
'name': name,
|
||||
'score': float(raw_obj.score),
|
||||
'box': {
|
||||
'xmin': int((raw_obj.bounding_box[0][0] * frame['size']) + frame['x_offset']),
|
||||
'ymin': int((raw_obj.bounding_box[0][1] * frame['size']) + frame['y_offset']),
|
||||
'xmax': int((raw_obj.bounding_box[1][0] * frame['size']) + frame['x_offset']),
|
||||
'ymax': int((raw_obj.bounding_box[1][1] * frame['size']) + frame['y_offset'])
|
||||
},
|
||||
'region': {
|
||||
'xmin': frame['x_offset'],
|
||||
'ymin': frame['y_offset'],
|
||||
'xmax': frame['x_offset']+frame['size'],
|
||||
'ymax': frame['y_offset']+frame['size']
|
||||
},
|
||||
'frame_time': frame['frame_time'],
|
||||
'region_id': frame['region_id']
|
||||
}
|
||||
# obj = {
|
||||
# 'name': name,
|
||||
# 'score': float(raw_obj.score),
|
||||
# 'box': {
|
||||
# 'xmin': int((raw_obj.bounding_box[0][0] * frame['size']) + frame['x_offset']),
|
||||
# 'ymin': int((raw_obj.bounding_box[0][1] * frame['size']) + frame['y_offset']),
|
||||
# 'xmax': int((raw_obj.bounding_box[1][0] * frame['size']) + frame['x_offset']),
|
||||
# 'ymax': int((raw_obj.bounding_box[1][1] * frame['size']) + frame['y_offset'])
|
||||
# },
|
||||
# 'region': {
|
||||
# 'xmin': frame['x_offset'],
|
||||
# 'ymin': frame['y_offset'],
|
||||
# 'xmax': frame['x_offset']+frame['size'],
|
||||
# 'ymax': frame['y_offset']+frame['size']
|
||||
# },
|
||||
# 'frame_time': frame['frame_time'],
|
||||
# 'region_id': frame['region_id']
|
||||
# }
|
||||
|
||||
# if the object is within 5 pixels of the region border, and the region is not on the edge
|
||||
# consider the object to be clipped
|
||||
obj['clipped'] = False
|
||||
if ((obj['region']['xmin'] > 5 and obj['box']['xmin']-obj['region']['xmin'] <= 5) or
|
||||
(obj['region']['ymin'] > 5 and obj['box']['ymin']-obj['region']['ymin'] <= 5) or
|
||||
(self.camera.frame_shape[1]-obj['region']['xmax'] > 5 and obj['region']['xmax']-obj['box']['xmax'] <= 5) or
|
||||
(self.camera.frame_shape[0]-obj['region']['ymax'] > 5 and obj['region']['ymax']-obj['box']['ymax'] <= 5)):
|
||||
obj['clipped'] = True
|
||||
# # if the object is within 5 pixels of the region border, and the region is not on the edge
|
||||
# # consider the object to be clipped
|
||||
# obj['clipped'] = False
|
||||
# if ((obj['region']['xmin'] > 5 and obj['box']['xmin']-obj['region']['xmin'] <= 5) or
|
||||
# (obj['region']['ymin'] > 5 and obj['box']['ymin']-obj['region']['ymin'] <= 5) or
|
||||
# (self.camera.frame_shape[1]-obj['region']['xmax'] > 5 and obj['region']['xmax']-obj['box']['xmax'] <= 5) or
|
||||
# (self.camera.frame_shape[0]-obj['region']['ymax'] > 5 and obj['region']['ymax']-obj['box']['ymax'] <= 5)):
|
||||
# obj['clipped'] = True
|
||||
|
||||
# Compute the area
|
||||
# TODO: +1 right?
|
||||
obj['area'] = (obj['box']['xmax']-obj['box']['xmin'])*(obj['box']['ymax']-obj['box']['ymin'])
|
||||
# # Compute the area
|
||||
# # TODO: +1 right?
|
||||
# obj['area'] = (obj['box']['xmax']-obj['box']['xmin'])*(obj['box']['ymax']-obj['box']['ymin'])
|
||||
|
||||
self.camera.detected_objects[frame['frame_time']].append(obj)
|
||||
# self.camera.detected_objects[frame['frame_time']].append(obj)
|
||||
|
||||
# TODO: use in_process and processed counts instead to avoid lock
|
||||
with self.camera.regions_in_process_lock:
|
||||
if frame['frame_time'] in self.camera.regions_in_process:
|
||||
self.camera.regions_in_process[frame['frame_time']] -= 1
|
||||
# print(f"{frame['frame_time']} remaining regions {self.camera.regions_in_process[frame['frame_time']]}")
|
||||
# # TODO: use in_process and processed counts instead to avoid lock
|
||||
# with self.camera.regions_in_process_lock:
|
||||
# if frame['frame_time'] in self.camera.regions_in_process:
|
||||
# self.camera.regions_in_process[frame['frame_time']] -= 1
|
||||
# # print(f"{frame['frame_time']} remaining regions {self.camera.regions_in_process[frame['frame_time']]}")
|
||||
|
||||
if self.camera.regions_in_process[frame['frame_time']] == 0:
|
||||
del self.camera.regions_in_process[frame['frame_time']]
|
||||
# print(f"{frame['frame_time']} no remaining regions")
|
||||
self.camera.finished_frame_queue.put(frame['frame_time'])
|
||||
else:
|
||||
self.camera.finished_frame_queue.put(frame['frame_time'])
|
||||
# if self.camera.regions_in_process[frame['frame_time']] == 0:
|
||||
# del self.camera.regions_in_process[frame['frame_time']]
|
||||
# # print(f"{frame['frame_time']} no remaining regions")
|
||||
# self.camera.finished_frame_queue.put(frame['frame_time'])
|
||||
# else:
|
||||
# self.camera.finished_frame_queue.put(frame['frame_time'])
|
||||
|
||||
# Thread that checks finished frames for clipped objects and sends back
|
||||
# for processing if needed
|
||||
# TODO: evaluate whether or not i really need separate threads/queues for each step
|
||||
# given that only 1 thread will really be able to run at a time. you need a
|
||||
# separate process to actually do things in parallel for when you are CPU bound.
|
||||
# threads are good when you are waiting and could be processing while you wait
|
||||
class RegionRefiner(threading.Thread):
|
||||
def __init__(self, camera):
|
||||
threading.Thread.__init__(self)
|
||||
self.camera = camera
|
||||
# # Thread that checks finished frames for clipped objects and sends back
|
||||
# # for processing if needed
|
||||
# # TODO: evaluate whether or not i really need separate threads/queues for each step
|
||||
# # given that only 1 thread will really be able to run at a time. you need a
|
||||
# # separate process to actually do things in parallel for when you are CPU bound.
|
||||
# # threads are good when you are waiting and could be processing while you wait
|
||||
# class RegionRefiner(threading.Thread):
|
||||
# def __init__(self, camera):
|
||||
# threading.Thread.__init__(self)
|
||||
# self.camera = camera
|
||||
|
||||
def run(self):
|
||||
prctl.set_name(self.__class__.__name__)
|
||||
while True:
|
||||
frame_time = self.camera.finished_frame_queue.get()
|
||||
# def run(self):
|
||||
# prctl.set_name(self.__class__.__name__)
|
||||
# while True:
|
||||
# frame_time = self.camera.finished_frame_queue.get()
|
||||
|
||||
detected_objects = self.camera.detected_objects[frame_time].copy()
|
||||
# print(f"{frame_time} finished")
|
||||
# detected_objects = self.camera.detected_objects[frame_time].copy()
|
||||
# # print(f"{frame_time} finished")
|
||||
|
||||
# group by name
|
||||
detected_object_groups = defaultdict(lambda: [])
|
||||
for obj in detected_objects:
|
||||
detected_object_groups[obj['name']].append(obj)
|
||||
# # group by name
|
||||
# detected_object_groups = defaultdict(lambda: [])
|
||||
# for obj in detected_objects:
|
||||
# detected_object_groups[obj['name']].append(obj)
|
||||
|
||||
look_again = False
|
||||
selected_objects = []
|
||||
for group in detected_object_groups.values():
|
||||
# look_again = False
|
||||
# selected_objects = []
|
||||
# for group in detected_object_groups.values():
|
||||
|
||||
# apply non-maxima suppression to suppress weak, overlapping bounding boxes
|
||||
boxes = [(o['box']['xmin'], o['box']['ymin'], o['box']['xmax']-o['box']['xmin'], o['box']['ymax']-o['box']['ymin'])
|
||||
for o in group]
|
||||
confidences = [o['score'] for o in group]
|
||||
idxs = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
|
||||
# # apply non-maxima suppression to suppress weak, overlapping bounding boxes
|
||||
# boxes = [(o['box']['xmin'], o['box']['ymin'], o['box']['xmax']-o['box']['xmin'], o['box']['ymax']-o['box']['ymin'])
|
||||
# for o in group]
|
||||
# confidences = [o['score'] for o in group]
|
||||
# idxs = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
|
||||
|
||||
for index in idxs:
|
||||
obj = group[index[0]]
|
||||
selected_objects.append(obj)
|
||||
if obj['clipped']:
|
||||
box = obj['box']
|
||||
# calculate a new region that will hopefully get the entire object
|
||||
(size, x_offset, y_offset) = calculate_region(self.camera.frame_shape,
|
||||
box['xmin'], box['ymin'],
|
||||
box['xmax'], box['ymax'])
|
||||
# print(f"{frame_time} new region: {size} {x_offset} {y_offset}")
|
||||
# for index in idxs:
|
||||
# obj = group[index[0]]
|
||||
# selected_objects.append(obj)
|
||||
# if obj['clipped']:
|
||||
# box = obj['box']
|
||||
# # calculate a new region that will hopefully get the entire object
|
||||
# (size, x_offset, y_offset) = calculate_region(self.camera.frame_shape,
|
||||
# box['xmin'], box['ymin'],
|
||||
# box['xmax'], box['ymax'])
|
||||
# # print(f"{frame_time} new region: {size} {x_offset} {y_offset}")
|
||||
|
||||
with self.camera.regions_in_process_lock:
|
||||
if not frame_time in self.camera.regions_in_process:
|
||||
self.camera.regions_in_process[frame_time] = 1
|
||||
else:
|
||||
self.camera.regions_in_process[frame_time] += 1
|
||||
# with self.camera.regions_in_process_lock:
|
||||
# if not frame_time in self.camera.regions_in_process:
|
||||
# self.camera.regions_in_process[frame_time] = 1
|
||||
# else:
|
||||
# self.camera.regions_in_process[frame_time] += 1
|
||||
|
||||
# add it to the queue
|
||||
self.camera.resize_queue.put({
|
||||
'camera_name': self.camera.name,
|
||||
'frame_time': frame_time,
|
||||
'region_id': -1,
|
||||
'size': size,
|
||||
'x_offset': x_offset,
|
||||
'y_offset': y_offset
|
||||
})
|
||||
self.camera.dynamic_region_fps.update()
|
||||
look_again = True
|
||||
# # add it to the queue
|
||||
# self.camera.resize_queue.put({
|
||||
# 'camera_name': self.camera.name,
|
||||
# 'frame_time': frame_time,
|
||||
# 'region_id': -1,
|
||||
# 'size': size,
|
||||
# 'x_offset': x_offset,
|
||||
# 'y_offset': y_offset
|
||||
# })
|
||||
# self.camera.dynamic_region_fps.update()
|
||||
# look_again = True
|
||||
|
||||
# if we are looking again, then this frame is not ready for processing
|
||||
if look_again:
|
||||
# remove the clipped objects
|
||||
self.camera.detected_objects[frame_time] = [o for o in selected_objects if not o['clipped']]
|
||||
continue
|
||||
# # if we are looking again, then this frame is not ready for processing
|
||||
# if look_again:
|
||||
# # remove the clipped objects
|
||||
# self.camera.detected_objects[frame_time] = [o for o in selected_objects if not o['clipped']]
|
||||
# continue
|
||||
|
||||
# filter objects based on camera settings
|
||||
selected_objects = [o for o in selected_objects if not self.filtered(o)]
|
||||
# # filter objects based on camera settings
|
||||
# selected_objects = [o for o in selected_objects if not self.filtered(o)]
|
||||
|
||||
self.camera.detected_objects[frame_time] = selected_objects
|
||||
# self.camera.detected_objects[frame_time] = selected_objects
|
||||
|
||||
# print(f"{frame_time} is actually finished")
|
||||
# # print(f"{frame_time} is actually finished")
|
||||
|
||||
# keep adding frames to the refined queue as long as they are finished
|
||||
with self.camera.regions_in_process_lock:
|
||||
while self.camera.frame_queue.qsize() > 0 and self.camera.frame_queue.queue[0] not in self.camera.regions_in_process:
|
||||
self.camera.last_processed_frame = self.camera.frame_queue.get()
|
||||
self.camera.refined_frame_queue.put(self.camera.last_processed_frame)
|
||||
# # keep adding frames to the refined queue as long as they are finished
|
||||
# with self.camera.regions_in_process_lock:
|
||||
# while self.camera.frame_queue.qsize() > 0 and self.camera.frame_queue.queue[0] not in self.camera.regions_in_process:
|
||||
# self.camera.last_processed_frame = self.camera.frame_queue.get()
|
||||
# self.camera.refined_frame_queue.put(self.camera.last_processed_frame)
|
||||
|
||||
def filtered(self, obj):
|
||||
object_name = obj['name']
|
||||
# def filtered(self, obj):
|
||||
# object_name = obj['name']
|
||||
|
||||
if object_name in self.camera.object_filters:
|
||||
obj_settings = self.camera.object_filters[object_name]
|
||||
# if object_name in self.camera.object_filters:
|
||||
# obj_settings = self.camera.object_filters[object_name]
|
||||
|
||||
# if the min area is larger than the
|
||||
# detected object, don't add it to detected objects
|
||||
if obj_settings.get('min_area',-1) > obj['area']:
|
||||
return True
|
||||
# # if the min area is larger than the
|
||||
# # detected object, don't add it to detected objects
|
||||
# if obj_settings.get('min_area',-1) > obj['area']:
|
||||
# return True
|
||||
|
||||
# if the detected object is larger than the
|
||||
# max area, don't add it to detected objects
|
||||
if obj_settings.get('max_area', self.camera.frame_shape[0]*self.camera.frame_shape[1]) < obj['area']:
|
||||
return True
|
||||
# # if the detected object is larger than the
|
||||
# # max area, don't add it to detected objects
|
||||
# if obj_settings.get('max_area', self.camera.frame_shape[0]*self.camera.frame_shape[1]) < obj['area']:
|
||||
# return True
|
||||
|
||||
# if the score is lower than the threshold, skip
|
||||
if obj_settings.get('threshold', 0) > obj['score']:
|
||||
return True
|
||||
# # if the score is lower than the threshold, skip
|
||||
# if obj_settings.get('threshold', 0) > obj['score']:
|
||||
# return True
|
||||
|
||||
# compute the coordinates of the object and make sure
|
||||
# the location isnt outside the bounds of the image (can happen from rounding)
|
||||
y_location = min(int(obj['box']['ymax']), len(self.camera.mask)-1)
|
||||
x_location = min(int((obj['box']['xmax']-obj['box']['xmin'])/2.0)+obj['box']['xmin'], len(self.camera.mask[0])-1)
|
||||
# # compute the coordinates of the object and make sure
|
||||
# # the location isnt outside the bounds of the image (can happen from rounding)
|
||||
# y_location = min(int(obj['box']['ymax']), len(self.camera.mask)-1)
|
||||
# x_location = min(int((obj['box']['xmax']-obj['box']['xmin'])/2.0)+obj['box']['xmin'], len(self.camera.mask[0])-1)
|
||||
|
||||
# if the object is in a masked location, don't add it to detected objects
|
||||
if self.camera.mask[y_location][x_location] == [0]:
|
||||
return True
|
||||
# # if the object is in a masked location, don't add it to detected objects
|
||||
# if self.camera.mask[y_location][x_location] == [0]:
|
||||
# return True
|
||||
|
||||
return False
|
||||
# return False
|
||||
|
||||
def has_overlap(self, new_obj, obj, overlap=.7):
|
||||
# compute intersection rectangle with existing object and new objects region
|
||||
existing_obj_current_region = compute_intersection_rectangle(obj['box'], new_obj['region'])
|
||||
# def has_overlap(self, new_obj, obj, overlap=.7):
|
||||
# # compute intersection rectangle with existing object and new objects region
|
||||
# existing_obj_current_region = compute_intersection_rectangle(obj['box'], new_obj['region'])
|
||||
|
||||
# compute intersection rectangle with new object and existing objects region
|
||||
new_obj_existing_region = compute_intersection_rectangle(new_obj['box'], obj['region'])
|
||||
# # compute intersection rectangle with new object and existing objects region
|
||||
# new_obj_existing_region = compute_intersection_rectangle(new_obj['box'], obj['region'])
|
||||
|
||||
# compute iou for the two intersection rectangles that were just computed
|
||||
iou = compute_intersection_over_union(existing_obj_current_region, new_obj_existing_region)
|
||||
# # compute iou for the two intersection rectangles that were just computed
|
||||
# iou = compute_intersection_over_union(existing_obj_current_region, new_obj_existing_region)
|
||||
|
||||
# if intersection is greater than overlap
|
||||
if iou > overlap:
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
# # if intersection is greater than overlap
|
||||
# if iou > overlap:
|
||||
# return True
|
||||
# else:
|
||||
# return False
|
||||
|
||||
def find_group(self, new_obj, groups):
|
||||
for index, group in enumerate(groups):
|
||||
for obj in group:
|
||||
if self.has_overlap(new_obj, obj):
|
||||
return index
|
||||
return None
|
||||
# def find_group(self, new_obj, groups):
|
||||
# for index, group in enumerate(groups):
|
||||
# for obj in group:
|
||||
# if self.has_overlap(new_obj, obj):
|
||||
# return index
|
||||
# return None
|
||||
|
||||
class ObjectTracker(threading.Thread):
|
||||
def __init__(self, camera, max_disappeared):
|
||||
threading.Thread.__init__(self)
|
||||
self.camera = camera
|
||||
class ObjectTracker():
|
||||
def __init__(self, max_disappeared):
|
||||
self.tracked_objects = {}
|
||||
self.tracked_objects_lock = mp.Lock()
|
||||
self.most_recent_frame_time = None
|
||||
|
||||
def run(self):
|
||||
prctl.set_name(self.__class__.__name__)
|
||||
while True:
|
||||
frame_time = self.camera.refined_frame_queue.get()
|
||||
with self.tracked_objects_lock:
|
||||
self.match_and_update(self.camera.detected_objects[frame_time])
|
||||
self.most_recent_frame_time = frame_time
|
||||
self.camera.frame_output_queue.put((frame_time, copy.deepcopy(self.tracked_objects)))
|
||||
if len(self.tracked_objects) > 0:
|
||||
with self.camera.objects_tracked:
|
||||
self.camera.objects_tracked.notify_all()
|
||||
self.disappeared = {}
|
||||
self.max_disappeared = max_disappeared
|
||||
|
||||
def register(self, index, obj):
|
||||
id = "{}-{}".format(str(obj['frame_time']), index)
|
||||
id = f"{obj['frame_time']}-{index}"
|
||||
obj['id'] = id
|
||||
obj['top_score'] = obj['score']
|
||||
self.add_history(obj)
|
||||
self.tracked_objects[id] = obj
|
||||
self.disappeared[id] = 0
|
||||
|
||||
def deregister(self, id):
|
||||
del self.tracked_objects[id]
|
||||
del self.disappeared[id]
|
||||
|
||||
def update(self, id, new_obj):
|
||||
self.disappeared[id] = 0
|
||||
self.tracked_objects[id].update(new_obj)
|
||||
self.add_history(self.tracked_objects[id])
|
||||
if self.tracked_objects[id]['score'] > self.tracked_objects[id]['top_score']:
|
||||
@ -291,25 +280,37 @@ class ObjectTracker(threading.Thread):
|
||||
else:
|
||||
obj['history'] = [entry]
|
||||
|
||||
def match_and_update(self, new_objects):
|
||||
def match_and_update(self, frame_time, new_objects):
|
||||
if len(new_objects) == 0:
|
||||
for id in list(self.tracked_objects.keys()):
|
||||
if self.disappeared[id] >= self.max_disappeared:
|
||||
self.deregister(id)
|
||||
else:
|
||||
self.disappeared[id] += 1
|
||||
return
|
||||
|
||||
# group by name
|
||||
new_object_groups = defaultdict(lambda: [])
|
||||
for obj in new_objects:
|
||||
new_object_groups[obj['name']].append(obj)
|
||||
new_object_groups[obj[0]].append({
|
||||
'label': obj[0],
|
||||
'score': obj[1],
|
||||
'box': obj[2],
|
||||
'area': obj[3],
|
||||
'region': obj[4],
|
||||
'frame_time': frame_time
|
||||
})
|
||||
|
||||
# track objects for each label type
|
||||
for label, group in new_object_groups.items():
|
||||
current_objects = [o for o in self.tracked_objects.values() if o['name'] == label]
|
||||
current_objects = [o for o in self.tracked_objects.values() if o['label'] == label]
|
||||
current_ids = [o['id'] for o in current_objects]
|
||||
current_centroids = np.array([o['centroid'] for o in current_objects])
|
||||
|
||||
# compute centroids of new objects
|
||||
for obj in group:
|
||||
centroid_x = int((obj['box']['xmin']+obj['box']['xmax']) / 2.0)
|
||||
centroid_y = int((obj['box']['ymin']+obj['box']['ymax']) / 2.0)
|
||||
centroid_x = int((obj['box'][0]+obj['box'][2]) / 2.0)
|
||||
centroid_y = int((obj['box'][1]+obj['box'][3]) / 2.0)
|
||||
obj['centroid'] = (centroid_x, centroid_y)
|
||||
|
||||
if len(current_objects) == 0:
|
||||
@ -363,56 +364,66 @@ class ObjectTracker(threading.Thread):
|
||||
usedCols.add(col)
|
||||
|
||||
# compute the column index we have NOT yet examined
|
||||
unusedRows = set(range(0, D.shape[0])).difference(usedRows)
|
||||
unusedCols = set(range(0, D.shape[1])).difference(usedCols)
|
||||
|
||||
# in the event that the number of object centroids is
|
||||
# equal or greater than the number of input centroids
|
||||
# we need to check and see if some of these objects have
|
||||
# potentially disappeared
|
||||
if D.shape[0] >= D.shape[1]:
|
||||
for row in unusedRows:
|
||||
id = current_ids[row]
|
||||
|
||||
if self.disappeared[id] >= self.max_disappeared:
|
||||
self.deregister(id)
|
||||
else:
|
||||
self.disappeared[id] += 1
|
||||
# if the number of input centroids is greater
|
||||
# than the number of existing object centroids we need to
|
||||
# register each new input centroid as a trackable object
|
||||
# if D.shape[0] < D.shape[1]:
|
||||
# TODO: rather than assuming these are new objects, we could
|
||||
# look to see if any of the remaining boxes have a large amount
|
||||
# of overlap...
|
||||
for col in unusedCols:
|
||||
self.register(col, group[col])
|
||||
else:
|
||||
for col in unusedCols:
|
||||
self.register(col, group[col])
|
||||
|
||||
# Maintains the frame and object with the highest score
|
||||
class BestFrames(threading.Thread):
|
||||
def __init__(self, camera):
|
||||
threading.Thread.__init__(self)
|
||||
self.camera = camera
|
||||
self.best_objects = {}
|
||||
self.best_frames = {}
|
||||
# class BestFrames(threading.Thread):
|
||||
# def __init__(self, camera):
|
||||
# threading.Thread.__init__(self)
|
||||
# self.camera = camera
|
||||
# self.best_objects = {}
|
||||
# self.best_frames = {}
|
||||
|
||||
def run(self):
|
||||
prctl.set_name(self.__class__.__name__)
|
||||
while True:
|
||||
# wait until objects have been tracked
|
||||
with self.camera.objects_tracked:
|
||||
self.camera.objects_tracked.wait()
|
||||
# def run(self):
|
||||
# prctl.set_name(self.__class__.__name__)
|
||||
# while True:
|
||||
# # wait until objects have been tracked
|
||||
# with self.camera.objects_tracked:
|
||||
# self.camera.objects_tracked.wait()
|
||||
|
||||
# make a copy of tracked objects
|
||||
tracked_objects = list(self.camera.object_tracker.tracked_objects.values())
|
||||
# # make a copy of tracked objects
|
||||
# tracked_objects = list(self.camera.object_tracker.tracked_objects.values())
|
||||
|
||||
for obj in tracked_objects:
|
||||
if obj['name'] in self.best_objects:
|
||||
now = datetime.datetime.now().timestamp()
|
||||
# if the object is a higher score than the current best score
|
||||
# or the current object is more than 1 minute old, use the new object
|
||||
if obj['score'] > self.best_objects[obj['name']]['score'] or (now - self.best_objects[obj['name']]['frame_time']) > 60:
|
||||
self.best_objects[obj['name']] = copy.deepcopy(obj)
|
||||
else:
|
||||
self.best_objects[obj['name']] = copy.deepcopy(obj)
|
||||
# for obj in tracked_objects:
|
||||
# if obj['name'] in self.best_objects:
|
||||
# now = datetime.datetime.now().timestamp()
|
||||
# # if the object is a higher score than the current best score
|
||||
# # or the current object is more than 1 minute old, use the new object
|
||||
# if obj['score'] > self.best_objects[obj['name']]['score'] or (now - self.best_objects[obj['name']]['frame_time']) > 60:
|
||||
# self.best_objects[obj['name']] = copy.deepcopy(obj)
|
||||
# else:
|
||||
# self.best_objects[obj['name']] = copy.deepcopy(obj)
|
||||
|
||||
for name, obj in self.best_objects.items():
|
||||
if obj['frame_time'] in self.camera.frame_cache:
|
||||
best_frame = self.camera.frame_cache[obj['frame_time']]
|
||||
# for name, obj in self.best_objects.items():
|
||||
# if obj['frame_time'] in self.camera.frame_cache:
|
||||
# best_frame = self.camera.frame_cache[obj['frame_time']]
|
||||
|
||||
draw_box_with_label(best_frame, obj['box']['xmin'], obj['box']['ymin'],
|
||||
obj['box']['xmax'], obj['box']['ymax'], obj['name'], "{}% {}".format(int(obj['score']*100), obj['area']))
|
||||
# draw_box_with_label(best_frame, obj['box']['xmin'], obj['box']['ymin'],
|
||||
# obj['box']['xmax'], obj['box']['ymax'], obj['name'], "{}% {}".format(int(obj['score']*100), obj['area']))
|
||||
|
||||
# print a timestamp
|
||||
if self.camera.snapshot_config['show_timestamp']:
|
||||
time_to_show = datetime.datetime.fromtimestamp(obj['frame_time']).strftime("%m/%d/%Y %H:%M:%S")
|
||||
cv2.putText(best_frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
|
||||
# # print a timestamp
|
||||
# if self.camera.snapshot_config['show_timestamp']:
|
||||
# time_to_show = datetime.datetime.fromtimestamp(obj['frame_time']).strftime("%m/%d/%Y %H:%M:%S")
|
||||
# cv2.putText(best_frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
|
||||
|
||||
self.best_frames[name] = best_frame
|
||||
# self.best_frames[name] = best_frame
|
160
frigate/util.py
Normal file → Executable file
160
frigate/util.py
Normal file → Executable file
@ -15,73 +15,11 @@ def ReadLabelFile(file_path):
|
||||
ret[int(pair[0])] = pair[1].strip()
|
||||
return ret
|
||||
|
||||
def calculate_region(frame_shape, xmin, ymin, xmax, ymax):
|
||||
# size is larger than longest edge
|
||||
size = int(max(xmax-xmin, ymax-ymin)*2)
|
||||
# if the size is too big to fit in the frame
|
||||
if size > min(frame_shape[0], frame_shape[1]):
|
||||
size = min(frame_shape[0], frame_shape[1])
|
||||
|
||||
# x_offset is midpoint of bounding box minus half the size
|
||||
x_offset = int((xmax-xmin)/2.0+xmin-size/2.0)
|
||||
# if outside the image
|
||||
if x_offset < 0:
|
||||
x_offset = 0
|
||||
elif x_offset > (frame_shape[1]-size):
|
||||
x_offset = (frame_shape[1]-size)
|
||||
|
||||
# y_offset is midpoint of bounding box minus half the size
|
||||
y_offset = int((ymax-ymin)/2.0+ymin-size/2.0)
|
||||
# if outside the image
|
||||
if y_offset < 0:
|
||||
y_offset = 0
|
||||
elif y_offset > (frame_shape[0]-size):
|
||||
y_offset = (frame_shape[0]-size)
|
||||
|
||||
return (size, x_offset, y_offset)
|
||||
|
||||
def compute_intersection_rectangle(box_a, box_b):
|
||||
return {
|
||||
'xmin': max(box_a['xmin'], box_b['xmin']),
|
||||
'ymin': max(box_a['ymin'], box_b['ymin']),
|
||||
'xmax': min(box_a['xmax'], box_b['xmax']),
|
||||
'ymax': min(box_a['ymax'], box_b['ymax'])
|
||||
}
|
||||
|
||||
def compute_intersection_over_union(box_a, box_b):
|
||||
# determine the (x, y)-coordinates of the intersection rectangle
|
||||
intersect = compute_intersection_rectangle(box_a, box_b)
|
||||
|
||||
# compute the area of intersection rectangle
|
||||
inter_area = max(0, intersect['xmax'] - intersect['xmin'] + 1) * max(0, intersect['ymax'] - intersect['ymin'] + 1)
|
||||
|
||||
if inter_area == 0:
|
||||
return 0.0
|
||||
|
||||
# compute the area of both the prediction and ground-truth
|
||||
# rectangles
|
||||
box_a_area = (box_a['xmax'] - box_a['xmin'] + 1) * (box_a['ymax'] - box_a['ymin'] + 1)
|
||||
box_b_area = (box_b['xmax'] - box_b['xmin'] + 1) * (box_b['ymax'] - box_b['ymin'] + 1)
|
||||
|
||||
# compute the intersection over union by taking the intersection
|
||||
# area and dividing it by the sum of prediction + ground-truth
|
||||
# areas - the interesection area
|
||||
iou = inter_area / float(box_a_area + box_b_area - inter_area)
|
||||
|
||||
# return the intersection over union value
|
||||
return iou
|
||||
|
||||
# convert shared memory array into numpy array
|
||||
def tonumpyarray(mp_arr):
|
||||
return np.frombuffer(mp_arr.get_obj(), dtype=np.uint8)
|
||||
|
||||
def draw_box_with_label(frame, x_min, y_min, x_max, y_max, label, info, thickness=2, color=None, position='ul'):
|
||||
if color is None:
|
||||
color = COLOR_MAP[label]
|
||||
color = (0,0,255)
|
||||
display_text = "{}: {}".format(label, info)
|
||||
cv2.rectangle(frame, (x_min, y_min),
|
||||
(x_max, y_max),
|
||||
color, thickness)
|
||||
cv2.rectangle(frame, (x_min, y_min), (x_max, y_max), color, thickness)
|
||||
font_scale = 0.5
|
||||
font = cv2.FONT_HERSHEY_SIMPLEX
|
||||
# get the width and height of the text box
|
||||
@ -107,37 +45,81 @@ def draw_box_with_label(frame, x_min, y_min, x_max, y_max, label, info, thicknes
|
||||
cv2.rectangle(frame, textbox_coords[0], textbox_coords[1], color, cv2.FILLED)
|
||||
cv2.putText(frame, display_text, (text_offset_x, text_offset_y + line_height - 3), font, fontScale=font_scale, color=(0, 0, 0), thickness=2)
|
||||
|
||||
# Path to frozen detection graph. This is the actual model that is used for the object detection.
|
||||
PATH_TO_CKPT = '/frozen_inference_graph.pb'
|
||||
# List of the strings that is used to add correct label for each box.
|
||||
PATH_TO_LABELS = '/label_map.pbtext'
|
||||
def calculate_region(frame_shape, xmin, ymin, xmax, ymax, multiplier=2):
|
||||
# size is larger than longest edge
|
||||
size = int(max(xmax-xmin, ymax-ymin)*multiplier)
|
||||
# if the size is too big to fit in the frame
|
||||
if size > min(frame_shape[0], frame_shape[1]):
|
||||
size = min(frame_shape[0], frame_shape[1])
|
||||
|
||||
LABELS = ReadLabelFile(PATH_TO_LABELS)
|
||||
cmap = plt.cm.get_cmap('tab10', len(LABELS.keys()))
|
||||
# x_offset is midpoint of bounding box minus half the size
|
||||
x_offset = int((xmax-xmin)/2.0+xmin-size/2.0)
|
||||
# if outside the image
|
||||
if x_offset < 0:
|
||||
x_offset = 0
|
||||
elif x_offset > (frame_shape[1]-size):
|
||||
x_offset = (frame_shape[1]-size)
|
||||
|
||||
COLOR_MAP = {}
|
||||
for key, val in LABELS.items():
|
||||
COLOR_MAP[val] = tuple(int(round(255 * c)) for c in cmap(key)[:3])
|
||||
# y_offset is midpoint of bounding box minus half the size
|
||||
y_offset = int((ymax-ymin)/2.0+ymin-size/2.0)
|
||||
# if outside the image
|
||||
if y_offset < 0:
|
||||
y_offset = 0
|
||||
elif y_offset > (frame_shape[0]-size):
|
||||
y_offset = (frame_shape[0]-size)
|
||||
|
||||
class QueueMerger():
|
||||
def __init__(self, from_queues, to_queue):
|
||||
self.from_queues = from_queues
|
||||
self.to_queue = to_queue
|
||||
self.merge_threads = []
|
||||
return (x_offset, y_offset, x_offset+size, y_offset+size)
|
||||
|
||||
def start(self):
|
||||
for from_q in self.from_queues:
|
||||
self.merge_threads.append(QueueTransfer(from_q,self.to_queue))
|
||||
def intersection(box_a, box_b):
|
||||
return (
|
||||
max(box_a[0], box_b[0]),
|
||||
max(box_a[1], box_b[1]),
|
||||
min(box_a[2], box_b[2]),
|
||||
min(box_a[3], box_b[3])
|
||||
)
|
||||
|
||||
class QueueTransfer(threading.Thread):
|
||||
def __init__(self, from_queue, to_queue):
|
||||
threading.Thread.__init__(self)
|
||||
self.from_queue = from_queue
|
||||
self.to_queue = to_queue
|
||||
def area(box):
|
||||
return (box[2]-box[0] + 1)*(box[3]-box[1] + 1)
|
||||
|
||||
def run(self):
|
||||
while True:
|
||||
self.to_queue.put(self.from_queue.get())
|
||||
def intersection_over_union(box_a, box_b):
|
||||
# determine the (x, y)-coordinates of the intersection rectangle
|
||||
intersect = intersection(box_a, box_b)
|
||||
|
||||
# compute the area of intersection rectangle
|
||||
inter_area = max(0, intersect[2] - intersect[0] + 1) * max(0, intersect[3] - intersect[1] + 1)
|
||||
|
||||
if inter_area == 0:
|
||||
return 0.0
|
||||
|
||||
# compute the area of both the prediction and ground-truth
|
||||
# rectangles
|
||||
box_a_area = (box_a[2] - box_a[0] + 1) * (box_a[3] - box_a[1] + 1)
|
||||
box_b_area = (box_b[2] - box_b[0] + 1) * (box_b[3] - box_b[1] + 1)
|
||||
|
||||
# compute the intersection over union by taking the intersection
|
||||
# area and dividing it by the sum of prediction + ground-truth
|
||||
# areas - the interesection area
|
||||
iou = inter_area / float(box_a_area + box_b_area - inter_area)
|
||||
|
||||
# return the intersection over union value
|
||||
return iou
|
||||
|
||||
def clipped(obj, frame_shape):
|
||||
# if the object is within 5 pixels of the region border, and the region is not on the edge
|
||||
# consider the object to be clipped
|
||||
box = obj[2]
|
||||
region = obj[4]
|
||||
if ((region[0] > 5 and box[0]-region[0] <= 5) or
|
||||
(region[1] > 5 and box[1]-region[1] <= 5) or
|
||||
(frame_shape[1]-region[2] > 5 and region[2]-box[2] <= 5) or
|
||||
(frame_shape[0]-region[3] > 5 and region[3]-box[3] <= 5)):
|
||||
return True
|
||||
else:
|
||||
return False
|
||||
|
||||
# convert shared memory array into numpy array
|
||||
def tonumpyarray(mp_arr):
|
||||
return np.frombuffer(mp_arr.get_obj(), dtype=np.uint8)
|
||||
|
||||
class EventsPerSecond:
|
||||
def __init__(self, max_events=1000):
|
||||
|
754
frigate/video.py
Normal file → Executable file
754
frigate/video.py
Normal file → Executable file
@ -8,40 +8,47 @@ import ctypes
|
||||
import multiprocessing as mp
|
||||
import subprocess as sp
|
||||
import numpy as np
|
||||
import prctl
|
||||
import hashlib
|
||||
import pyarrow.plasma as plasma
|
||||
import SharedArray as sa
|
||||
# import prctl
|
||||
import copy
|
||||
import itertools
|
||||
import json
|
||||
from collections import defaultdict
|
||||
from frigate.util import tonumpyarray, LABELS, draw_box_with_label, calculate_region, EventsPerSecond
|
||||
from frigate.object_detection import RegionPrepper, RegionRequester
|
||||
from frigate.objects import ObjectCleaner, BestFrames, DetectedObjectsProcessor, RegionRefiner, ObjectTracker
|
||||
from frigate.mqtt import MqttObjectPublisher
|
||||
from frigate.util import tonumpyarray, LABELS, draw_box_with_label, area, calculate_region, clipped, intersection_over_union, intersection, EventsPerSecond
|
||||
# from frigate.object_detection import RegionPrepper, RegionRequester
|
||||
from frigate.objects import ObjectTracker
|
||||
# from frigate.mqtt import MqttObjectPublisher
|
||||
from frigate.edgetpu import RemoteObjectDetector
|
||||
from frigate.motion import MotionDetector
|
||||
|
||||
# Stores 2 seconds worth of frames so they can be used for other threads
|
||||
class FrameTracker(threading.Thread):
|
||||
def __init__(self, frame_time, frame_ready, frame_lock, recent_frames):
|
||||
threading.Thread.__init__(self)
|
||||
self.frame_time = frame_time
|
||||
self.frame_ready = frame_ready
|
||||
self.frame_lock = frame_lock
|
||||
self.recent_frames = recent_frames
|
||||
# TODO: we do actually know when these frames are no longer needed
|
||||
# class FrameTracker(threading.Thread):
|
||||
# def __init__(self, frame_time, frame_ready, frame_lock, recent_frames):
|
||||
# threading.Thread.__init__(self)
|
||||
# self.frame_time = frame_time
|
||||
# self.frame_ready = frame_ready
|
||||
# self.frame_lock = frame_lock
|
||||
# self.recent_frames = recent_frames
|
||||
|
||||
def run(self):
|
||||
prctl.set_name(self.__class__.__name__)
|
||||
while True:
|
||||
# wait for a frame
|
||||
with self.frame_ready:
|
||||
self.frame_ready.wait()
|
||||
# def run(self):
|
||||
# prctl.set_name(self.__class__.__name__)
|
||||
# while True:
|
||||
# # wait for a frame
|
||||
# with self.frame_ready:
|
||||
# self.frame_ready.wait()
|
||||
|
||||
# delete any old frames
|
||||
stored_frame_times = list(self.recent_frames.keys())
|
||||
stored_frame_times.sort(reverse=True)
|
||||
if len(stored_frame_times) > 100:
|
||||
frames_to_delete = stored_frame_times[50:]
|
||||
for k in frames_to_delete:
|
||||
del self.recent_frames[k]
|
||||
# # delete any old frames
|
||||
# stored_frame_times = list(self.recent_frames.keys())
|
||||
# stored_frame_times.sort(reverse=True)
|
||||
# if len(stored_frame_times) > 100:
|
||||
# frames_to_delete = stored_frame_times[50:]
|
||||
# for k in frames_to_delete:
|
||||
# del self.recent_frames[k]
|
||||
|
||||
# TODO: add back opencv fallback
|
||||
def get_frame_shape(source):
|
||||
ffprobe_cmd = " ".join([
|
||||
'ffprobe',
|
||||
@ -76,6 +83,7 @@ def get_ffmpeg_input(ffmpeg_input):
|
||||
frigate_vars = {k: v for k, v in os.environ.items() if k.startswith('FRIGATE_')}
|
||||
return ffmpeg_input.format(**frigate_vars)
|
||||
|
||||
<<<<<<< HEAD
|
||||
class CameraWatchdog(threading.Thread):
|
||||
def __init__(self, camera):
|
||||
threading.Thread.__init__(self)
|
||||
@ -294,112 +302,648 @@ class Camera:
|
||||
self.capture_thread.join()
|
||||
self.ffmpeg_process = None
|
||||
self.capture_thread = None
|
||||
=======
|
||||
# class CameraWatchdog(threading.Thread):
|
||||
# def __init__(self, camera):
|
||||
# threading.Thread.__init__(self)
|
||||
# self.camera = camera
|
||||
|
||||
# create the process to capture frames from the input stream and store in a shared array
|
||||
print("Creating a new ffmpeg process...")
|
||||
self.start_ffmpeg()
|
||||
# def run(self):
|
||||
# prctl.set_name(self.__class__.__name__)
|
||||
# while True:
|
||||
# # wait a bit before checking
|
||||
# time.sleep(10)
|
||||
|
||||
print("Creating a new capture thread...")
|
||||
self.capture_thread = CameraCapture(self)
|
||||
print("Starting a new capture thread...")
|
||||
self.capture_thread.start()
|
||||
self.fps.start()
|
||||
self.skipped_region_tracker.start()
|
||||
# if self.camera.frame_time.value != 0.0 and (datetime.datetime.now().timestamp() - self.camera.frame_time.value) > self.camera.watchdog_timeout:
|
||||
# print(self.camera.name + ": last frame is more than 5 minutes old, restarting camera capture...")
|
||||
# self.camera.start_or_restart_capture()
|
||||
# time.sleep(5)
|
||||
|
||||
def start_ffmpeg(self):
|
||||
ffmpeg_cmd = (['ffmpeg'] +
|
||||
self.ffmpeg_global_args +
|
||||
self.ffmpeg_hwaccel_args +
|
||||
self.ffmpeg_input_args +
|
||||
['-i', self.ffmpeg_input] +
|
||||
self.ffmpeg_output_args +
|
||||
# # Thread to read the stdout of the ffmpeg process and update the current frame
|
||||
# class CameraCapture(threading.Thread):
|
||||
# def __init__(self, camera):
|
||||
# threading.Thread.__init__(self)
|
||||
# self.camera = camera
|
||||
|
||||
# def run(self):
|
||||
# prctl.set_name(self.__class__.__name__)
|
||||
# frame_num = 0
|
||||
# while True:
|
||||
# if self.camera.ffmpeg_process.poll() != None:
|
||||
# print(self.camera.name + ": ffmpeg process is not running. exiting capture thread...")
|
||||
# break
|
||||
|
||||
# raw_image = self.camera.ffmpeg_process.stdout.read(self.camera.frame_size)
|
||||
|
||||
# if len(raw_image) == 0:
|
||||
# print(self.camera.name + ": ffmpeg didnt return a frame. something is wrong. exiting capture thread...")
|
||||
# break
|
||||
|
||||
# frame_num += 1
|
||||
# if (frame_num % self.camera.take_frame) != 0:
|
||||
# continue
|
||||
|
||||
# with self.camera.frame_lock:
|
||||
# # TODO: use frame_queue instead
|
||||
# self.camera.frame_time.value = datetime.datetime.now().timestamp()
|
||||
# self.camera.frame_cache[self.camera.frame_time.value] = (
|
||||
# np
|
||||
# .frombuffer(raw_image, np.uint8)
|
||||
# .reshape(self.camera.frame_shape)
|
||||
# )
|
||||
# self.camera.frame_queue.put(self.camera.frame_time.value)
|
||||
# # Notify with the condition that a new frame is ready
|
||||
# with self.camera.frame_ready:
|
||||
# self.camera.frame_ready.notify_all()
|
||||
|
||||
# self.camera.fps.update()
|
||||
|
||||
# class VideoWriter(threading.Thread):
|
||||
# def __init__(self, camera):
|
||||
# threading.Thread.__init__(self)
|
||||
# self.camera = camera
|
||||
|
||||
# def run(self):
|
||||
# prctl.set_name(self.__class__.__name__)
|
||||
# while True:
|
||||
# (frame_time, tracked_objects) = self.camera.frame_output_queue.get()
|
||||
# # if len(tracked_objects) == 0:
|
||||
# # continue
|
||||
# # f = open(f"/debug/output/{self.camera.name}-{str(format(frame_time, '.8f'))}.jpg", 'wb')
|
||||
# # f.write(self.camera.frame_with_objects(frame_time, tracked_objects))
|
||||
# # f.close()
|
||||
|
||||
# class Camera:
|
||||
# def __init__(self, name, ffmpeg_config, global_objects_config, config, tflite_process, mqtt_client, mqtt_prefix):
|
||||
# self.name = name
|
||||
# self.config = config
|
||||
# self.detected_objects = defaultdict(lambda: [])
|
||||
# self.frame_cache = {}
|
||||
# self.last_processed_frame = None
|
||||
# # queue for re-assembling frames in order
|
||||
# self.frame_queue = queue.Queue()
|
||||
# # track how many regions have been requested for a frame so we know when a frame is complete
|
||||
# self.regions_in_process = {}
|
||||
# # Lock to control access
|
||||
# self.regions_in_process_lock = mp.Lock()
|
||||
# self.finished_frame_queue = queue.Queue()
|
||||
# self.refined_frame_queue = queue.Queue()
|
||||
# self.frame_output_queue = queue.Queue()
|
||||
|
||||
# self.ffmpeg = config.get('ffmpeg', {})
|
||||
# self.ffmpeg_input = get_ffmpeg_input(self.ffmpeg['input'])
|
||||
# self.ffmpeg_global_args = self.ffmpeg.get('global_args', ffmpeg_config['global_args'])
|
||||
# self.ffmpeg_hwaccel_args = self.ffmpeg.get('hwaccel_args', ffmpeg_config['hwaccel_args'])
|
||||
# self.ffmpeg_input_args = self.ffmpeg.get('input_args', ffmpeg_config['input_args'])
|
||||
# self.ffmpeg_output_args = self.ffmpeg.get('output_args', ffmpeg_config['output_args'])
|
||||
|
||||
# camera_objects_config = config.get('objects', {})
|
||||
|
||||
# self.take_frame = self.config.get('take_frame', 1)
|
||||
# self.watchdog_timeout = self.config.get('watchdog_timeout', 300)
|
||||
# self.snapshot_config = {
|
||||
# 'show_timestamp': self.config.get('snapshots', {}).get('show_timestamp', True)
|
||||
# }
|
||||
# self.regions = self.config['regions']
|
||||
# self.frame_shape = get_frame_shape(self.ffmpeg_input)
|
||||
# self.frame_size = self.frame_shape[0] * self.frame_shape[1] * self.frame_shape[2]
|
||||
# self.mqtt_client = mqtt_client
|
||||
# self.mqtt_topic_prefix = '{}/{}'.format(mqtt_prefix, self.name)
|
||||
|
||||
# # create shared value for storing the frame_time
|
||||
# self.frame_time = mp.Value('d', 0.0)
|
||||
# # Lock to control access to the frame
|
||||
# self.frame_lock = mp.Lock()
|
||||
# # Condition for notifying that a new frame is ready
|
||||
# self.frame_ready = mp.Condition()
|
||||
# # Condition for notifying that objects were tracked
|
||||
# self.objects_tracked = mp.Condition()
|
||||
|
||||
# # Queue for prepped frames, max size set to (number of regions * 5)
|
||||
# self.resize_queue = queue.Queue()
|
||||
|
||||
# # Queue for raw detected objects
|
||||
# self.detected_objects_queue = queue.Queue()
|
||||
# self.detected_objects_processor = DetectedObjectsProcessor(self)
|
||||
# self.detected_objects_processor.start()
|
||||
|
||||
# # initialize the frame cache
|
||||
# self.cached_frame_with_objects = {
|
||||
# 'frame_bytes': [],
|
||||
# 'frame_time': 0
|
||||
# }
|
||||
|
||||
# self.ffmpeg_process = None
|
||||
# self.capture_thread = None
|
||||
# self.fps = EventsPerSecond()
|
||||
# self.skipped_region_tracker = EventsPerSecond()
|
||||
|
||||
# # combine tracked objects lists
|
||||
# self.objects_to_track = set().union(global_objects_config.get('track', ['person', 'car', 'truck']), camera_objects_config.get('track', []))
|
||||
|
||||
# # merge object filters
|
||||
# global_object_filters = global_objects_config.get('filters', {})
|
||||
# camera_object_filters = camera_objects_config.get('filters', {})
|
||||
# objects_with_config = set().union(global_object_filters.keys(), camera_object_filters.keys())
|
||||
# self.object_filters = {}
|
||||
# for obj in objects_with_config:
|
||||
# self.object_filters[obj] = {**global_object_filters.get(obj, {}), **camera_object_filters.get(obj, {})}
|
||||
|
||||
# # start a thread to track objects
|
||||
# self.object_tracker = ObjectTracker(self, 10)
|
||||
# self.object_tracker.start()
|
||||
|
||||
# # start a thread to write tracked frames to disk
|
||||
# self.video_writer = VideoWriter(self)
|
||||
# self.video_writer.start()
|
||||
|
||||
# # start a thread to queue resize requests for regions
|
||||
# self.region_requester = RegionRequester(self)
|
||||
# self.region_requester.start()
|
||||
|
||||
# # start a thread to cache recent frames for processing
|
||||
# self.frame_tracker = FrameTracker(self.frame_time,
|
||||
# self.frame_ready, self.frame_lock, self.frame_cache)
|
||||
# self.frame_tracker.start()
|
||||
|
||||
# # start a thread to resize regions
|
||||
# self.region_prepper = RegionPrepper(self, self.frame_cache, self.resize_queue, prepped_frame_queue)
|
||||
# self.region_prepper.start()
|
||||
|
||||
# # start a thread to store the highest scoring recent frames for monitored object types
|
||||
# self.best_frames = BestFrames(self)
|
||||
# self.best_frames.start()
|
||||
|
||||
# # start a thread to expire objects from the detected objects list
|
||||
# self.object_cleaner = ObjectCleaner(self)
|
||||
# self.object_cleaner.start()
|
||||
|
||||
# # start a thread to refine regions when objects are clipped
|
||||
# self.dynamic_region_fps = EventsPerSecond()
|
||||
# self.region_refiner = RegionRefiner(self)
|
||||
# self.region_refiner.start()
|
||||
# self.dynamic_region_fps.start()
|
||||
|
||||
# # start a thread to publish object scores
|
||||
# mqtt_publisher = MqttObjectPublisher(self.mqtt_client, self.mqtt_topic_prefix, self)
|
||||
# mqtt_publisher.start()
|
||||
|
||||
# # create a watchdog thread for capture process
|
||||
# self.watchdog = CameraWatchdog(self)
|
||||
|
||||
# # load in the mask for object detection
|
||||
# if 'mask' in self.config:
|
||||
# self.mask = cv2.imread("/config/{}".format(self.config['mask']), cv2.IMREAD_GRAYSCALE)
|
||||
# else:
|
||||
# self.mask = None
|
||||
|
||||
# if self.mask is None:
|
||||
# self.mask = np.zeros((self.frame_shape[0], self.frame_shape[1], 1), np.uint8)
|
||||
# self.mask[:] = 255
|
||||
|
||||
|
||||
# def start_or_restart_capture(self):
|
||||
# if not self.ffmpeg_process is None:
|
||||
# print("Terminating the existing ffmpeg process...")
|
||||
# self.ffmpeg_process.terminate()
|
||||
# try:
|
||||
# print("Waiting for ffmpeg to exit gracefully...")
|
||||
# self.ffmpeg_process.wait(timeout=30)
|
||||
# except sp.TimeoutExpired:
|
||||
# print("FFmpeg didnt exit. Force killing...")
|
||||
# self.ffmpeg_process.kill()
|
||||
# self.ffmpeg_process.wait()
|
||||
|
||||
# print("Waiting for the capture thread to exit...")
|
||||
# self.capture_thread.join()
|
||||
# self.ffmpeg_process = None
|
||||
# self.capture_thread = None
|
||||
>>>>>>> 9b1c7e9... split into separate processes
|
||||
|
||||
# # create the process to capture frames from the input stream and store in a shared array
|
||||
# print("Creating a new ffmpeg process...")
|
||||
# self.start_ffmpeg()
|
||||
|
||||
# print("Creating a new capture thread...")
|
||||
# self.capture_thread = CameraCapture(self)
|
||||
# print("Starting a new capture thread...")
|
||||
# self.capture_thread.start()
|
||||
# self.fps.start()
|
||||
# self.skipped_region_tracker.start()
|
||||
|
||||
# def start_ffmpeg(self):
|
||||
# ffmpeg_cmd = (['ffmpeg'] +
|
||||
# self.ffmpeg_global_args +
|
||||
# self.ffmpeg_hwaccel_args +
|
||||
# self.ffmpeg_input_args +
|
||||
# ['-i', self.ffmpeg_input] +
|
||||
# self.ffmpeg_output_args +
|
||||
# ['pipe:'])
|
||||
|
||||
# print(" ".join(ffmpeg_cmd))
|
||||
|
||||
# self.ffmpeg_process = sp.Popen(ffmpeg_cmd, stdout = sp.PIPE, bufsize=self.frame_size)
|
||||
|
||||
# def start(self):
|
||||
# self.start_or_restart_capture()
|
||||
# self.watchdog.start()
|
||||
|
||||
# def join(self):
|
||||
# self.capture_thread.join()
|
||||
|
||||
# def get_capture_pid(self):
|
||||
# return self.ffmpeg_process.pid
|
||||
|
||||
# def get_best(self, label):
|
||||
# return self.best_frames.best_frames.get(label)
|
||||
|
||||
# def stats(self):
|
||||
# # TODO: anything else?
|
||||
# return {
|
||||
# 'camera_fps': self.fps.eps(60),
|
||||
# 'resize_queue': self.resize_queue.qsize(),
|
||||
# 'frame_queue': self.frame_queue.qsize(),
|
||||
# 'finished_frame_queue': self.finished_frame_queue.qsize(),
|
||||
# 'refined_frame_queue': self.refined_frame_queue.qsize(),
|
||||
# 'regions_in_process': self.regions_in_process,
|
||||
# 'dynamic_regions_per_sec': self.dynamic_region_fps.eps(),
|
||||
# 'skipped_regions_per_sec': self.skipped_region_tracker.eps(60)
|
||||
# }
|
||||
|
||||
# def frame_with_objects(self, frame_time, tracked_objects=None):
|
||||
# if not frame_time in self.frame_cache:
|
||||
# frame = np.zeros(self.frame_shape, np.uint8)
|
||||
# else:
|
||||
# frame = self.frame_cache[frame_time].copy()
|
||||
|
||||
# detected_objects = self.detected_objects[frame_time].copy()
|
||||
|
||||
# for region in self.regions:
|
||||
# color = (255,255,255)
|
||||
# cv2.rectangle(frame, (region['x_offset'], region['y_offset']),
|
||||
# (region['x_offset']+region['size'], region['y_offset']+region['size']),
|
||||
# color, 2)
|
||||
|
||||
# # draw the bounding boxes on the screen
|
||||
|
||||
# if tracked_objects is None:
|
||||
# with self.object_tracker.tracked_objects_lock:
|
||||
# tracked_objects = copy.deepcopy(self.object_tracker.tracked_objects)
|
||||
|
||||
# for obj in detected_objects:
|
||||
# draw_box_with_label(frame, obj['box']['xmin'], obj['box']['ymin'], obj['box']['xmax'], obj['box']['ymax'], obj['name'], "{}% {}".format(int(obj['score']*100), obj['area']), thickness=3)
|
||||
|
||||
# for id, obj in tracked_objects.items():
|
||||
# color = (0, 255,0) if obj['frame_time'] == frame_time else (255, 0, 0)
|
||||
# draw_box_with_label(frame, obj['box']['xmin'], obj['box']['ymin'], obj['box']['xmax'], obj['box']['ymax'], obj['name'], id, color=color, thickness=1, position='bl')
|
||||
|
||||
# # print a timestamp
|
||||
# time_to_show = datetime.datetime.fromtimestamp(frame_time).strftime("%m/%d/%Y %H:%M:%S")
|
||||
# cv2.putText(frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
|
||||
|
||||
# # print fps
|
||||
# cv2.putText(frame, str(self.fps.eps())+'FPS', (10, 60), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
|
||||
|
||||
# # convert to BGR
|
||||
# frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
|
||||
|
||||
# # encode the image into a jpg
|
||||
# ret, jpg = cv2.imencode('.jpg', frame)
|
||||
|
||||
# return jpg.tobytes()
|
||||
|
||||
# def get_current_frame_with_objects(self):
|
||||
# frame_time = self.last_processed_frame
|
||||
# if frame_time == self.cached_frame_with_objects['frame_time']:
|
||||
# return self.cached_frame_with_objects['frame_bytes']
|
||||
|
||||
# frame_bytes = self.frame_with_objects(frame_time)
|
||||
|
||||
# self.cached_frame_with_objects = {
|
||||
# 'frame_bytes': frame_bytes,
|
||||
# 'frame_time': frame_time
|
||||
# }
|
||||
|
||||
# return frame_bytes
|
||||
|
||||
def filtered(obj, objects_to_track, object_filters, mask):
|
||||
object_name = obj[0]
|
||||
|
||||
if not object_name in objects_to_track:
|
||||
return True
|
||||
|
||||
if object_name in object_filters:
|
||||
obj_settings = object_filters[object_name]
|
||||
|
||||
# if the min area is larger than the
|
||||
# detected object, don't add it to detected objects
|
||||
if obj_settings.get('min_area',-1) > obj[3]:
|
||||
return True
|
||||
|
||||
# if the detected object is larger than the
|
||||
# max area, don't add it to detected objects
|
||||
if obj_settings.get('max_area', 24000000) < obj[3]:
|
||||
return True
|
||||
|
||||
# if the score is lower than the threshold, skip
|
||||
if obj_settings.get('threshold', 0) > obj[1]:
|
||||
return True
|
||||
|
||||
# compute the coordinates of the object and make sure
|
||||
# the location isnt outside the bounds of the image (can happen from rounding)
|
||||
y_location = min(int(obj[2][3]), len(mask)-1)
|
||||
x_location = min(int((obj[2][2]-obj[2][0])/2.0)+obj[2][0], len(mask[0])-1)
|
||||
|
||||
# if the object is in a masked location, don't add it to detected objects
|
||||
if mask[y_location][x_location] == [0]:
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
def create_tensor_input(frame, region):
|
||||
cropped_frame = frame[region[1]:region[3], region[0]:region[2]]
|
||||
|
||||
# Resize to 300x300 if needed
|
||||
if cropped_frame.shape != (300, 300, 3):
|
||||
cropped_frame = cv2.resize(cropped_frame, dsize=(300, 300), interpolation=cv2.INTER_LINEAR)
|
||||
|
||||
# Expand dimensions since the model expects images to have shape: [1, 300, 300, 3]
|
||||
return np.expand_dims(cropped_frame, axis=0)
|
||||
|
||||
def track_camera(name, config, ffmpeg_global_config, global_objects_config, detect_lock, detect_ready, frame_ready, detected_objects_queue, fps, avg_wait):
|
||||
print(f"Starting process for {name}: {os.getpid()}")
|
||||
|
||||
# Merge the ffmpeg config with the global config
|
||||
ffmpeg = config.get('ffmpeg', {})
|
||||
ffmpeg_input = get_ffmpeg_input(ffmpeg['input'])
|
||||
ffmpeg_global_args = ffmpeg.get('global_args', ffmpeg_global_config['global_args'])
|
||||
ffmpeg_hwaccel_args = ffmpeg.get('hwaccel_args', ffmpeg_global_config['hwaccel_args'])
|
||||
ffmpeg_input_args = ffmpeg.get('input_args', ffmpeg_global_config['input_args'])
|
||||
ffmpeg_output_args = ffmpeg.get('output_args', ffmpeg_global_config['output_args'])
|
||||
|
||||
# Merge the tracked object config with the global config
|
||||
camera_objects_config = config.get('objects', {})
|
||||
# combine tracked objects lists
|
||||
objects_to_track = set().union(global_objects_config.get('track', ['person', 'car', 'truck']), camera_objects_config.get('track', []))
|
||||
# merge object filters
|
||||
global_object_filters = global_objects_config.get('filters', {})
|
||||
camera_object_filters = camera_objects_config.get('filters', {})
|
||||
objects_with_config = set().union(global_object_filters.keys(), camera_object_filters.keys())
|
||||
object_filters = {}
|
||||
for obj in objects_with_config:
|
||||
object_filters[obj] = {**global_object_filters.get(obj, {}), **camera_object_filters.get(obj, {})}
|
||||
|
||||
take_frame = config.get('take_frame', 1)
|
||||
|
||||
# watchdog_timeout = config.get('watchdog_timeout', 300)
|
||||
|
||||
frame_shape = get_frame_shape(ffmpeg_input)
|
||||
frame_size = frame_shape[0] * frame_shape[1] * frame_shape[2]
|
||||
|
||||
try:
|
||||
sa.delete(name)
|
||||
except:
|
||||
pass
|
||||
|
||||
frame = sa.create(name, shape=frame_shape, dtype=np.uint8)
|
||||
|
||||
# load in the mask for object detection
|
||||
if 'mask' in config:
|
||||
mask = cv2.imread("/config/{}".format(config['mask']), cv2.IMREAD_GRAYSCALE)
|
||||
else:
|
||||
mask = None
|
||||
|
||||
if mask is None:
|
||||
mask = np.zeros((frame_shape[0], frame_shape[1], 1), np.uint8)
|
||||
mask[:] = 255
|
||||
|
||||
motion_detector = MotionDetector(frame_shape, mask, resize_factor=6)
|
||||
object_detector = RemoteObjectDetector('/lab/labelmap.txt', detect_lock, detect_ready, frame_ready)
|
||||
|
||||
object_tracker = ObjectTracker(10)
|
||||
|
||||
ffmpeg_cmd = (['ffmpeg'] +
|
||||
ffmpeg_global_args +
|
||||
ffmpeg_hwaccel_args +
|
||||
ffmpeg_input_args +
|
||||
['-i', ffmpeg_input] +
|
||||
ffmpeg_output_args +
|
||||
['pipe:'])
|
||||
|
||||
print(" ".join(ffmpeg_cmd))
|
||||
print(" ".join(ffmpeg_cmd))
|
||||
|
||||
self.ffmpeg_process = sp.Popen(ffmpeg_cmd, stdout = sp.PIPE, bufsize=self.frame_size)
|
||||
ffmpeg_process = sp.Popen(ffmpeg_cmd, stdout = sp.PIPE, bufsize=frame_size)
|
||||
|
||||
def start(self):
|
||||
self.start_or_restart_capture()
|
||||
self.watchdog.start()
|
||||
plasma_client = plasma.connect("/tmp/plasma")
|
||||
frame_num = 0
|
||||
fps_tracker = EventsPerSecond()
|
||||
fps_tracker.start()
|
||||
while True:
|
||||
# TODO: implement something to determine if it had to wait for a frame at all
|
||||
# to determine if it might be behind and the buffer is filling up
|
||||
start = datetime.datetime.now().timestamp()
|
||||
frame_bytes = ffmpeg_process.stdout.read(frame_size)
|
||||
duration = datetime.datetime.now().timestamp()-start
|
||||
avg_wait.value = (avg_wait.value*9 + duration)/10
|
||||
|
||||
def join(self):
|
||||
self.capture_thread.join()
|
||||
if not frame_bytes:
|
||||
# TODO: restart the ffmpeg process and track number of restarts
|
||||
break
|
||||
|
||||
def get_capture_pid(self):
|
||||
return self.ffmpeg_process.pid
|
||||
# limit frame rate
|
||||
frame_num += 1
|
||||
if (frame_num % take_frame) != 0:
|
||||
continue
|
||||
|
||||
def get_best(self, label):
|
||||
return self.best_frames.best_frames.get(label)
|
||||
fps_tracker.update()
|
||||
fps.value = fps_tracker.eps()
|
||||
|
||||
def stats(self):
|
||||
return {
|
||||
'camera_fps': self.fps.eps(60),
|
||||
'resize_queue': self.resize_queue.qsize(),
|
||||
'frame_queue': self.frame_queue.qsize(),
|
||||
'finished_frame_queue': self.finished_frame_queue.qsize(),
|
||||
'refined_frame_queue': self.refined_frame_queue.qsize(),
|
||||
'regions_in_process': self.regions_in_process,
|
||||
'dynamic_regions_per_sec': self.dynamic_region_fps.eps(),
|
||||
'skipped_regions_per_sec': self.skipped_region_tracker.eps(60)
|
||||
}
|
||||
frame_time = datetime.datetime.now().timestamp()
|
||||
|
||||
def frame_with_objects(self, frame_time, tracked_objects=None):
|
||||
if not frame_time in self.frame_cache:
|
||||
frame = np.zeros(self.frame_shape, np.uint8)
|
||||
else:
|
||||
frame = self.frame_cache[frame_time].copy()
|
||||
# Store frame in numpy array
|
||||
frame[:] = (np
|
||||
.frombuffer(frame_bytes, np.uint8)
|
||||
.reshape(frame_shape))
|
||||
|
||||
detected_objects = self.detected_objects[frame_time].copy()
|
||||
# look for motion
|
||||
motion_boxes = motion_detector.detect(frame)
|
||||
|
||||
for region in self.regions:
|
||||
color = (255,255,255)
|
||||
cv2.rectangle(frame, (region['x_offset'], region['y_offset']),
|
||||
(region['x_offset']+region['size'], region['y_offset']+region['size']),
|
||||
color, 2)
|
||||
tracked_objects = object_tracker.tracked_objects.values()
|
||||
|
||||
# draw the bounding boxes on the screen
|
||||
# merge areas of motion that intersect with a known tracked object into a single area to look at
|
||||
areas_of_interest = []
|
||||
used_motion_boxes = []
|
||||
for obj in tracked_objects:
|
||||
x_min, y_min, x_max, y_max = obj['box']
|
||||
for m_index, motion_box in enumerate(motion_boxes):
|
||||
if area(intersection(obj['box'], motion_box))/area(motion_box) > .5:
|
||||
used_motion_boxes.append(m_index)
|
||||
x_min = min(obj['box'][0], motion_box[0])
|
||||
y_min = min(obj['box'][1], motion_box[1])
|
||||
x_max = max(obj['box'][2], motion_box[2])
|
||||
y_max = max(obj['box'][3], motion_box[3])
|
||||
areas_of_interest.append((x_min, y_min, x_max, y_max))
|
||||
unused_motion_boxes = set(range(0, len(motion_boxes))).difference(used_motion_boxes)
|
||||
|
||||
if tracked_objects is None:
|
||||
with self.object_tracker.tracked_objects_lock:
|
||||
tracked_objects = copy.deepcopy(self.object_tracker.tracked_objects)
|
||||
# compute motion regions
|
||||
motion_regions = [calculate_region(frame_shape, motion_boxes[i][0], motion_boxes[i][1], motion_boxes[i][2], motion_boxes[i][3], 1.2)
|
||||
for i in unused_motion_boxes]
|
||||
|
||||
for obj in detected_objects:
|
||||
draw_box_with_label(frame, obj['box']['xmin'], obj['box']['ymin'], obj['box']['xmax'], obj['box']['ymax'], obj['name'], "{}% {}".format(int(obj['score']*100), obj['area']), thickness=3)
|
||||
# compute tracked object regions
|
||||
object_regions = [calculate_region(frame_shape, a[0], a[1], a[2], a[3], 1.2)
|
||||
for a in areas_of_interest]
|
||||
|
||||
for id, obj in tracked_objects.items():
|
||||
color = (0, 255,0) if obj['frame_time'] == frame_time else (255, 0, 0)
|
||||
draw_box_with_label(frame, obj['box']['xmin'], obj['box']['ymin'], obj['box']['xmax'], obj['box']['ymax'], obj['name'], id, color=color, thickness=1, position='bl')
|
||||
# merge regions with high IOU
|
||||
merged_regions = motion_regions+object_regions
|
||||
while True:
|
||||
max_iou = 0.0
|
||||
max_indices = None
|
||||
region_indices = range(len(merged_regions))
|
||||
for a, b in itertools.combinations(region_indices, 2):
|
||||
iou = intersection_over_union(merged_regions[a], merged_regions[b])
|
||||
if iou > max_iou:
|
||||
max_iou = iou
|
||||
max_indices = (a, b)
|
||||
if max_iou > 0.1:
|
||||
a = merged_regions[max_indices[0]]
|
||||
b = merged_regions[max_indices[1]]
|
||||
merged_regions.append(calculate_region(frame_shape,
|
||||
min(a[0], b[0]),
|
||||
min(a[1], b[1]),
|
||||
max(a[2], b[2]),
|
||||
max(a[3], b[3]),
|
||||
1
|
||||
))
|
||||
del merged_regions[max(max_indices[0], max_indices[1])]
|
||||
del merged_regions[min(max_indices[0], max_indices[1])]
|
||||
else:
|
||||
break
|
||||
|
||||
# print a timestamp
|
||||
time_to_show = datetime.datetime.fromtimestamp(frame_time).strftime("%m/%d/%Y %H:%M:%S")
|
||||
cv2.putText(frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
|
||||
# resize regions and detect
|
||||
detections = []
|
||||
for region in merged_regions:
|
||||
|
||||
# print fps
|
||||
cv2.putText(frame, str(self.fps.eps())+'FPS', (10, 60), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
|
||||
tensor_input = create_tensor_input(frame, region)
|
||||
|
||||
# convert to BGR
|
||||
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
|
||||
region_detections = object_detector.detect(tensor_input)
|
||||
|
||||
# encode the image into a jpg
|
||||
ret, jpg = cv2.imencode('.jpg', frame)
|
||||
for d in region_detections:
|
||||
box = d[2]
|
||||
size = region[2]-region[0]
|
||||
x_min = int((box[1] * size) + region[0])
|
||||
y_min = int((box[0] * size) + region[1])
|
||||
x_max = int((box[3] * size) + region[0])
|
||||
y_max = int((box[2] * size) + region[1])
|
||||
det = (d[0],
|
||||
d[1],
|
||||
(x_min, y_min, x_max, y_max),
|
||||
(x_max-x_min)*(y_max-y_min),
|
||||
region)
|
||||
if filtered(det, objects_to_track, object_filters, mask):
|
||||
continue
|
||||
detections.append(det)
|
||||
|
||||
return jpg.tobytes()
|
||||
#########
|
||||
# merge objects, check for clipped objects and look again up to N times
|
||||
#########
|
||||
refining = True
|
||||
refine_count = 0
|
||||
while refining and refine_count < 4:
|
||||
refining = False
|
||||
|
||||
def get_current_frame_with_objects(self):
|
||||
frame_time = self.last_processed_frame
|
||||
if frame_time == self.cached_frame_with_objects['frame_time']:
|
||||
return self.cached_frame_with_objects['frame_bytes']
|
||||
# group by name
|
||||
detected_object_groups = defaultdict(lambda: [])
|
||||
for detection in detections:
|
||||
detected_object_groups[detection[0]].append(detection)
|
||||
|
||||
frame_bytes = self.frame_with_objects(frame_time)
|
||||
|
||||
self.cached_frame_with_objects = {
|
||||
'frame_bytes': frame_bytes,
|
||||
'frame_time': frame_time
|
||||
}
|
||||
|
||||
return frame_bytes
|
||||
selected_objects = []
|
||||
for group in detected_object_groups.values():
|
||||
|
||||
# apply non-maxima suppression to suppress weak, overlapping bounding boxes
|
||||
boxes = [(o[2][0], o[2][1], o[2][2]-o[2][0], o[2][3]-o[2][1])
|
||||
for o in group]
|
||||
confidences = [o[1] for o in group]
|
||||
idxs = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
|
||||
|
||||
for index in idxs:
|
||||
obj = group[index[0]]
|
||||
if clipped(obj, frame_shape): #obj['clipped']:
|
||||
box = obj[2]
|
||||
# calculate a new region that will hopefully get the entire object
|
||||
region = calculate_region(frame_shape,
|
||||
box[0], box[1],
|
||||
box[2], box[3])
|
||||
|
||||
tensor_input = create_tensor_input(frame, region)
|
||||
# run detection on new region
|
||||
refined_detections = object_detector.detect(tensor_input)
|
||||
for d in refined_detections:
|
||||
box = d[2]
|
||||
size = region[2]-region[0]
|
||||
x_min = int((box[1] * size) + region[0])
|
||||
y_min = int((box[0] * size) + region[1])
|
||||
x_max = int((box[3] * size) + region[0])
|
||||
y_max = int((box[2] * size) + region[1])
|
||||
det = (d[0],
|
||||
d[1],
|
||||
(x_min, y_min, x_max, y_max),
|
||||
(x_max-x_min)*(y_max-y_min),
|
||||
region)
|
||||
if filtered(det, objects_to_track, object_filters, mask):
|
||||
continue
|
||||
selected_objects.append(det)
|
||||
|
||||
refining = True
|
||||
else:
|
||||
selected_objects.append(obj)
|
||||
|
||||
# set the detections list to only include top, complete objects
|
||||
# and new detections
|
||||
detections = selected_objects
|
||||
|
||||
if refining:
|
||||
refine_count += 1
|
||||
|
||||
# now that we have refined our detections, we need to track objects
|
||||
object_tracker.match_and_update(frame_time, detections)
|
||||
|
||||
# put the frame in the plasma store
|
||||
object_id = hashlib.sha1(str.encode(f"{name}{frame_time}")).digest()
|
||||
plasma_client.put(frame, plasma.ObjectID(object_id))
|
||||
# add to the queue
|
||||
detected_objects_queue.put((name, frame_time, object_tracker.tracked_objects))
|
||||
|
||||
# if (frames >= 700 and frames <= 1635) or (frames >= 2500):
|
||||
# if (frames >= 300 and frames <= 600):
|
||||
# if (frames >= 0):
|
||||
# row1 = cv2.hconcat([gray, cv2.convertScaleAbs(avg_frame)])
|
||||
# row2 = cv2.hconcat([frameDelta, thresh])
|
||||
# cv2.imwrite(f"/lab/debug/output/{frames}.jpg", cv2.vconcat([row1, row2]))
|
||||
# # cv2.imwrite(f"/lab/debug/output/resized-frame-{frames}.jpg", resized_frame)
|
||||
# for region in motion_regions:
|
||||
# cv2.rectangle(frame, (region[0], region[1]), (region[2], region[3]), (255,128,0), 2)
|
||||
# for region in object_regions:
|
||||
# cv2.rectangle(frame, (region[0], region[1]), (region[2], region[3]), (0,128,255), 2)
|
||||
# for region in merged_regions:
|
||||
# cv2.rectangle(frame, (region[0], region[1]), (region[2], region[3]), (0,255,0), 2)
|
||||
# for box in motion_boxes:
|
||||
# cv2.rectangle(frame, (box[0], box[1]), (box[2], box[3]), (255,0,0), 2)
|
||||
# for detection in detections:
|
||||
# box = detection[2]
|
||||
# draw_box_with_label(frame, box[0], box[1], box[2], box[3], detection[0], f"{detection[1]*100}%")
|
||||
# for obj in object_tracker.tracked_objects.values():
|
||||
# box = obj['box']
|
||||
# draw_box_with_label(frame, box[0], box[1], box[2], box[3], obj['label'], obj['id'], thickness=1, color=(0,0,255), position='bl')
|
||||
# cv2.putText(frame, str(total_detections), (10, 10), cv2.FONT_HERSHEY_SIMPLEX, fontScale=0.5, color=(0, 0, 0), thickness=2)
|
||||
# cv2.putText(frame, str(frame_detections), (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=0.5, color=(0, 0, 0), thickness=2)
|
||||
# cv2.imwrite(f"/lab/debug/output/frame-{frames}.jpg", frame)
|
||||
# break
|
||||
|
||||
# start a thread to publish object scores
|
||||
# mqtt_publisher = MqttObjectPublisher(self.mqtt_client, self.mqtt_topic_prefix, self)
|
||||
# mqtt_publisher.start()
|
||||
|
||||
# create a watchdog thread for capture process
|
||||
# self.watchdog = CameraWatchdog(self)
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user