mirror of
https://github.com/blakeblackshear/frigate.git
synced 2024-11-26 02:40:44 -06:00
Merge pull request #2 from blakeblackshear/motion_detection
Motion detection
This commit is contained in:
commit
e997591e70
@ -40,7 +40,8 @@ RUN pip install -U pip \
|
||||
tensorflow \
|
||||
keras \
|
||||
autovizwidget \
|
||||
Flask
|
||||
Flask \
|
||||
imutils
|
||||
|
||||
# Install tensorflow models object detection
|
||||
RUN GIT_SSL_NO_VERIFY=true git clone -q https://github.com/tensorflow/models /usr/local/lib/python3.5/dist-packages/tensorflow/models
|
||||
|
@ -1,5 +1,6 @@
|
||||
import os
|
||||
import cv2
|
||||
import imutils
|
||||
import time
|
||||
import datetime
|
||||
import ctypes
|
||||
@ -24,7 +25,8 @@ PATH_TO_LABELS = '/label_map.pbtext'
|
||||
# TODO: make dynamic?
|
||||
NUM_CLASSES = 90
|
||||
|
||||
#REGIONS = "600,0,380:600,600,380:600,1200,380"
|
||||
# REGIONS = "350,0,300,50:400,350,250,50:400,750,250,50"
|
||||
# REGIONS = "400,350,250,50"
|
||||
REGIONS = os.getenv('REGIONS')
|
||||
|
||||
DETECTED_OBJECTS = []
|
||||
@ -104,7 +106,8 @@ def main():
|
||||
regions.append({
|
||||
'size': int(region_parts[0]),
|
||||
'x_offset': int(region_parts[1]),
|
||||
'y_offset': int(region_parts[2])
|
||||
'y_offset': int(region_parts[2]),
|
||||
'min_object_size': int(region_parts[3])
|
||||
})
|
||||
# capture a single frame and check the frame shape so the correct array
|
||||
# size can be allocated in memory
|
||||
@ -120,12 +123,15 @@ def main():
|
||||
shared_memory_objects = []
|
||||
for region in regions:
|
||||
shared_memory_objects.append({
|
||||
# create shared value for storing the time the frame was captured
|
||||
# shared value for signaling to the capture process that we are ready for the next frame
|
||||
# (1 for ready 0 for not ready)
|
||||
'ready_for_frame': mp.Value('i', 1),
|
||||
# shared value for motion detection signal (1 for motion 0 for no motion)
|
||||
'motion_detected': mp.Value('i', 0),
|
||||
# create shared array for storing 10 detected objects
|
||||
# note: this must be a double even though the value you are storing
|
||||
# is a float. otherwise it stops updating the value in shared
|
||||
# memory. probably something to do with the size of the memory block
|
||||
'frame_time': mp.Value('d', 0.0),
|
||||
# create shared array for storing 10 detected objects
|
||||
'output_array': mp.Array(ctypes.c_double, 6*10)
|
||||
})
|
||||
|
||||
@ -133,21 +139,37 @@ def main():
|
||||
flat_array_length = frame_shape[0] * frame_shape[1] * frame_shape[2]
|
||||
# create shared array for storing the full frame image data
|
||||
shared_arr = mp.Array(ctypes.c_uint16, flat_array_length)
|
||||
# create shared value for storing the frame_time
|
||||
shared_frame_time = mp.Value('d', 0.0)
|
||||
# shape current frame so it can be treated as an image
|
||||
frame_arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
||||
|
||||
capture_process = mp.Process(target=fetch_frames, args=(shared_arr, [obj['frame_time'] for obj in shared_memory_objects], frame_shape))
|
||||
capture_process = mp.Process(target=fetch_frames, args=(shared_arr, shared_frame_time, [obj['ready_for_frame'] for obj in shared_memory_objects], frame_shape))
|
||||
capture_process.daemon = True
|
||||
|
||||
detection_processes = []
|
||||
for index, region in enumerate(regions):
|
||||
detection_process = mp.Process(target=process_frames, args=(shared_arr,
|
||||
shared_memory_objects[index]['output_array'],
|
||||
shared_memory_objects[index]['frame_time'], frame_shape,
|
||||
shared_memory_objects[index]['output_array'],
|
||||
shared_frame_time,
|
||||
shared_memory_objects[index]['motion_detected'],
|
||||
frame_shape,
|
||||
region['size'], region['x_offset'], region['y_offset']))
|
||||
detection_process.daemon = True
|
||||
detection_processes.append(detection_process)
|
||||
|
||||
motion_processes = []
|
||||
for index, region in enumerate(regions):
|
||||
motion_process = mp.Process(target=detect_motion, args=(shared_arr,
|
||||
shared_frame_time,
|
||||
shared_memory_objects[index]['ready_for_frame'],
|
||||
shared_memory_objects[index]['motion_detected'],
|
||||
frame_shape,
|
||||
region['size'], region['x_offset'], region['y_offset'],
|
||||
region['min_object_size']))
|
||||
motion_process.daemon = True
|
||||
motion_processes.append(motion_process)
|
||||
|
||||
object_parser = ObjectParser([obj['output_array'] for obj in shared_memory_objects])
|
||||
object_parser.start()
|
||||
|
||||
@ -156,6 +178,9 @@ def main():
|
||||
for detection_process in detection_processes:
|
||||
detection_process.start()
|
||||
print("detection_process pid ", detection_process.pid)
|
||||
for motion_process in motion_processes:
|
||||
motion_process.start()
|
||||
print("motion_process pid ", motion_process.pid)
|
||||
|
||||
app = Flask(__name__)
|
||||
|
||||
@ -176,7 +201,7 @@ def main():
|
||||
# convert to RGB for drawing
|
||||
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
||||
# draw the bounding boxes on the screen
|
||||
for obj in DETECTED_OBJECTS:
|
||||
for obj in detected_objects:
|
||||
vis_util.draw_bounding_box_on_image_array(frame,
|
||||
obj['ymin'],
|
||||
obj['xmin'],
|
||||
@ -191,6 +216,12 @@ def main():
|
||||
cv2.rectangle(frame, (region['x_offset'], region['y_offset']),
|
||||
(region['x_offset']+region['size'], region['y_offset']+region['size']),
|
||||
(255,255,255), 2)
|
||||
|
||||
motion_status = 'No Motion'
|
||||
if any(obj['motion_detected'].value == 1 for obj in shared_memory_objects):
|
||||
motion_status = 'Motion'
|
||||
cv2.putText(frame, motion_status, (10, 20),
|
||||
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
|
||||
# convert back to BGR
|
||||
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
|
||||
# encode the image into a jpg
|
||||
@ -203,6 +234,8 @@ def main():
|
||||
capture_process.join()
|
||||
for detection_process in detection_processes:
|
||||
detection_process.join()
|
||||
for motion_process in motion_processes:
|
||||
motion_process.join()
|
||||
object_parser.join()
|
||||
|
||||
# convert shared memory array into numpy array
|
||||
@ -211,7 +244,7 @@ def tonumpyarray(mp_arr):
|
||||
|
||||
# fetch the frames as fast a possible, only decoding the frames when the
|
||||
# detection_process has consumed the current frame
|
||||
def fetch_frames(shared_arr, shared_frame_times, frame_shape):
|
||||
def fetch_frames(shared_arr, shared_frame_time, ready_for_frame_flags, frame_shape):
|
||||
# convert shared memory array into numpy and shape into image array
|
||||
arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
||||
|
||||
@ -226,16 +259,17 @@ def fetch_frames(shared_arr, shared_frame_times, frame_shape):
|
||||
# snapshot the time the frame was grabbed
|
||||
frame_time = datetime.datetime.now()
|
||||
if ret:
|
||||
# if the detection_process is ready for the next frame decode it
|
||||
# if the anyone is ready for the next frame decode it
|
||||
# otherwise skip this frame and move onto the next one
|
||||
if all(shared_frame_time.value == 0.0 for shared_frame_time in shared_frame_times):
|
||||
if any(flag.value == 1 for flag in ready_for_frame_flags):
|
||||
# go ahead and decode the current frame
|
||||
ret, frame = video.retrieve()
|
||||
if ret:
|
||||
arr[:] = frame
|
||||
shared_frame_time.value = frame_time.timestamp()
|
||||
# signal to the detection_processes by setting the shared_frame_time
|
||||
for shared_frame_time in shared_frame_times:
|
||||
shared_frame_time.value = frame_time.timestamp()
|
||||
for flag in ready_for_frame_flags:
|
||||
flag.value = 0
|
||||
else:
|
||||
# sleep a little to reduce CPU usage
|
||||
time.sleep(0.01)
|
||||
@ -243,7 +277,7 @@ def fetch_frames(shared_arr, shared_frame_times, frame_shape):
|
||||
video.release()
|
||||
|
||||
# do the actual object detection
|
||||
def process_frames(shared_arr, shared_output_arr, shared_frame_time, frame_shape, region_size, region_x_offset, region_y_offset):
|
||||
def process_frames(shared_arr, shared_output_arr, shared_frame_time, shared_motion, frame_shape, region_size, region_x_offset, region_y_offset):
|
||||
# shape shared input array into frame for processing
|
||||
arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
||||
|
||||
@ -258,15 +292,22 @@ def process_frames(shared_arr, shared_output_arr, shared_frame_time, frame_shape
|
||||
sess = tf.Session(graph=detection_graph)
|
||||
|
||||
no_frames_available = -1
|
||||
frame_time = 0.0
|
||||
while True:
|
||||
# if there isnt a frame ready for processing
|
||||
if shared_frame_time.value == 0.0:
|
||||
now = datetime.datetime.now().timestamp()
|
||||
# if there is no motion detected
|
||||
if shared_motion.value == 0:
|
||||
time.sleep(0.01)
|
||||
continue
|
||||
|
||||
# if there isnt a new frame ready for processing
|
||||
if shared_frame_time.value == frame_time:
|
||||
# save the first time there were no frames available
|
||||
if no_frames_available == -1:
|
||||
no_frames_available = datetime.datetime.now().timestamp()
|
||||
no_frames_available = now
|
||||
# if there havent been any frames available in 30 seconds,
|
||||
# sleep to avoid using so much cpu if the camera feed is down
|
||||
if no_frames_available > 0 and (datetime.datetime.now().timestamp() - no_frames_available) > 30:
|
||||
if no_frames_available > 0 and (now - no_frames_available) > 30:
|
||||
time.sleep(1)
|
||||
print("sleeping because no frames have been available in a while")
|
||||
else:
|
||||
@ -277,10 +318,8 @@ def process_frames(shared_arr, shared_output_arr, shared_frame_time, frame_shape
|
||||
# we got a valid frame, so reset the timer
|
||||
no_frames_available = -1
|
||||
|
||||
# if the frame is more than 0.5 second old, discard it
|
||||
if (datetime.datetime.now().timestamp() - shared_frame_time.value) > 0.5:
|
||||
# signal that we need a new frame
|
||||
shared_frame_time.value = 0.0
|
||||
# if the frame is more than 0.5 second old, ignore it
|
||||
if (now - shared_frame_time.value) > 0.5:
|
||||
# rest a little bit to avoid maxing out the CPU
|
||||
time.sleep(0.01)
|
||||
continue
|
||||
@ -288,8 +327,6 @@ def process_frames(shared_arr, shared_output_arr, shared_frame_time, frame_shape
|
||||
# make a copy of the cropped frame
|
||||
cropped_frame = arr[region_y_offset:region_y_offset+region_size, region_x_offset:region_x_offset+region_size].copy()
|
||||
frame_time = shared_frame_time.value
|
||||
# signal that the frame has been used so a new one will be ready
|
||||
shared_frame_time.value = 0.0
|
||||
|
||||
# convert to RGB
|
||||
cropped_frame_rgb = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2RGB)
|
||||
@ -298,6 +335,84 @@ def process_frames(shared_arr, shared_output_arr, shared_frame_time, frame_shape
|
||||
# copy the detected objects to the output array, filling the array when needed
|
||||
shared_output_arr[:] = objects + [0.0] * (60-len(objects))
|
||||
|
||||
# do the actual object detection
|
||||
def detect_motion(shared_arr, shared_frame_time, ready_for_frame, shared_motion, frame_shape, region_size, region_x_offset, region_y_offset, min_motion_area):
|
||||
# shape shared input array into frame for processing
|
||||
arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
||||
|
||||
no_frames_available = -1
|
||||
avg_frame = None
|
||||
last_motion = -1
|
||||
frame_time = 0.0
|
||||
while True:
|
||||
now = datetime.datetime.now().timestamp()
|
||||
# if it has been 30 seconds since the last motion, clear the flag
|
||||
if last_motion > 0 and (now - last_motion) > 30:
|
||||
last_motion = -1
|
||||
shared_motion.value = 0
|
||||
# if there isnt a frame ready for processing
|
||||
if shared_frame_time.value == frame_time:
|
||||
# save the first time there were no frames available
|
||||
if no_frames_available == -1:
|
||||
no_frames_available = now
|
||||
# if there havent been any frames available in 30 seconds,
|
||||
# sleep to avoid using so much cpu if the camera feed is down
|
||||
if no_frames_available > 0 and (now - no_frames_available) > 30:
|
||||
time.sleep(1)
|
||||
print("sleeping because no frames have been available in a while")
|
||||
else:
|
||||
# rest a little bit to avoid maxing out the CPU
|
||||
time.sleep(0.01)
|
||||
if ready_for_frame.value == 0:
|
||||
ready_for_frame.value = 1
|
||||
continue
|
||||
|
||||
# we got a valid frame, so reset the timer
|
||||
no_frames_available = -1
|
||||
|
||||
# if the frame is more than 0.5 second old, discard it
|
||||
if (now - shared_frame_time.value) > 0.5:
|
||||
# signal that we need a new frame
|
||||
ready_for_frame.value = 1
|
||||
# rest a little bit to avoid maxing out the CPU
|
||||
time.sleep(0.01)
|
||||
continue
|
||||
|
||||
# make a copy of the cropped frame
|
||||
cropped_frame = arr[region_y_offset:region_y_offset+region_size, region_x_offset:region_x_offset+region_size].copy().astype('uint8')
|
||||
frame_time = shared_frame_time.value
|
||||
# signal that the frame has been used so a new one will be ready
|
||||
ready_for_frame.value = 1
|
||||
|
||||
# convert to grayscale
|
||||
gray = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2GRAY)
|
||||
# apply gaussian blur
|
||||
gray = cv2.GaussianBlur(gray, (21, 21), 0)
|
||||
|
||||
if avg_frame is None:
|
||||
avg_frame = gray.copy().astype("float")
|
||||
continue
|
||||
|
||||
# look at the delta from the avg_frame
|
||||
cv2.accumulateWeighted(gray, avg_frame, 0.5)
|
||||
frameDelta = cv2.absdiff(gray, cv2.convertScaleAbs(avg_frame))
|
||||
thresh = cv2.threshold(frameDelta, 25, 255, cv2.THRESH_BINARY)[1]
|
||||
|
||||
# dilate the thresholded image to fill in holes, then find contours
|
||||
# on thresholded image
|
||||
thresh = cv2.dilate(thresh, None, iterations=2)
|
||||
cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
|
||||
cv2.CHAIN_APPROX_SIMPLE)
|
||||
cnts = imutils.grab_contours(cnts)
|
||||
|
||||
# loop over the contours
|
||||
for c in cnts:
|
||||
# if the contour is big enough report motion
|
||||
if cv2.contourArea(c) > min_motion_area:
|
||||
last_motion = now
|
||||
shared_motion.value = 1
|
||||
break
|
||||
|
||||
if __name__ == '__main__':
|
||||
mp.freeze_support()
|
||||
main()
|
Loading…
Reference in New Issue
Block a user