Merge pull request #2 from blakeblackshear/motion_detection

Motion detection
This commit is contained in:
Blake Blackshear 2019-02-09 20:40:49 -06:00 committed by GitHub
commit e997591e70
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 142 additions and 26 deletions

View File

@ -40,7 +40,8 @@ RUN pip install -U pip \
tensorflow \
keras \
autovizwidget \
Flask
Flask \
imutils
# Install tensorflow models object detection
RUN GIT_SSL_NO_VERIFY=true git clone -q https://github.com/tensorflow/models /usr/local/lib/python3.5/dist-packages/tensorflow/models

View File

@ -1,5 +1,6 @@
import os
import cv2
import imutils
import time
import datetime
import ctypes
@ -24,7 +25,8 @@ PATH_TO_LABELS = '/label_map.pbtext'
# TODO: make dynamic?
NUM_CLASSES = 90
#REGIONS = "600,0,380:600,600,380:600,1200,380"
# REGIONS = "350,0,300,50:400,350,250,50:400,750,250,50"
# REGIONS = "400,350,250,50"
REGIONS = os.getenv('REGIONS')
DETECTED_OBJECTS = []
@ -104,7 +106,8 @@ def main():
regions.append({
'size': int(region_parts[0]),
'x_offset': int(region_parts[1]),
'y_offset': int(region_parts[2])
'y_offset': int(region_parts[2]),
'min_object_size': int(region_parts[3])
})
# capture a single frame and check the frame shape so the correct array
# size can be allocated in memory
@ -120,12 +123,15 @@ def main():
shared_memory_objects = []
for region in regions:
shared_memory_objects.append({
# create shared value for storing the time the frame was captured
# shared value for signaling to the capture process that we are ready for the next frame
# (1 for ready 0 for not ready)
'ready_for_frame': mp.Value('i', 1),
# shared value for motion detection signal (1 for motion 0 for no motion)
'motion_detected': mp.Value('i', 0),
# create shared array for storing 10 detected objects
# note: this must be a double even though the value you are storing
# is a float. otherwise it stops updating the value in shared
# memory. probably something to do with the size of the memory block
'frame_time': mp.Value('d', 0.0),
# create shared array for storing 10 detected objects
'output_array': mp.Array(ctypes.c_double, 6*10)
})
@ -133,21 +139,37 @@ def main():
flat_array_length = frame_shape[0] * frame_shape[1] * frame_shape[2]
# create shared array for storing the full frame image data
shared_arr = mp.Array(ctypes.c_uint16, flat_array_length)
# create shared value for storing the frame_time
shared_frame_time = mp.Value('d', 0.0)
# shape current frame so it can be treated as an image
frame_arr = tonumpyarray(shared_arr).reshape(frame_shape)
capture_process = mp.Process(target=fetch_frames, args=(shared_arr, [obj['frame_time'] for obj in shared_memory_objects], frame_shape))
capture_process = mp.Process(target=fetch_frames, args=(shared_arr, shared_frame_time, [obj['ready_for_frame'] for obj in shared_memory_objects], frame_shape))
capture_process.daemon = True
detection_processes = []
for index, region in enumerate(regions):
detection_process = mp.Process(target=process_frames, args=(shared_arr,
shared_memory_objects[index]['output_array'],
shared_memory_objects[index]['frame_time'], frame_shape,
shared_memory_objects[index]['output_array'],
shared_frame_time,
shared_memory_objects[index]['motion_detected'],
frame_shape,
region['size'], region['x_offset'], region['y_offset']))
detection_process.daemon = True
detection_processes.append(detection_process)
motion_processes = []
for index, region in enumerate(regions):
motion_process = mp.Process(target=detect_motion, args=(shared_arr,
shared_frame_time,
shared_memory_objects[index]['ready_for_frame'],
shared_memory_objects[index]['motion_detected'],
frame_shape,
region['size'], region['x_offset'], region['y_offset'],
region['min_object_size']))
motion_process.daemon = True
motion_processes.append(motion_process)
object_parser = ObjectParser([obj['output_array'] for obj in shared_memory_objects])
object_parser.start()
@ -156,6 +178,9 @@ def main():
for detection_process in detection_processes:
detection_process.start()
print("detection_process pid ", detection_process.pid)
for motion_process in motion_processes:
motion_process.start()
print("motion_process pid ", motion_process.pid)
app = Flask(__name__)
@ -176,7 +201,7 @@ def main():
# convert to RGB for drawing
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# draw the bounding boxes on the screen
for obj in DETECTED_OBJECTS:
for obj in detected_objects:
vis_util.draw_bounding_box_on_image_array(frame,
obj['ymin'],
obj['xmin'],
@ -191,6 +216,12 @@ def main():
cv2.rectangle(frame, (region['x_offset'], region['y_offset']),
(region['x_offset']+region['size'], region['y_offset']+region['size']),
(255,255,255), 2)
motion_status = 'No Motion'
if any(obj['motion_detected'].value == 1 for obj in shared_memory_objects):
motion_status = 'Motion'
cv2.putText(frame, motion_status, (10, 20),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
# convert back to BGR
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
# encode the image into a jpg
@ -203,6 +234,8 @@ def main():
capture_process.join()
for detection_process in detection_processes:
detection_process.join()
for motion_process in motion_processes:
motion_process.join()
object_parser.join()
# convert shared memory array into numpy array
@ -211,7 +244,7 @@ def tonumpyarray(mp_arr):
# fetch the frames as fast a possible, only decoding the frames when the
# detection_process has consumed the current frame
def fetch_frames(shared_arr, shared_frame_times, frame_shape):
def fetch_frames(shared_arr, shared_frame_time, ready_for_frame_flags, frame_shape):
# convert shared memory array into numpy and shape into image array
arr = tonumpyarray(shared_arr).reshape(frame_shape)
@ -226,16 +259,17 @@ def fetch_frames(shared_arr, shared_frame_times, frame_shape):
# snapshot the time the frame was grabbed
frame_time = datetime.datetime.now()
if ret:
# if the detection_process is ready for the next frame decode it
# if the anyone is ready for the next frame decode it
# otherwise skip this frame and move onto the next one
if all(shared_frame_time.value == 0.0 for shared_frame_time in shared_frame_times):
if any(flag.value == 1 for flag in ready_for_frame_flags):
# go ahead and decode the current frame
ret, frame = video.retrieve()
if ret:
arr[:] = frame
shared_frame_time.value = frame_time.timestamp()
# signal to the detection_processes by setting the shared_frame_time
for shared_frame_time in shared_frame_times:
shared_frame_time.value = frame_time.timestamp()
for flag in ready_for_frame_flags:
flag.value = 0
else:
# sleep a little to reduce CPU usage
time.sleep(0.01)
@ -243,7 +277,7 @@ def fetch_frames(shared_arr, shared_frame_times, frame_shape):
video.release()
# do the actual object detection
def process_frames(shared_arr, shared_output_arr, shared_frame_time, frame_shape, region_size, region_x_offset, region_y_offset):
def process_frames(shared_arr, shared_output_arr, shared_frame_time, shared_motion, frame_shape, region_size, region_x_offset, region_y_offset):
# shape shared input array into frame for processing
arr = tonumpyarray(shared_arr).reshape(frame_shape)
@ -258,15 +292,22 @@ def process_frames(shared_arr, shared_output_arr, shared_frame_time, frame_shape
sess = tf.Session(graph=detection_graph)
no_frames_available = -1
frame_time = 0.0
while True:
# if there isnt a frame ready for processing
if shared_frame_time.value == 0.0:
now = datetime.datetime.now().timestamp()
# if there is no motion detected
if shared_motion.value == 0:
time.sleep(0.01)
continue
# if there isnt a new frame ready for processing
if shared_frame_time.value == frame_time:
# save the first time there were no frames available
if no_frames_available == -1:
no_frames_available = datetime.datetime.now().timestamp()
no_frames_available = now
# if there havent been any frames available in 30 seconds,
# sleep to avoid using so much cpu if the camera feed is down
if no_frames_available > 0 and (datetime.datetime.now().timestamp() - no_frames_available) > 30:
if no_frames_available > 0 and (now - no_frames_available) > 30:
time.sleep(1)
print("sleeping because no frames have been available in a while")
else:
@ -277,10 +318,8 @@ def process_frames(shared_arr, shared_output_arr, shared_frame_time, frame_shape
# we got a valid frame, so reset the timer
no_frames_available = -1
# if the frame is more than 0.5 second old, discard it
if (datetime.datetime.now().timestamp() - shared_frame_time.value) > 0.5:
# signal that we need a new frame
shared_frame_time.value = 0.0
# if the frame is more than 0.5 second old, ignore it
if (now - shared_frame_time.value) > 0.5:
# rest a little bit to avoid maxing out the CPU
time.sleep(0.01)
continue
@ -288,8 +327,6 @@ def process_frames(shared_arr, shared_output_arr, shared_frame_time, frame_shape
# make a copy of the cropped frame
cropped_frame = arr[region_y_offset:region_y_offset+region_size, region_x_offset:region_x_offset+region_size].copy()
frame_time = shared_frame_time.value
# signal that the frame has been used so a new one will be ready
shared_frame_time.value = 0.0
# convert to RGB
cropped_frame_rgb = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2RGB)
@ -298,6 +335,84 @@ def process_frames(shared_arr, shared_output_arr, shared_frame_time, frame_shape
# copy the detected objects to the output array, filling the array when needed
shared_output_arr[:] = objects + [0.0] * (60-len(objects))
# do the actual object detection
def detect_motion(shared_arr, shared_frame_time, ready_for_frame, shared_motion, frame_shape, region_size, region_x_offset, region_y_offset, min_motion_area):
# shape shared input array into frame for processing
arr = tonumpyarray(shared_arr).reshape(frame_shape)
no_frames_available = -1
avg_frame = None
last_motion = -1
frame_time = 0.0
while True:
now = datetime.datetime.now().timestamp()
# if it has been 30 seconds since the last motion, clear the flag
if last_motion > 0 and (now - last_motion) > 30:
last_motion = -1
shared_motion.value = 0
# if there isnt a frame ready for processing
if shared_frame_time.value == frame_time:
# save the first time there were no frames available
if no_frames_available == -1:
no_frames_available = now
# if there havent been any frames available in 30 seconds,
# sleep to avoid using so much cpu if the camera feed is down
if no_frames_available > 0 and (now - no_frames_available) > 30:
time.sleep(1)
print("sleeping because no frames have been available in a while")
else:
# rest a little bit to avoid maxing out the CPU
time.sleep(0.01)
if ready_for_frame.value == 0:
ready_for_frame.value = 1
continue
# we got a valid frame, so reset the timer
no_frames_available = -1
# if the frame is more than 0.5 second old, discard it
if (now - shared_frame_time.value) > 0.5:
# signal that we need a new frame
ready_for_frame.value = 1
# rest a little bit to avoid maxing out the CPU
time.sleep(0.01)
continue
# make a copy of the cropped frame
cropped_frame = arr[region_y_offset:region_y_offset+region_size, region_x_offset:region_x_offset+region_size].copy().astype('uint8')
frame_time = shared_frame_time.value
# signal that the frame has been used so a new one will be ready
ready_for_frame.value = 1
# convert to grayscale
gray = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2GRAY)
# apply gaussian blur
gray = cv2.GaussianBlur(gray, (21, 21), 0)
if avg_frame is None:
avg_frame = gray.copy().astype("float")
continue
# look at the delta from the avg_frame
cv2.accumulateWeighted(gray, avg_frame, 0.5)
frameDelta = cv2.absdiff(gray, cv2.convertScaleAbs(avg_frame))
thresh = cv2.threshold(frameDelta, 25, 255, cv2.THRESH_BINARY)[1]
# dilate the thresholded image to fill in holes, then find contours
# on thresholded image
thresh = cv2.dilate(thresh, None, iterations=2)
cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)
# loop over the contours
for c in cnts:
# if the contour is big enough report motion
if cv2.contourArea(c) > min_motion_area:
last_motion = now
shared_motion.value = 1
break
if __name__ == '__main__':
mp.freeze_support()
main()