mirror of
https://github.com/blakeblackshear/frigate.git
synced 2024-11-23 09:26:32 -06:00
add back flask endpoints
This commit is contained in:
parent
0279121d77
commit
edf0cd36df
@ -68,61 +68,36 @@ def main():
|
||||
prepped_queue_processor.start()
|
||||
|
||||
camera.start()
|
||||
camera.join()
|
||||
|
||||
# create a flask app that encodes frames a mjpeg on demand
|
||||
# app = Flask(__name__)
|
||||
app = Flask(__name__)
|
||||
|
||||
# @app.route('/best_person.jpg')
|
||||
# def best_person():
|
||||
# frame = np.zeros(frame_shape, np.uint8) if camera.get_best_person() is None else camera.get_best_person()
|
||||
# ret, jpg = cv2.imencode('.jpg', frame)
|
||||
# response = make_response(jpg.tobytes())
|
||||
# response.headers['Content-Type'] = 'image/jpg'
|
||||
# return response
|
||||
@app.route('/best_person.jpg')
|
||||
def best_person():
|
||||
frame = np.zeros((720,1280,3), np.uint8) if camera.get_best_person() is None else camera.get_best_person()
|
||||
ret, jpg = cv2.imencode('.jpg', frame)
|
||||
response = make_response(jpg.tobytes())
|
||||
response.headers['Content-Type'] = 'image/jpg'
|
||||
return response
|
||||
|
||||
# @app.route('/')
|
||||
# def index():
|
||||
# # return a multipart response
|
||||
# return Response(imagestream(),
|
||||
# mimetype='multipart/x-mixed-replace; boundary=frame')
|
||||
# def imagestream():
|
||||
# while True:
|
||||
# # max out at 5 FPS
|
||||
# time.sleep(0.2)
|
||||
# # make a copy of the current detected objects
|
||||
# detected_objects = DETECTED_OBJECTS.copy()
|
||||
# # lock and make a copy of the current frame
|
||||
# with frame_lock:
|
||||
# frame = frame_arr.copy()
|
||||
# # convert to RGB for drawing
|
||||
# frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
||||
# # draw the bounding boxes on the screen
|
||||
# for obj in detected_objects:
|
||||
# vis_util.draw_bounding_box_on_image_array(frame,
|
||||
# obj['ymin'],
|
||||
# obj['xmin'],
|
||||
# obj['ymax'],
|
||||
# obj['xmax'],
|
||||
# color='red',
|
||||
# thickness=2,
|
||||
# display_str_list=["{}: {}%".format(obj['name'],int(obj['score']*100))],
|
||||
# use_normalized_coordinates=False)
|
||||
@app.route('/')
|
||||
def index():
|
||||
# return a multipart response
|
||||
return Response(imagestream(),
|
||||
mimetype='multipart/x-mixed-replace; boundary=frame')
|
||||
def imagestream():
|
||||
while True:
|
||||
# max out at 5 FPS
|
||||
time.sleep(0.2)
|
||||
frame = camera.get_current_frame_with_objects()
|
||||
# encode the image into a jpg
|
||||
ret, jpg = cv2.imencode('.jpg', frame)
|
||||
yield (b'--frame\r\n'
|
||||
b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n')
|
||||
|
||||
# for region in regions:
|
||||
# color = (255,255,255)
|
||||
# cv2.rectangle(frame, (region['x_offset'], region['y_offset']),
|
||||
# (region['x_offset']+region['size'], region['y_offset']+region['size']),
|
||||
# color, 2)
|
||||
app.run(host='0.0.0.0', port=WEB_PORT, debug=False)
|
||||
|
||||
# # convert back to BGR
|
||||
# frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
|
||||
# # encode the image into a jpg
|
||||
# ret, jpg = cv2.imencode('.jpg', frame)
|
||||
# yield (b'--frame\r\n'
|
||||
# b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n')
|
||||
|
||||
# app.run(host='0.0.0.0', port=WEB_PORT, debug=False)
|
||||
camera.join()
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
@ -41,7 +41,7 @@ class PreppedQueueProcessor(threading.Thread):
|
||||
objects = self.engine.DetectWithInputTensor(frame['frame'], threshold=0.5, top_k=3)
|
||||
# time.sleep(0.1)
|
||||
# objects = []
|
||||
print(self.engine.get_inference_time())
|
||||
# print(self.engine.get_inference_time())
|
||||
# put detected objects in the queue
|
||||
parsed_objects = []
|
||||
for obj in objects:
|
||||
|
@ -5,6 +5,7 @@ import cv2
|
||||
import threading
|
||||
import ctypes
|
||||
import multiprocessing as mp
|
||||
from object_detection.utils import visualization_utils as vis_util
|
||||
from . util import tonumpyarray
|
||||
from . object_detection import FramePrepper
|
||||
from . objects import ObjectCleaner, ObjectParser, BestPersonFrame
|
||||
@ -214,6 +215,38 @@ class Camera:
|
||||
|
||||
def get_best_person(self):
|
||||
return self.best_person_frame.best_frame
|
||||
|
||||
def get_current_frame_with_objects(self):
|
||||
# make a copy of the current detected objects
|
||||
detected_objects = self.detected_objects.copy()
|
||||
# lock and make a copy of the current frame
|
||||
with self.frame_lock:
|
||||
frame = self.shared_frame_np.copy()
|
||||
|
||||
# convert to RGB for drawing
|
||||
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
||||
# draw the bounding boxes on the screen
|
||||
for obj in detected_objects:
|
||||
vis_util.draw_bounding_box_on_image_array(frame,
|
||||
obj['ymin'],
|
||||
obj['xmin'],
|
||||
obj['ymax'],
|
||||
obj['xmax'],
|
||||
color='red',
|
||||
thickness=2,
|
||||
display_str_list=["{}: {}%".format(obj['name'],int(obj['score']*100))],
|
||||
use_normalized_coordinates=False)
|
||||
|
||||
for region in self.regions:
|
||||
color = (255,255,255)
|
||||
cv2.rectangle(frame, (region['x_offset'], region['y_offset']),
|
||||
(region['x_offset']+region['size'], region['y_offset']+region['size']),
|
||||
color, 2)
|
||||
|
||||
# convert back to BGR
|
||||
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
|
||||
|
||||
return frame
|
||||
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user