Compare commits
685 Commits
Author | SHA1 | Date | |
---|---|---|---|
|
92553fa666 | ||
|
5264a18dfa | ||
|
6bb1a5dfd2 | ||
|
7b3556e4ad | ||
|
9a07505075 | ||
|
0b65137831 | ||
|
761c5109dc | ||
|
729f5c0833 | ||
|
f7199f205f | ||
|
d6b5dc93cc | ||
|
11baf237bc | ||
|
73fee6372b | ||
|
2458f667c4 | ||
|
f3e2cf0a58 | ||
|
0f0b2687af | ||
|
a3ede3cf8a | ||
|
b594f198a9 | ||
|
4ef6214029 | ||
|
82f8694464 | ||
|
c54259ecc6 | ||
|
7e48b3514c | ||
|
f0270c6e34 | ||
|
ac3dfbc30d | ||
|
9a0211a71c | ||
|
198d067e25 | ||
|
72209986b6 | ||
|
dd7820e4ee | ||
|
2a28964e63 | ||
|
e207b2f50b | ||
|
d5b60237a2 | ||
|
bc96db8612 | ||
|
81bd956ae8 | ||
|
c8cec63cb9 | ||
|
83beacf84a | ||
|
cc2dbdcb44 | ||
|
1f89844c67 | ||
|
81a56549da | ||
|
c58d2add37 | ||
|
a42ad7ead9 | ||
|
973d3aed9a | ||
|
fa300742ea | ||
|
15472274ee | ||
|
f3485bfc13 | ||
|
060ad34e1d | ||
|
ebf4403eca | ||
|
fb316874ef | ||
|
9236898a9d | ||
|
1c3527f5c4 | ||
|
6f4002a56f | ||
|
3f99ff65ed | ||
|
c7c8575c9b | ||
|
63dbcd79e2 | ||
|
9dc85d4a76 | ||
|
88686c44fe | ||
|
3f1d85e189 | ||
|
283f1b19a7 | ||
|
ab8f9e5412 | ||
|
4f85b18b08 | ||
|
a6ae208fe7 | ||
|
0c13227f7d | ||
|
1edbd2d498 | ||
|
4c7d4e6c0a | ||
|
458ca4a983 | ||
|
6a83f40135 | ||
|
281407247b | ||
|
172e7d494f | ||
|
8763390dfe | ||
|
c26144da75 | ||
|
d025495374 | ||
|
f58fc4c367 | ||
|
cc6a740a0f | ||
|
909444dacf | ||
|
c28a0ed9a3 | ||
|
cd0d37ce07 | ||
|
d0ad840ef4 | ||
|
edab4efa42 | ||
|
877b7b2910 | ||
|
66675cf977 | ||
|
0e4ff91d6b | ||
|
dd7b1be7f4 | ||
|
102a7695a3 | ||
|
755c9eea1c | ||
|
e5fcc50ae2 | ||
|
8bb037f82e | ||
|
a0c35101fb | ||
|
af1eaac5ff | ||
|
dbbfc735f0 | ||
|
711575736d | ||
|
c4ce7f9800 | ||
|
594a4e0ba3 | ||
|
c1d5510428 | ||
|
a3d6266d96 | ||
|
aa19ec3ddb | ||
|
0e1139a7a4 | ||
|
cc955b1e66 | ||
|
da34ff964f | ||
|
d6a2965cb2 | ||
|
4b429e440b | ||
|
8759b4a0d3 | ||
|
df840b7cd5 | ||
|
0645dc70a5 | ||
|
b230b35c62 | ||
|
31da9351f0 | ||
|
93d39370b6 | ||
|
cea210d800 | ||
|
7b65bcf13c | ||
|
335b7564d5 | ||
|
202e9ad9ce | ||
|
9dc4e8f290 | ||
|
99d27c154e | ||
|
5943fc1895 | ||
|
9efc20e58a | ||
|
6d8234fa27 | ||
|
ad76c28a66 | ||
|
131d07e649 | ||
|
776bb79f0b | ||
|
12e62488c6 | ||
|
aedfaa3641 | ||
|
83ac42cbdc | ||
|
a5ce8d0d77 | ||
|
0ee2e404da | ||
|
3947e79086 | ||
|
91ab1071d2 | ||
|
409e911752 | ||
|
9983bd8d92 | ||
|
32c71c4108 | ||
|
ef6952e3ea | ||
|
173b7aa308 | ||
|
c4727f19e1 | ||
|
b8a74793ca | ||
|
c1dede9369 | ||
|
0c4ea504d8 | ||
|
b265b6b190 | ||
|
d57a61b50f | ||
|
4fc9106c17 | ||
|
38e098ca31 | ||
|
e7ad38d827 | ||
|
b5e5127d48 | ||
|
a1ce9aacf2 | ||
|
322b847356 | ||
|
98338e4c7f | ||
|
171a89f37b | ||
|
8114b541a8 | ||
|
c48396c5c6 | ||
|
00371546a3 | ||
|
87e7b62c85 | ||
|
15ffe5c254 | ||
|
a767dad3a1 | ||
|
9387246f83 | ||
|
bed20de302 | ||
|
70fc5393b1 | ||
|
9b80dbe014 | ||
|
78a013d63a | ||
|
24f4aa79c8 | ||
|
dfc94b5ad6 | ||
|
ddfe8f3921 | ||
|
4af752028f | ||
|
b149828c9f | ||
|
3dc26e78ef | ||
|
5acbe37e6f | ||
|
d9ef8fa206 | ||
|
292499aebc | ||
|
717493e668 | ||
|
d49f958d4d | ||
|
33ee32865f | ||
|
17f8939f97 | ||
|
1b7fe9523d | ||
|
0763f56047 | ||
|
1ea282fba8 | ||
|
869fa2631e | ||
|
f336a91fee | ||
|
d302b6e198 | ||
|
ed2e1f3f72 | ||
|
b4d82084a9 | ||
|
53b96dfb89 | ||
|
0e3fb6cbdd | ||
|
6b12a45a95 | ||
|
0b9c4c18dd | ||
|
d0cc8cb64b | ||
|
bb86e71e65 | ||
|
8aa6297308 | ||
|
d3b631a952 | ||
|
47d495fc01 | ||
|
32322b23b2 | ||
|
c0ba98e26f | ||
|
a5a7cd3107 | ||
|
a729408599 | ||
|
4dddc53735 | ||
|
5f42caad03 | ||
|
5475672a9d | ||
|
833cdcb6d2 | ||
|
c95bc9fe44 | ||
|
a1fa9decad | ||
|
4a5fe4138e | ||
|
002fdeae67 | ||
|
5802a66469 | ||
|
71e8f75a01 | ||
|
ee816b2251 | ||
|
f094c59cd0 | ||
|
d25ffdb292 | ||
|
2461d01329 | ||
|
2207a91f7b | ||
|
5cafca1be0 | ||
|
33957e5360 | ||
|
ff92b13f35 | ||
|
9c5a04f25f | ||
|
e76f4e9bd9 | ||
|
0df091f387 | ||
|
66277fbb6c | ||
|
a67ff3843a | ||
|
9ae839ad72 | ||
|
66f71aecf7 | ||
|
0b203a3673 | ||
|
26c3f9f914 | ||
|
474c248c9d | ||
|
5b1b6b5be0 | ||
|
45e9030358 | ||
|
f9c1600f0d | ||
|
ad85f8882b | ||
|
206ed06905 | ||
|
e407ba47c2 | ||
|
7fdf42a56f | ||
|
4eea541352 | ||
|
1ffdd32013 | ||
|
99506845f7 | ||
|
ed9c67804a | ||
|
9c20cd5f7b | ||
|
6c86827d3a | ||
|
d2b2f3d54d | ||
|
64b3397f8e | ||
|
0829517b72 | ||
|
c1bfc1df67 | ||
|
96c0c43dc8 | ||
|
a68c7f4ef8 | ||
|
7c474e6827 | ||
|
143bab87f1 | ||
|
580f35112e | ||
|
3249ffb273 | ||
|
7bae9463b2 | ||
|
ae30ac6e3c | ||
|
46ed520886 | ||
|
ace02a6dfa | ||
|
0d59754be2 | ||
|
15bd26c9b1 | ||
|
bc371acb3e | ||
|
2eb5fbf112 | ||
|
ffd05f90f3 | ||
|
fc0fb158d5 | ||
|
404807c697 | ||
|
29ea7c53f2 | ||
|
1fc4af9c86 | ||
|
ac762762c3 | ||
|
553676aade | ||
|
a13b9815f6 | ||
|
156e7cc628 | ||
|
959ca0f412 | ||
|
9755fa0537 | ||
|
77ec86d31a | ||
|
189d4b459f | ||
|
44f40966e7 | ||
|
3a8c290f91 | ||
|
7d3313e732 | ||
|
591b50dfa7 | ||
|
27ef661fec | ||
|
d7935abc14 | ||
|
11068aa9d0 | ||
|
1234003527 | ||
|
e5ebf938f6 | ||
|
8c2c07fd18 | ||
|
9e1a50c3be | ||
|
ac8ddada0b | ||
|
885485da70 | ||
|
bb4e863e87 | ||
|
c7a4220d65 | ||
|
03dd9b2d42 | ||
|
89ca085b94 | ||
|
fffd9defea | ||
|
d10fea6012 | ||
|
ab26aee8b2 | ||
|
bb80a7b2ee | ||
|
e4a6b29279 | ||
|
d12c7809dd | ||
|
357ce0382e | ||
|
73da3d9b20 | ||
|
e67b7a6d5e | ||
|
4e25bebdd0 | ||
|
abd22d2566 | ||
|
8aeb597780 | ||
|
33825f6d96 | ||
|
eca504cb07 | ||
|
4c75440af4 | ||
|
94f7528885 | ||
|
4dadf6d353 | ||
|
2d27e72ed9 | ||
|
4ff0c8a8d1 | ||
|
f9fba94863 | ||
|
f9b246dbd0 | ||
|
8fefded8dc | ||
|
18824830fd | ||
|
fa81d87dc0 | ||
|
8bc145472a | ||
|
7afc1e9762 | ||
|
fc59c83e16 | ||
|
e4048be088 | ||
|
d715a8c290 | ||
|
ad308252a1 | ||
|
c7d9f83638 | ||
|
828fdbfd2d | ||
|
40c6fda19d | ||
|
b69816c2f9 | ||
|
46f5234bd9 | ||
|
81b8d7a66b | ||
|
b1285a16c1 | ||
|
90140e7710 | ||
|
8364e68667 | ||
|
4bb420d049 | ||
|
560dc68120 | ||
|
8fcb8e54f7 | ||
|
6c70e56059 | ||
|
b24d292ade | ||
|
2137de37b9 | ||
|
3c591ad8a9 | ||
|
b56f4c4558 | ||
|
5d8bcb42c6 | ||
|
b299652e86 | ||
|
8ac4b001a2 | ||
|
6294ce7807 | ||
|
8173cd7776 | ||
|
edaccd86d6 | ||
|
5f77408956 | ||
|
e836523bc3 | ||
|
9f866be110 | ||
|
f6879f40b0 | ||
|
06f47f262f | ||
|
eda52a3b82 | ||
|
3f1ab66899 | ||
|
af844ea9d5 | ||
|
b75efcbca2 | ||
|
25043278ab | ||
|
644069fb23 | ||
|
0eccb6a610 | ||
|
0abd514064 | ||
|
3879fde06d | ||
|
887433fc6a | ||
|
dd7a07bd0d | ||
|
0ee32cf110 | ||
|
72aa68cedc | ||
|
9adffa1ef5 | ||
|
4ca267ea17 | ||
|
833768172d | ||
|
1ec459ea3a | ||
|
66d0ad5803 | ||
|
92ac025e43 | ||
|
e8b2fde753 | ||
|
0fc7999780 | ||
|
3a403392e7 | ||
|
acccc6fd93 | ||
|
40bb4765d4 | ||
|
48c60621b6 | ||
|
51509760e3 | ||
|
1e1610671e | ||
|
de86c37687 | ||
|
6e332bbdf8 | ||
|
8a8a0c7dec | ||
|
d4b9b5a7dd | ||
|
6df541e1fd | ||
|
748087483c | ||
|
ae91fa6a39 | ||
|
2897afce41 | ||
|
ee8091ba91 | ||
|
30b5faebae | ||
|
8d753f821d | ||
|
54eb03d2a1 | ||
|
dd6276e706 | ||
|
f67ec241d4 | ||
|
8ade85edec | ||
|
a2ca18a714 | ||
|
6a83ff2511 | ||
|
bc3a06178b | ||
|
9fda259c0c | ||
|
d4925622f9 | ||
|
dbeaf43b8f | ||
|
f86957e5e1 | ||
|
a2f42d51fd | ||
|
0b71cfaf06 | ||
|
d558ac83b6 | ||
|
74efc94649 | ||
|
2541a345d0 | ||
|
23ce1e930d | ||
|
6ebad84160 | ||
|
24ac9f3e5a | ||
|
2a15b95f18 | ||
|
757150dec1 | ||
|
ddcec82b61 | ||
|
74047453ef | ||
|
dcaed0e90f | ||
|
cae304e07f | ||
|
039ab1ccd7 | ||
|
47ad0ca993 | ||
|
9c751230a1 | ||
|
a468ed316d | ||
|
e725730982 | ||
|
21c12d118b | ||
|
b9e74ee9ab | ||
|
0f2cff5078 | ||
|
e5e196bd7f | ||
|
077402406b | ||
|
54900ae318 | ||
|
3c015bf822 | ||
|
a1efcfb2d0 | ||
|
75d531285a | ||
|
0aad7db2d2 | ||
|
20c3b890ae | ||
|
0126960d79 | ||
|
849d441c5c | ||
|
b5f5627ca6 | ||
|
5b0c1e5b9e | ||
|
3cff0df0ce | ||
|
15fa55c223 | ||
|
594ca3a04b | ||
|
fafe5623d1 | ||
|
141cf39368 | ||
|
1fa050fd7a | ||
|
f36e7430ae | ||
|
94fd75e014 | ||
|
95d6da3111 | ||
|
4dc4704bb4 | ||
|
18bf7f93fa | ||
|
c73f694c63 | ||
|
3688a3bc67 | ||
|
775a3a1c22 | ||
|
bbbb3b4a06 | ||
|
576191cd4e | ||
|
38d398c967 | ||
|
7da44115d3 | ||
|
b54032bdc7 | ||
|
cab497e81e | ||
|
50e9c67609 | ||
|
bd57ea0110 | ||
|
05fe7f8a48 | ||
|
c0bd3b362c | ||
|
6381028fd6 | ||
|
1f328be1bd | ||
|
ddfdb71783 | ||
|
da1478c0c1 | ||
|
40fe3b4358 | ||
|
20fd1db0f4 | ||
|
a65aaab849 | ||
|
a5595189ed | ||
|
4a1da3ebc5 | ||
|
35a4460334 | ||
|
a6ccb37683 | ||
|
68465aed49 | ||
|
fc3aac96f2 | ||
|
32c7669b28 | ||
|
fef30bc671 | ||
|
ae547d27e4 | ||
|
be3e1831d4 | ||
|
45aceea53b | ||
|
25819584bd | ||
|
4c24b70d47 | ||
|
4c12673fbb | ||
|
e935db5075 | ||
|
a7f1f8d327 | ||
|
8c540d7210 | ||
|
4c4b884f8e | ||
|
a3d3fe07ce | ||
|
1ae521f560 | ||
|
7854e1c2c1 | ||
|
a9ff795948 | ||
|
a8e2f97260 | ||
|
d17253b023 | ||
|
ecbf0410eb | ||
|
cffc431bf0 | ||
|
dc54981784 | ||
|
a7ed90f042 | ||
|
08941ab39a | ||
|
b81a8d26e4 | ||
|
af84af7b7a | ||
|
0f813962be | ||
|
fe57f7f489 | ||
|
12e2c04486 | ||
|
6bafb68d77 | ||
|
e8763b3697 | ||
|
6f2924006c | ||
|
062c305cd8 | ||
|
61a4a4bc2f | ||
|
176af55e8c | ||
|
1a51ce712c | ||
|
811da2e159 | ||
|
535bf6e4b9 | ||
|
515f06ba6c | ||
|
6c43e5dba9 | ||
|
d498fabe72 | ||
|
27e71eb142 | ||
|
7c63cb5bca | ||
|
ddf3a687a3 | ||
|
4515eb4637 | ||
|
efd1194307 | ||
|
5e0d8fe4c7 | ||
|
e44a9e8921 | ||
|
ff9e1da1de | ||
|
1ed8642010 | ||
|
38ff46e45c | ||
|
2362d0e838 | ||
|
90d7fc6bc5 | ||
|
bcae0cf441 | ||
|
edababa88e | ||
|
350abda21a | ||
|
1c24f0054a | ||
|
f7eaace7ae | ||
|
8573016bef | ||
|
6bf2708c0e | ||
|
36d7eb7caa | ||
|
4fc8d33d31 | ||
|
c4e2f3bc70 | ||
|
2f69f5afe6 | ||
|
9bcb928715 | ||
|
e3edcf057c | ||
|
06ccf7e9e9 | ||
|
e4ea35e626 | ||
|
bd906a7915 | ||
|
329bece28d | ||
|
0c86c77d42 | ||
|
3df33199bc | ||
|
fc145016ea | ||
|
c17524bc3c | ||
|
d5acd11164 | ||
|
2a66923524 | ||
|
088a0fb4a5 | ||
|
4f10f82580 | ||
|
5aee70ac7a | ||
|
5ff476c6f9 | ||
|
7ad30f15d5 | ||
|
641f1244dd | ||
|
a1fd29b34b | ||
|
90c1cc3e3b | ||
|
ba49054cd7 | ||
|
61854f1d6a | ||
|
1f9ba1d625 | ||
|
644ea7be4a | ||
|
87ab4e7c9b | ||
|
d84e3cacca | ||
|
2f38d960d4 | ||
|
b4acf4f341 | ||
|
62657ad05a | ||
|
f3784505e0 | ||
|
863f51363a | ||
|
22ee6bb137 | ||
|
3972642ba0 | ||
|
e016bd6900 | ||
|
d2588d9de4 | ||
|
07d1692f2b | ||
|
8db9824842 | ||
|
c8521554c8 | ||
|
ceb7aa8b36 | ||
|
cae11cbb86 | ||
|
03ff3e639f | ||
|
f5dbcd5465 | ||
|
f143fceceb | ||
|
8be139d4d1 | ||
|
2fc58fea81 | ||
|
17901fcfef | ||
|
e7dfbf76bb | ||
|
d6b16a7747 | ||
|
17fa830851 | ||
|
149339a8d9 | ||
|
94de29187a | ||
|
a82c1f303b | ||
|
764cca5a70 | ||
|
18a6aa1824 | ||
|
5c00ed352c | ||
|
7e9a7ad49c | ||
|
fe2fec81ac | ||
|
055f0dfc22 | ||
|
ddf9163c47 | ||
|
e80322dab7 | ||
|
7626dd239a | ||
|
9afa1354da | ||
|
58a471e466 | ||
|
e66f47bdf6 | ||
|
21a50cc452 | ||
|
5239790835 | ||
|
0acbd3d5e8 | ||
|
e3da5ef2d5 | ||
|
ecaba82c9d | ||
|
921c9de241 | ||
|
6a0b5c3a3f | ||
|
a8dcc87019 | ||
|
4ec136cab0 | ||
|
cf7718132a | ||
|
939a055d46 | ||
|
01fa1777ac | ||
|
a77436eec3 | ||
|
c268a126dc | ||
|
29e86d4eeb | ||
|
9d18061d0f | ||
|
943114c052 | ||
|
2cb81ef116 | ||
|
c16450adc8 | ||
|
347d54f388 | ||
|
3428baa3fa | ||
|
4f8066a35a | ||
|
04fd05bc7d | ||
|
3abf89596a | ||
|
690ee3dc15 | ||
|
331c882af2 | ||
|
b4eb83d892 | ||
|
4a35573210 | ||
|
e7fabce4e0 | ||
|
feb2c9fc62 | ||
|
dd7fd16b69 | ||
|
d93d6262ce | ||
|
9d7e499adb | ||
|
0d7a148897 | ||
|
9e825811f2 | ||
|
36cbffcc5e | ||
|
55e1f865d8 | ||
|
3f996cd62c | ||
|
58a8028485 | ||
|
190ce5ee31 | ||
|
70aab068fd | ||
|
617d279419 | ||
|
4de088d725 | ||
|
f8fd746678 | ||
|
1529ee59fe | ||
|
19c253b429 | ||
|
13bb9dd715 | ||
|
9b4602acb3 | ||
|
e5448110fc | ||
|
4974defe6f | ||
|
65ceadda2b | ||
|
8b2adb55ed | ||
|
58ca44bd15 | ||
|
ef46451b80 | ||
|
758b0f9734 | ||
|
3650000b31 | ||
|
dbd042ca3e | ||
|
6b9082bdd9 | ||
|
f9baa3bf20 | ||
|
a75feb7f8f | ||
|
009900b29b | ||
|
dc04cf82d8 | ||
|
b2c23a367d | ||
|
338b59a32e | ||
|
07ffd76437 | ||
|
3eaf9f4011 | ||
|
9832831c5e | ||
|
d3259c4782 | ||
|
940c12d9d8 | ||
|
8f2cbe261b | ||
|
e86788034d | ||
|
4ecc0e15ce | ||
|
b01ce31903 | ||
|
87b69c373a | ||
|
07b3160dff | ||
|
096e2791f5 | ||
|
9d456ccfcf | ||
|
ad5c3741e9 | ||
|
fe188bd646 | ||
|
f47984818f | ||
|
7b274b6974 | ||
|
b1806b0a7c | ||
|
ff2e46650c | ||
|
69fe6cdc05 | ||
|
b7e0d14b83 | ||
|
7db6ed9ad5 | ||
|
da0f63f095 | ||
|
90221e8c94 | ||
|
37680c317c | ||
|
70ea6fc9a1 | ||
|
67e692a7f3 | ||
|
34382ac38e | ||
|
b94b08a33c | ||
|
540d66af57 | ||
|
a2deeb0d12 | ||
|
22fe261dd6 | ||
|
b44354ad29 | ||
|
3ffbdb35a2 | ||
|
0504e9ef79 | ||
|
b309287087 | ||
|
e891f2ad6d | ||
|
9b1fb33ac6 | ||
|
8a099b4ae5 | ||
|
2cdd483126 |
@ -1,168 +1,316 @@
|
||||
rtmp
|
||||
edgetpu
|
||||
labelmap
|
||||
rockchip
|
||||
jetson
|
||||
rocm
|
||||
vaapi
|
||||
CUDA
|
||||
hwaccel
|
||||
RTSP
|
||||
Hikvision
|
||||
Dahua
|
||||
Amcrest
|
||||
Reolink
|
||||
Loryta
|
||||
Beelink
|
||||
Celeron
|
||||
vaapi
|
||||
blakeblackshear
|
||||
workdir
|
||||
onvif
|
||||
autotracking
|
||||
openvino
|
||||
tflite
|
||||
deepstack
|
||||
codeproject
|
||||
udev
|
||||
tailscale
|
||||
restream
|
||||
restreaming
|
||||
webrtc
|
||||
ssdlite
|
||||
mobilenet
|
||||
mosquitto
|
||||
datasheet
|
||||
Jellyfin
|
||||
Radeon
|
||||
libva
|
||||
Ubiquiti
|
||||
Unifi
|
||||
Tapo
|
||||
Annke
|
||||
autotracker
|
||||
autotracked
|
||||
variations
|
||||
ONVIF
|
||||
traefik
|
||||
devcontainer
|
||||
rootfs
|
||||
ffprobe
|
||||
autotrack
|
||||
logpipe
|
||||
imread
|
||||
imwrite
|
||||
imencode
|
||||
imutils
|
||||
thresholded
|
||||
timelapse
|
||||
ultrafast
|
||||
sleeptime
|
||||
radeontop
|
||||
vainfo
|
||||
tmpfs
|
||||
homography
|
||||
websockets
|
||||
LIBAVFORMAT
|
||||
NTSC
|
||||
onnxruntime
|
||||
fourcc
|
||||
radeonsi
|
||||
paho
|
||||
imagestream
|
||||
jsonify
|
||||
cgroups
|
||||
sysconf
|
||||
memlimit
|
||||
gpuload
|
||||
nvml
|
||||
setproctitle
|
||||
psutil
|
||||
Kalman
|
||||
frontdoor
|
||||
namedtuples
|
||||
zeep
|
||||
fflags
|
||||
probesize
|
||||
wallclock
|
||||
rknn
|
||||
socs
|
||||
pydantic
|
||||
shms
|
||||
imdecode
|
||||
colormap
|
||||
webui
|
||||
mse
|
||||
jsmpeg
|
||||
unreviewed
|
||||
Chromecast
|
||||
Swipeable
|
||||
flac
|
||||
scroller
|
||||
cmdline
|
||||
toggleable
|
||||
bottombar
|
||||
opencv
|
||||
apexcharts
|
||||
buildx
|
||||
mqtt
|
||||
rawvideo
|
||||
defragment
|
||||
Norfair
|
||||
subclassing
|
||||
yolo
|
||||
tensorrt
|
||||
blackshear
|
||||
stylelint
|
||||
HACS
|
||||
homeassistant
|
||||
hass
|
||||
castable
|
||||
mobiledet
|
||||
framebuffer
|
||||
mjpeg
|
||||
substream
|
||||
codeowner
|
||||
noninteractive
|
||||
restreamed
|
||||
mountpoint
|
||||
fstype
|
||||
OWASP
|
||||
iotop
|
||||
letsencrypt
|
||||
fullchain
|
||||
lsusb
|
||||
iostat
|
||||
usermod
|
||||
balena
|
||||
passwordless
|
||||
debconf
|
||||
dpkg
|
||||
poweroff
|
||||
surveillance
|
||||
qnap
|
||||
homekit
|
||||
colorspace
|
||||
quantisation
|
||||
skylake
|
||||
Cuvid
|
||||
foscam
|
||||
onnx
|
||||
numpy
|
||||
protobuf
|
||||
aarch
|
||||
absdiff
|
||||
airockchip
|
||||
Alloc
|
||||
alpr
|
||||
Amcrest
|
||||
amdgpu
|
||||
chipset
|
||||
referer
|
||||
mpegts
|
||||
webp
|
||||
analyzeduration
|
||||
Annke
|
||||
apexcharts
|
||||
arange
|
||||
argmax
|
||||
argmin
|
||||
argpartition
|
||||
ascontiguousarray
|
||||
astype
|
||||
authelia
|
||||
authentik
|
||||
unichip
|
||||
rebranded
|
||||
udevadm
|
||||
autodetected
|
||||
automations
|
||||
unraid
|
||||
hideable
|
||||
autotrack
|
||||
autotracked
|
||||
autotracker
|
||||
autotracking
|
||||
balena
|
||||
Beelink
|
||||
BGRA
|
||||
BHWC
|
||||
blackshear
|
||||
blakeblackshear
|
||||
bottombar
|
||||
buildx
|
||||
castable
|
||||
cdist
|
||||
Celeron
|
||||
cgroups
|
||||
chipset
|
||||
chromadb
|
||||
Chromecast
|
||||
cmdline
|
||||
codeowner
|
||||
CODEOWNERS
|
||||
codeproject
|
||||
colormap
|
||||
colorspace
|
||||
comms
|
||||
coro
|
||||
ctypeslib
|
||||
CUDA
|
||||
Cuvid
|
||||
Dahua
|
||||
datasheet
|
||||
debconf
|
||||
deci
|
||||
deepstack
|
||||
defragment
|
||||
devcontainer
|
||||
DEVICEMAP
|
||||
discardcorrupt
|
||||
dpkg
|
||||
dsize
|
||||
dtype
|
||||
ECONNRESET
|
||||
edgetpu
|
||||
facenet
|
||||
fastapi
|
||||
faststart
|
||||
fflags
|
||||
ffprobe
|
||||
fillna
|
||||
flac
|
||||
foscam
|
||||
fourcc
|
||||
framebuffer
|
||||
fregate
|
||||
frégate
|
||||
fromarray
|
||||
frombuffer
|
||||
frontdoor
|
||||
fstype
|
||||
fullchain
|
||||
fullscreen
|
||||
genai
|
||||
generativeai
|
||||
genpts
|
||||
getpid
|
||||
gpuload
|
||||
HACS
|
||||
Hailo
|
||||
hass
|
||||
hconcat
|
||||
healthcheck
|
||||
keepalive
|
||||
hideable
|
||||
Hikvision
|
||||
homeassistant
|
||||
homekit
|
||||
homography
|
||||
hsize
|
||||
hstack
|
||||
httpx
|
||||
hwaccel
|
||||
hwdownload
|
||||
hwmap
|
||||
hwupload
|
||||
iloc
|
||||
imagestream
|
||||
imdecode
|
||||
imencode
|
||||
imread
|
||||
imutils
|
||||
imwrite
|
||||
interp
|
||||
iostat
|
||||
iotop
|
||||
itemsize
|
||||
Jellyfin
|
||||
jetson
|
||||
jetsons
|
||||
jina
|
||||
jinaai
|
||||
joserfc
|
||||
jsmpeg
|
||||
jsonify
|
||||
Kalman
|
||||
keepalive
|
||||
keepdims
|
||||
labelmap
|
||||
letsencrypt
|
||||
levelname
|
||||
LIBAVFORMAT
|
||||
libedgetpu
|
||||
libnvinfer
|
||||
libva
|
||||
libwebp
|
||||
libx
|
||||
libyolo
|
||||
linalg
|
||||
localzone
|
||||
logpipe
|
||||
Loryta
|
||||
lstsq
|
||||
lsusb
|
||||
markupsafe
|
||||
maxsplit
|
||||
MEMHOSTALLOC
|
||||
memlimit
|
||||
meshgrid
|
||||
metadatas
|
||||
migraphx
|
||||
minilm
|
||||
mjpeg
|
||||
mkfifo
|
||||
mobiledet
|
||||
mobilenet
|
||||
modelpath
|
||||
mosquitto
|
||||
mountpoint
|
||||
movflags
|
||||
mpegts
|
||||
mqtt
|
||||
mse
|
||||
msenc
|
||||
namedtuples
|
||||
nbytes
|
||||
nchw
|
||||
ndarray
|
||||
ndimage
|
||||
nethogs
|
||||
newaxis
|
||||
nhwc
|
||||
NOBLOCK
|
||||
nobuffer
|
||||
nokey
|
||||
NONBLOCK
|
||||
noninteractive
|
||||
noprint
|
||||
Norfair
|
||||
nptype
|
||||
NTSC
|
||||
numpy
|
||||
nvenc
|
||||
nvhost
|
||||
nvml
|
||||
nvmpi
|
||||
ollama
|
||||
onnx
|
||||
onnxruntime
|
||||
onvif
|
||||
ONVIF
|
||||
openai
|
||||
opencv
|
||||
openvino
|
||||
OWASP
|
||||
paddleocr
|
||||
paho
|
||||
passwordless
|
||||
popleft
|
||||
posthog
|
||||
postprocess
|
||||
poweroff
|
||||
preexec
|
||||
probesize
|
||||
protobuf
|
||||
pstate
|
||||
psutil
|
||||
pubkey
|
||||
putenv
|
||||
pycache
|
||||
pydantic
|
||||
pyobj
|
||||
pysqlite
|
||||
pytz
|
||||
pywebpush
|
||||
qnap
|
||||
quantisation
|
||||
Radeon
|
||||
radeonsi
|
||||
radeontop
|
||||
rawvideo
|
||||
rcond
|
||||
RDONLY
|
||||
rebranded
|
||||
referer
|
||||
reindex
|
||||
Reolink
|
||||
restream
|
||||
restreamed
|
||||
restreaming
|
||||
rkmpp
|
||||
rknn
|
||||
rkrga
|
||||
rockchip
|
||||
rocm
|
||||
rocminfo
|
||||
rootfs
|
||||
rtmp
|
||||
RTSP
|
||||
ruamel
|
||||
scroller
|
||||
setproctitle
|
||||
setpts
|
||||
shms
|
||||
SIGUSR
|
||||
skylake
|
||||
sleeptime
|
||||
SNDMORE
|
||||
socs
|
||||
sqliteq
|
||||
sqlitevecq
|
||||
ssdlite
|
||||
statm
|
||||
stimeout
|
||||
stylelint
|
||||
subclassing
|
||||
substream
|
||||
superfast
|
||||
surveillance
|
||||
svscan
|
||||
Swipeable
|
||||
sysconf
|
||||
tailscale
|
||||
Tapo
|
||||
tensorrt
|
||||
tflite
|
||||
thresholded
|
||||
timelapse
|
||||
tmpfs
|
||||
tobytes
|
||||
toggleable
|
||||
traefik
|
||||
tzlocal
|
||||
Ubiquiti
|
||||
udev
|
||||
udevadm
|
||||
ultrafast
|
||||
unichip
|
||||
unidecode
|
||||
Unifi
|
||||
unixepoch
|
||||
unraid
|
||||
unreviewed
|
||||
userdata
|
||||
usermod
|
||||
uvicorn
|
||||
vaapi
|
||||
vainfo
|
||||
variations
|
||||
vbios
|
||||
vconcat
|
||||
vitb
|
||||
vstream
|
||||
vsync
|
||||
wallclock
|
||||
webp
|
||||
webpush
|
||||
webrtc
|
||||
websockets
|
||||
webui
|
||||
werkzeug
|
||||
workdir
|
||||
WRONLY
|
||||
wsgirefserver
|
||||
wsgiutils
|
||||
wsize
|
||||
xaddr
|
||||
xmaxs
|
||||
xmins
|
||||
XPUB
|
||||
XSUB
|
||||
ymaxs
|
||||
ymins
|
||||
yolo
|
||||
yolonas
|
||||
yolox
|
||||
zeep
|
||||
zerolatency
|
@ -52,7 +52,8 @@
|
||||
"csstools.postcss",
|
||||
"blanu.vscode-styled-jsx",
|
||||
"bradlc.vscode-tailwindcss",
|
||||
"charliermarsh.ruff"
|
||||
"charliermarsh.ruff",
|
||||
"eamodio.gitlens"
|
||||
],
|
||||
"settings": {
|
||||
"remote.autoForwardPorts": false,
|
||||
|
@ -3,10 +3,12 @@
|
||||
set -euxo pipefail
|
||||
|
||||
# Cleanup the old github host key
|
||||
sed -i -e '/AAAAB3NzaC1yc2EAAAABIwAAAQEAq2A7hRGmdnm9tUDbO9IDSwBK6TbQa+PXYPCPy6rbTrTtw7PHkccKrpp0yVhp5HdEIcKr6pLlVDBfOLX9QUsyCOV0wzfjIJNlGEYsdlLJizHhbn2mUjvSAHQqZETYP81eFzLQNnPHt4EVVUh7VfDESU84KezmD5QlWpXLmvU31\/yMf+Se8xhHTvKSCZIFImWwoG6mbUoWf9nzpIoaSjB+weqqUUmpaaasXVal72J+UX2B+2RPW3RcT0eOzQgqlJL3RKrTJvdsjE3JEAvGq3lGHSZXy28G3skua2SmVi\/w4yCE6gbODqnTWlg7+wC604ydGXA8VJiS5ap43JXiUFFAaQ==/d' ~/.ssh/known_hosts
|
||||
# Add new github host key
|
||||
curl -L https://api.github.com/meta | jq -r '.ssh_keys | .[]' | \
|
||||
sed -e 's/^/github.com /' >> ~/.ssh/known_hosts
|
||||
if [[ -f ~/.ssh/known_hosts ]]; then
|
||||
# Add new github host key
|
||||
sed -i -e '/AAAAB3NzaC1yc2EAAAABIwAAAQEAq2A7hRGmdnm9tUDbO9IDSwBK6TbQa+PXYPCPy6rbTrTtw7PHkccKrpp0yVhp5HdEIcKr6pLlVDBfOLX9QUsyCOV0wzfjIJNlGEYsdlLJizHhbn2mUjvSAHQqZETYP81eFzLQNnPHt4EVVUh7VfDESU84KezmD5QlWpXLmvU31\/yMf+Se8xhHTvKSCZIFImWwoG6mbUoWf9nzpIoaSjB+weqqUUmpaaasXVal72J+UX2B+2RPW3RcT0eOzQgqlJL3RKrTJvdsjE3JEAvGq3lGHSZXy28G3skua2SmVi\/w4yCE6gbODqnTWlg7+wC604ydGXA8VJiS5ap43JXiUFFAaQ==/d' ~/.ssh/known_hosts
|
||||
curl -L https://api.github.com/meta | jq -r '.ssh_keys | .[]' | \
|
||||
sed -e 's/^/github.com /' >> ~/.ssh/known_hosts
|
||||
fi
|
||||
|
||||
# Frigate normal container runs as root, so it have permission to create
|
||||
# the folders. But the devcontainer runs as the host user, so we need to
|
||||
@ -17,7 +19,7 @@ sudo chown -R "$(id -u):$(id -g)" /media/frigate
|
||||
# When started as a service, LIBAVFORMAT_VERSION_MAJOR is defined in the
|
||||
# s6 service file. For dev, where frigate is started from an interactive
|
||||
# shell, we define it in .bashrc instead.
|
||||
echo 'export LIBAVFORMAT_VERSION_MAJOR=$(ffmpeg -version | grep -Po "libavformat\W+\K\d+")' >> $HOME/.bashrc
|
||||
echo 'export LIBAVFORMAT_VERSION_MAJOR=$(/usr/lib/ffmpeg/7.0/bin/ffmpeg -version | grep -Po "libavformat\W+\K\d+")' >> $HOME/.bashrc
|
||||
|
||||
make version
|
||||
|
||||
|
@ -90,6 +90,9 @@ body:
|
||||
- HassOS Addon
|
||||
- Docker Compose
|
||||
- Docker CLI
|
||||
- Proxmox via Docker
|
||||
- Proxmox via TTeck Script
|
||||
- Windows WSL2
|
||||
validations:
|
||||
required: true
|
||||
- type: dropdown
|
||||
@ -102,7 +105,7 @@ body:
|
||||
- TensorRT
|
||||
- RKNN
|
||||
- Other
|
||||
- CPU (no Coral)
|
||||
- CPU (no coral)
|
||||
validations:
|
||||
required: true
|
||||
- type: dropdown
|
||||
|
11
.github/DISCUSSION_TEMPLATE/config-support.yml
vendored
@ -76,6 +76,17 @@ body:
|
||||
- HassOS Addon
|
||||
- Docker Compose
|
||||
- Docker CLI
|
||||
- Proxmox via Docker
|
||||
- Proxmox via TTeck Script
|
||||
- Windows WSL2
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
id: docker
|
||||
attributes:
|
||||
label: docker-compose file or Docker CLI command
|
||||
description: This will be automatically formatted into code, so no need for backticks.
|
||||
render: yaml
|
||||
validations:
|
||||
required: true
|
||||
- type: dropdown
|
||||
|
25
.github/DISCUSSION_TEMPLATE/detector-support.yml
vendored
@ -48,28 +48,6 @@ body:
|
||||
render: shell
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
id: go2rtclogs
|
||||
attributes:
|
||||
label: Relevant go2rtc log output
|
||||
description: Please copy and paste any relevant go2rtc log output. Include logs before and after your exact error when possible. Logs can be viewed via the Frigate UI, Docker, or the go2rtc dashboard. This will be automatically formatted into code, so no need for backticks.
|
||||
render: shell
|
||||
validations:
|
||||
required: true
|
||||
- type: dropdown
|
||||
id: os
|
||||
attributes:
|
||||
label: Operating system
|
||||
options:
|
||||
- HassOS
|
||||
- Debian
|
||||
- Other Linux
|
||||
- Proxmox
|
||||
- UNRAID
|
||||
- Windows
|
||||
- Other
|
||||
validations:
|
||||
required: true
|
||||
- type: dropdown
|
||||
id: install-method
|
||||
attributes:
|
||||
@ -78,6 +56,9 @@ body:
|
||||
- HassOS Addon
|
||||
- Docker Compose
|
||||
- Docker CLI
|
||||
- Proxmox via Docker
|
||||
- Proxmox via TTeck Script
|
||||
- Windows WSL2
|
||||
validations:
|
||||
required: true
|
||||
- type: dropdown
|
||||
|
25
.github/DISCUSSION_TEMPLATE/general-support.yml
vendored
@ -68,20 +68,6 @@ body:
|
||||
label: Frigate stats
|
||||
description: Output from frigate's /api/stats endpoint
|
||||
render: json
|
||||
- type: dropdown
|
||||
id: os
|
||||
attributes:
|
||||
label: Operating system
|
||||
options:
|
||||
- HassOS
|
||||
- Debian
|
||||
- Other Linux
|
||||
- Proxmox
|
||||
- UNRAID
|
||||
- Windows
|
||||
- Other
|
||||
validations:
|
||||
required: true
|
||||
- type: dropdown
|
||||
id: install-method
|
||||
attributes:
|
||||
@ -90,6 +76,17 @@ body:
|
||||
- HassOS Addon
|
||||
- Docker Compose
|
||||
- Docker CLI
|
||||
- Proxmox via Docker
|
||||
- Proxmox via TTeck Script
|
||||
- Windows WSL2
|
||||
validations:
|
||||
required: true
|
||||
- type: textarea
|
||||
id: docker
|
||||
attributes:
|
||||
label: docker-compose file or Docker CLI command
|
||||
description: This will be automatically formatted into code, so no need for backticks.
|
||||
render: yaml
|
||||
validations:
|
||||
required: true
|
||||
- type: dropdown
|
||||
|
@ -24,12 +24,6 @@ body:
|
||||
description: Visible on the System page in the Web UI. Please include the full version including the build identifier (eg. 0.14.0-ea36ds1)
|
||||
validations:
|
||||
required: true
|
||||
- type: input
|
||||
attributes:
|
||||
label: In which browser(s) are you experiencing the issue with?
|
||||
placeholder: Google Chrome 88.0.4324.150
|
||||
description: >
|
||||
Provide the full name and don't forget to add the version!
|
||||
- type: textarea
|
||||
id: config
|
||||
attributes:
|
||||
@ -70,20 +64,6 @@ body:
|
||||
render: shell
|
||||
validations:
|
||||
required: true
|
||||
- type: dropdown
|
||||
id: os
|
||||
attributes:
|
||||
label: Operating system
|
||||
options:
|
||||
- HassOS
|
||||
- Debian
|
||||
- Other Linux
|
||||
- Proxmox
|
||||
- UNRAID
|
||||
- Windows
|
||||
- Other
|
||||
validations:
|
||||
required: true
|
||||
- type: dropdown
|
||||
id: install-method
|
||||
attributes:
|
||||
@ -92,6 +72,22 @@ body:
|
||||
- HassOS Addon
|
||||
- Docker Compose
|
||||
- Docker CLI
|
||||
- Proxmox via Docker
|
||||
- Proxmox via TTeck Script
|
||||
- Windows WSL2
|
||||
validations:
|
||||
required: true
|
||||
- type: dropdown
|
||||
id: object-detector
|
||||
attributes:
|
||||
label: Object Detector
|
||||
options:
|
||||
- Coral
|
||||
- OpenVino
|
||||
- TensorRT
|
||||
- RKNN
|
||||
- Other
|
||||
- CPU (no coral)
|
||||
validations:
|
||||
required: true
|
||||
- type: dropdown
|
||||
|
4
.github/actions/setup/action.yml
vendored
@ -33,9 +33,9 @@ runs:
|
||||
with:
|
||||
string: ${{ github.repository }}
|
||||
- name: Set up QEMU
|
||||
uses: docker/setup-qemu-action@v2
|
||||
uses: docker/setup-qemu-action@v3
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v2
|
||||
uses: docker/setup-buildx-action@v3
|
||||
- name: Log in to the Container registry
|
||||
uses: docker/login-action@465a07811f14bebb1938fbed4728c6a1ff8901fc
|
||||
with:
|
||||
|
32
.github/pull_request_template.md
vendored
Normal file
@ -0,0 +1,32 @@
|
||||
## Proposed change
|
||||
<!--
|
||||
Describe what this pull request does and how it will benefit users of Frigate.
|
||||
Please describe in detail any considerations, breaking changes, etc. that are
|
||||
made in this pull request.
|
||||
-->
|
||||
|
||||
|
||||
## Type of change
|
||||
|
||||
- [ ] Dependency upgrade
|
||||
- [ ] Bugfix (non-breaking change which fixes an issue)
|
||||
- [ ] New feature
|
||||
- [ ] Breaking change (fix/feature causing existing functionality to break)
|
||||
- [ ] Code quality improvements to existing code
|
||||
- [ ] Documentation Update
|
||||
|
||||
## Additional information
|
||||
|
||||
- This PR fixes or closes issue: fixes #
|
||||
- This PR is related to issue:
|
||||
|
||||
## Checklist
|
||||
|
||||
<!--
|
||||
Put an `x` in the boxes that apply.
|
||||
-->
|
||||
|
||||
- [ ] The code change is tested and works locally.
|
||||
- [ ] Local tests pass. **Your PR cannot be merged unless tests pass**
|
||||
- [ ] There is no commented out code in this PR.
|
||||
- [ ] The code has been formatted using Ruff (`ruff format frigate`)
|
138
.github/workflows/ci.yml
vendored
@ -6,6 +6,8 @@ on:
|
||||
branches:
|
||||
- dev
|
||||
- master
|
||||
paths-ignore:
|
||||
- "docs/**"
|
||||
|
||||
# only run the latest commit to avoid cache overwrites
|
||||
concurrency:
|
||||
@ -17,11 +19,13 @@ env:
|
||||
|
||||
jobs:
|
||||
amd64_build:
|
||||
runs-on: ubuntu-latest
|
||||
runs-on: ubuntu-22.04
|
||||
name: AMD64 Build
|
||||
steps:
|
||||
- name: Check out code
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- name: Set up QEMU and Buildx
|
||||
id: setup
|
||||
uses: ./.github/actions/setup
|
||||
@ -38,11 +42,13 @@ jobs:
|
||||
tags: ${{ steps.setup.outputs.image-name }}-amd64
|
||||
cache-from: type=registry,ref=${{ steps.setup.outputs.cache-name }}-amd64
|
||||
arm64_build:
|
||||
runs-on: ubuntu-latest
|
||||
runs-on: ubuntu-22.04
|
||||
name: ARM Build
|
||||
steps:
|
||||
- name: Check out code
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- name: Set up QEMU and Buildx
|
||||
id: setup
|
||||
uses: ./.github/actions/setup
|
||||
@ -60,8 +66,9 @@ jobs:
|
||||
${{ steps.setup.outputs.image-name }}-standard-arm64
|
||||
cache-from: type=registry,ref=${{ steps.setup.outputs.cache-name }}-arm64
|
||||
- name: Build and push RPi build
|
||||
uses: docker/bake-action@v4
|
||||
uses: docker/bake-action@v6
|
||||
with:
|
||||
source: .
|
||||
push: true
|
||||
targets: rpi
|
||||
files: docker/rpi/rpi.hcl
|
||||
@ -69,21 +76,15 @@ jobs:
|
||||
rpi.tags=${{ steps.setup.outputs.image-name }}-rpi
|
||||
*.cache-from=type=registry,ref=${{ steps.setup.outputs.cache-name }}-arm64
|
||||
*.cache-to=type=registry,ref=${{ steps.setup.outputs.cache-name }}-arm64,mode=max
|
||||
- name: Build and push Rockchip build
|
||||
uses: docker/bake-action@v3
|
||||
with:
|
||||
push: true
|
||||
targets: rk
|
||||
files: docker/rockchip/rk.hcl
|
||||
set: |
|
||||
rk.tags=${{ steps.setup.outputs.image-name }}-rk
|
||||
*.cache-from=type=gha
|
||||
jetson_jp4_build:
|
||||
runs-on: ubuntu-latest
|
||||
if: false
|
||||
runs-on: ubuntu-22.04
|
||||
name: Jetson Jetpack 4
|
||||
steps:
|
||||
- name: Check out code
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- name: Set up QEMU and Buildx
|
||||
id: setup
|
||||
uses: ./.github/actions/setup
|
||||
@ -95,8 +96,9 @@ jobs:
|
||||
BASE_IMAGE: timongentzsch/l4t-ubuntu20-opencv:latest
|
||||
SLIM_BASE: timongentzsch/l4t-ubuntu20-opencv:latest
|
||||
TRT_BASE: timongentzsch/l4t-ubuntu20-opencv:latest
|
||||
uses: docker/bake-action@v4
|
||||
uses: docker/bake-action@v6
|
||||
with:
|
||||
source: .
|
||||
push: true
|
||||
targets: tensorrt
|
||||
files: docker/tensorrt/trt.hcl
|
||||
@ -105,11 +107,14 @@ jobs:
|
||||
*.cache-from=type=registry,ref=${{ steps.setup.outputs.cache-name }}-jp4
|
||||
*.cache-to=type=registry,ref=${{ steps.setup.outputs.cache-name }}-jp4,mode=max
|
||||
jetson_jp5_build:
|
||||
runs-on: ubuntu-latest
|
||||
if: false
|
||||
runs-on: ubuntu-22.04
|
||||
name: Jetson Jetpack 5
|
||||
steps:
|
||||
- name: Check out code
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- name: Set up QEMU and Buildx
|
||||
id: setup
|
||||
uses: ./.github/actions/setup
|
||||
@ -121,8 +126,9 @@ jobs:
|
||||
BASE_IMAGE: nvcr.io/nvidia/l4t-tensorrt:r8.5.2-runtime
|
||||
SLIM_BASE: nvcr.io/nvidia/l4t-tensorrt:r8.5.2-runtime
|
||||
TRT_BASE: nvcr.io/nvidia/l4t-tensorrt:r8.5.2-runtime
|
||||
uses: docker/bake-action@v4
|
||||
uses: docker/bake-action@v6
|
||||
with:
|
||||
source: .
|
||||
push: true
|
||||
targets: tensorrt
|
||||
files: docker/tensorrt/trt.hcl
|
||||
@ -131,13 +137,15 @@ jobs:
|
||||
*.cache-from=type=registry,ref=${{ steps.setup.outputs.cache-name }}-jp5
|
||||
*.cache-to=type=registry,ref=${{ steps.setup.outputs.cache-name }}-jp5,mode=max
|
||||
amd64_extra_builds:
|
||||
runs-on: ubuntu-latest
|
||||
runs-on: ubuntu-22.04
|
||||
name: AMD64 Extra Build
|
||||
needs:
|
||||
- amd64_build
|
||||
steps:
|
||||
- name: Check out code
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- name: Set up QEMU and Buildx
|
||||
id: setup
|
||||
uses: ./.github/actions/setup
|
||||
@ -146,8 +154,9 @@ jobs:
|
||||
- name: Build and push TensorRT (x86 GPU)
|
||||
env:
|
||||
COMPUTE_LEVEL: "50 60 70 80 90"
|
||||
uses: docker/bake-action@v4
|
||||
uses: docker/bake-action@v6
|
||||
with:
|
||||
source: .
|
||||
push: true
|
||||
targets: tensorrt
|
||||
files: docker/tensorrt/trt.hcl
|
||||
@ -155,61 +164,48 @@ jobs:
|
||||
tensorrt.tags=${{ steps.setup.outputs.image-name }}-tensorrt
|
||||
*.cache-from=type=registry,ref=${{ steps.setup.outputs.cache-name }}-amd64
|
||||
*.cache-to=type=registry,ref=${{ steps.setup.outputs.cache-name }}-amd64,mode=max
|
||||
#- name: AMD/ROCm general build
|
||||
# env:
|
||||
# AMDGPU: gfx
|
||||
# HSA_OVERRIDE: 0
|
||||
# uses: docker/bake-action@v3
|
||||
# with:
|
||||
# push: true
|
||||
# targets: rocm
|
||||
# files: docker/rocm/rocm.hcl
|
||||
# set: |
|
||||
# rocm.tags=${{ steps.setup.outputs.image-name }}-rocm
|
||||
# *.cache-from=type=gha
|
||||
#- name: AMD/ROCm gfx900
|
||||
# env:
|
||||
# AMDGPU: gfx900
|
||||
# HSA_OVERRIDE: 1
|
||||
# HSA_OVERRIDE_GFX_VERSION: 9.0.0
|
||||
# uses: docker/bake-action@v3
|
||||
# with:
|
||||
# push: true
|
||||
# targets: rocm
|
||||
# files: docker/rocm/rocm.hcl
|
||||
# set: |
|
||||
# rocm.tags=${{ steps.setup.outputs.image-name }}-rocm-gfx900
|
||||
# *.cache-from=type=gha
|
||||
#- name: AMD/ROCm gfx1030
|
||||
# env:
|
||||
# AMDGPU: gfx1030
|
||||
# HSA_OVERRIDE: 1
|
||||
# HSA_OVERRIDE_GFX_VERSION: 10.3.0
|
||||
# uses: docker/bake-action@v3
|
||||
# with:
|
||||
# push: true
|
||||
# targets: rocm
|
||||
# files: docker/rocm/rocm.hcl
|
||||
# set: |
|
||||
# rocm.tags=${{ steps.setup.outputs.image-name }}-rocm-gfx1030
|
||||
# *.cache-from=type=gha
|
||||
#- name: AMD/ROCm gfx1100
|
||||
# env:
|
||||
# AMDGPU: gfx1100
|
||||
# HSA_OVERRIDE: 1
|
||||
# HSA_OVERRIDE_GFX_VERSION: 11.0.0
|
||||
# uses: docker/bake-action@v3
|
||||
# with:
|
||||
# push: true
|
||||
# targets: rocm
|
||||
# files: docker/rocm/rocm.hcl
|
||||
# set: |
|
||||
# rocm.tags=${{ steps.setup.outputs.image-name }}-rocm-gfx1100
|
||||
# *.cache-from=type=gha
|
||||
- name: AMD/ROCm general build
|
||||
env:
|
||||
AMDGPU: gfx
|
||||
HSA_OVERRIDE: 0
|
||||
uses: docker/bake-action@v6
|
||||
with:
|
||||
source: .
|
||||
push: true
|
||||
targets: rocm
|
||||
files: docker/rocm/rocm.hcl
|
||||
set: |
|
||||
rocm.tags=${{ steps.setup.outputs.image-name }}-rocm
|
||||
*.cache-from=type=gha
|
||||
arm64_extra_builds:
|
||||
runs-on: ubuntu-22.04
|
||||
name: ARM Extra Build
|
||||
needs:
|
||||
- arm64_build
|
||||
steps:
|
||||
- name: Check out code
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- name: Set up QEMU and Buildx
|
||||
id: setup
|
||||
uses: ./.github/actions/setup
|
||||
with:
|
||||
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
- name: Build and push Rockchip build
|
||||
uses: docker/bake-action@v6
|
||||
with:
|
||||
source: .
|
||||
push: true
|
||||
targets: rk
|
||||
files: docker/rockchip/rk.hcl
|
||||
set: |
|
||||
rk.tags=${{ steps.setup.outputs.image-name }}-rk
|
||||
*.cache-from=type=gha
|
||||
# The majority of users running arm64 are rpi users, so the rpi
|
||||
# build should be the primary arm64 image
|
||||
assemble_default_build:
|
||||
runs-on: ubuntu-latest
|
||||
runs-on: ubuntu-22.04
|
||||
name: Assemble and push default build
|
||||
needs:
|
||||
- amd64_build
|
||||
@ -220,7 +216,7 @@ jobs:
|
||||
with:
|
||||
string: ${{ github.repository }}
|
||||
- name: Log in to the Container registry
|
||||
uses: docker/login-action@0d4c9c5ea7693da7b068278f7b52bda2a190a446
|
||||
uses: docker/login-action@9780b0c442fbb1117ed29e0efdff1e18412f7567
|
||||
with:
|
||||
registry: ghcr.io
|
||||
username: ${{ github.actor }}
|
||||
|
24
.github/workflows/dependabot-auto-merge.yaml
vendored
@ -1,24 +0,0 @@
|
||||
name: dependabot-auto-merge
|
||||
on: pull_request
|
||||
|
||||
permissions:
|
||||
contents: write
|
||||
|
||||
jobs:
|
||||
dependabot-auto-merge:
|
||||
runs-on: ubuntu-latest
|
||||
if: github.actor == 'dependabot[bot]'
|
||||
steps:
|
||||
- name: Get Dependabot metadata
|
||||
id: metadata
|
||||
uses: dependabot/fetch-metadata@v2
|
||||
with:
|
||||
github-token: ${{ secrets.GITHUB_TOKEN }}
|
||||
- name: Enable auto-merge for Dependabot PRs
|
||||
if: steps.metadata.outputs.dependency-type == 'direct:development' && (steps.metadata.outputs.update-type == 'version-update:semver-minor' || steps.metadata.outputs.update-type == 'version-update:semver-patch')
|
||||
run: |
|
||||
gh pr review --approve "$PR_URL"
|
||||
gh pr merge --auto --squash "$PR_URL"
|
||||
env:
|
||||
PR_URL: ${{ github.event.pull_request.html_url }}
|
||||
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
19
.github/workflows/pull_request.yml
vendored
@ -1,9 +1,12 @@
|
||||
name: On pull request
|
||||
|
||||
on: pull_request
|
||||
on:
|
||||
pull_request:
|
||||
paths-ignore:
|
||||
- "docs/**"
|
||||
|
||||
env:
|
||||
DEFAULT_PYTHON: 3.9
|
||||
DEFAULT_PYTHON: 3.11
|
||||
|
||||
jobs:
|
||||
build_devcontainer:
|
||||
@ -16,6 +19,8 @@ jobs:
|
||||
DOCKER_BUILDKIT: "1"
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- uses: actions/setup-node@master
|
||||
with:
|
||||
node-version: 16.x
|
||||
@ -35,6 +40,8 @@ jobs:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- uses: actions/setup-node@master
|
||||
with:
|
||||
node-version: 16.x
|
||||
@ -49,6 +56,8 @@ jobs:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- uses: actions/setup-node@master
|
||||
with:
|
||||
node-version: 20.x
|
||||
@ -64,8 +73,10 @@ jobs:
|
||||
steps:
|
||||
- name: Check out the repository
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- name: Set up Python ${{ env.DEFAULT_PYTHON }}
|
||||
uses: actions/setup-python@v5.1.0
|
||||
uses: actions/setup-python@v5.3.0
|
||||
with:
|
||||
python-version: ${{ env.DEFAULT_PYTHON }}
|
||||
- name: Install requirements
|
||||
@ -85,6 +96,8 @@ jobs:
|
||||
steps:
|
||||
- name: Check out code
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- uses: actions/setup-node@master
|
||||
with:
|
||||
node-version: 16.x
|
||||
|
15
.github/workflows/release.yml
vendored
@ -11,21 +11,26 @@ jobs:
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v4
|
||||
with:
|
||||
persist-credentials: false
|
||||
- id: lowercaseRepo
|
||||
uses: ASzc/change-string-case-action@v6
|
||||
with:
|
||||
string: ${{ github.repository }}
|
||||
- name: Log in to the Container registry
|
||||
uses: docker/login-action@0d4c9c5ea7693da7b068278f7b52bda2a190a446
|
||||
uses: docker/login-action@9780b0c442fbb1117ed29e0efdff1e18412f7567
|
||||
with:
|
||||
registry: ghcr.io
|
||||
username: ${{ github.actor }}
|
||||
password: ${{ secrets.GITHUB_TOKEN }}
|
||||
- name: Create tag variables
|
||||
env:
|
||||
TAG: ${{ github.ref_name }}
|
||||
LOWERCASE_REPO: ${{ steps.lowercaseRepo.outputs.lowercase }}
|
||||
run: |
|
||||
BUILD_TYPE=$([[ "${{ github.ref_name }}" =~ ^v[0-9]+\.[0-9]+\.[0-9]+$ ]] && echo "stable" || echo "beta")
|
||||
BUILD_TYPE=$([[ "${TAG}" =~ ^v[0-9]+\.[0-9]+\.[0-9]+$ ]] && echo "stable" || echo "beta")
|
||||
echo "BUILD_TYPE=${BUILD_TYPE}" >> $GITHUB_ENV
|
||||
echo "BASE=ghcr.io/${{ steps.lowercaseRepo.outputs.lowercase }}" >> $GITHUB_ENV
|
||||
echo "BASE=ghcr.io/${LOWERCASE_REPO}" >> $GITHUB_ENV
|
||||
echo "BUILD_TAG=${GITHUB_SHA::7}" >> $GITHUB_ENV
|
||||
echo "CLEAN_VERSION=$(echo ${GITHUB_REF##*/} | tr '[:upper:]' '[:lower:]' | sed 's/^[v]//')" >> $GITHUB_ENV
|
||||
- name: Tag and push the main image
|
||||
@ -34,14 +39,14 @@ jobs:
|
||||
STABLE_TAG=${BASE}:stable
|
||||
PULL_TAG=${BASE}:${BUILD_TAG}
|
||||
docker run --rm -v $HOME/.docker/config.json:/config.json quay.io/skopeo/stable:latest copy --authfile /config.json --multi-arch all docker://${PULL_TAG} docker://${VERSION_TAG}
|
||||
for variant in standard-arm64 tensorrt tensorrt-jp4 tensorrt-jp5 rk; do
|
||||
for variant in standard-arm64 tensorrt tensorrt-jp4 tensorrt-jp5 rk h8l rocm; do
|
||||
docker run --rm -v $HOME/.docker/config.json:/config.json quay.io/skopeo/stable:latest copy --authfile /config.json --multi-arch all docker://${PULL_TAG}-${variant} docker://${VERSION_TAG}-${variant}
|
||||
done
|
||||
|
||||
# stable tag
|
||||
if [[ "${BUILD_TYPE}" == "stable" ]]; then
|
||||
docker run --rm -v $HOME/.docker/config.json:/config.json quay.io/skopeo/stable:latest copy --authfile /config.json --multi-arch all docker://${PULL_TAG} docker://${STABLE_TAG}
|
||||
for variant in standard-arm64 tensorrt tensorrt-jp4 tensorrt-jp5 rk; do
|
||||
for variant in standard-arm64 tensorrt tensorrt-jp4 tensorrt-jp5 rk h8l rocm; do
|
||||
docker run --rm -v $HOME/.docker/config.json:/config.json quay.io/skopeo/stable:latest copy --authfile /config.json --multi-arch all docker://${PULL_TAG}-${variant} docker://${STABLE_TAG}-${variant}
|
||||
done
|
||||
fi
|
||||
|
5
.github/workflows/stale.yml
vendored
@ -23,7 +23,9 @@ jobs:
|
||||
exempt-pr-labels: "pinned,security,dependencies"
|
||||
operations-per-run: 120
|
||||
- name: Print outputs
|
||||
run: echo ${{ join(steps.stale.outputs.*, ',') }}
|
||||
env:
|
||||
STALE_OUTPUT: ${{ join(steps.stale.outputs.*, ',') }}
|
||||
run: echo "$STALE_OUTPUT"
|
||||
|
||||
# clean_ghcr:
|
||||
# name: Delete outdated dev container images
|
||||
@ -38,4 +40,3 @@ jobs:
|
||||
# account-type: personal
|
||||
# token: ${{ secrets.GITHUB_TOKEN }}
|
||||
# token-type: github-token
|
||||
|
||||
|
3
.gitignore
vendored
@ -1,5 +1,6 @@
|
||||
.DS_Store
|
||||
*.pyc
|
||||
__pycache__
|
||||
.mypy_cache
|
||||
*.swp
|
||||
debug
|
||||
.vscode/*
|
||||
|
5
.vscode/launch.json
vendored
@ -3,10 +3,9 @@
|
||||
"configurations": [
|
||||
{
|
||||
"name": "Python: Launch Frigate",
|
||||
"type": "python",
|
||||
"type": "debugpy",
|
||||
"request": "launch",
|
||||
"module": "frigate",
|
||||
"justMyCode": true
|
||||
"module": "frigate"
|
||||
}
|
||||
]
|
||||
}
|
||||
|
@ -4,3 +4,4 @@
|
||||
/docker/tensorrt/*jetson* @madsciencetist
|
||||
/docker/rockchip/ @MarcA711
|
||||
/docker/rocm/ @harakas
|
||||
/docker/hailo8l/ @spanner3003
|
||||
|
31
Makefile
@ -1,11 +1,9 @@
|
||||
default_target: local
|
||||
|
||||
COMMIT_HASH := $(shell git log -1 --pretty=format:"%h"|tail -1)
|
||||
VERSION = 0.14.1
|
||||
VERSION = 0.16.0
|
||||
IMAGE_REPO ?= ghcr.io/blakeblackshear/frigate
|
||||
GITHUB_REF_NAME ?= $(shell git rev-parse --abbrev-ref HEAD)
|
||||
CURRENT_UID := $(shell id -u)
|
||||
CURRENT_GID := $(shell id -g)
|
||||
BOARDS= #Initialized empty
|
||||
|
||||
include docker/*/*.mk
|
||||
@ -18,25 +16,38 @@ version:
|
||||
echo 'VERSION = "$(VERSION)-$(COMMIT_HASH)"' > frigate/version.py
|
||||
|
||||
local: version
|
||||
docker buildx build --target=frigate --tag frigate:latest --load --file docker/main/Dockerfile .
|
||||
docker buildx build --target=frigate --file docker/main/Dockerfile . \
|
||||
--tag frigate:latest \
|
||||
--load
|
||||
|
||||
amd64:
|
||||
docker buildx build --platform linux/amd64 --target=frigate --tag $(IMAGE_REPO):$(VERSION)-$(COMMIT_HASH) --file docker/main/Dockerfile .
|
||||
docker buildx build --target=frigate --file docker/main/Dockerfile . \
|
||||
--tag $(IMAGE_REPO):$(VERSION)-$(COMMIT_HASH) \
|
||||
--platform linux/amd64
|
||||
|
||||
arm64:
|
||||
docker buildx build --platform linux/arm64 --target=frigate --tag $(IMAGE_REPO):$(VERSION)-$(COMMIT_HASH) --file docker/main/Dockerfile .
|
||||
docker buildx build --target=frigate --file docker/main/Dockerfile . \
|
||||
--tag $(IMAGE_REPO):$(VERSION)-$(COMMIT_HASH) \
|
||||
--platform linux/arm64
|
||||
|
||||
build: version amd64 arm64
|
||||
docker buildx build --platform linux/arm64/v8,linux/amd64 --target=frigate --tag $(IMAGE_REPO):$(VERSION)-$(COMMIT_HASH) --file docker/main/Dockerfile .
|
||||
docker buildx build --target=frigate --file docker/main/Dockerfile . \
|
||||
--tag $(IMAGE_REPO):$(VERSION)-$(COMMIT_HASH) \
|
||||
--platform linux/arm64/v8,linux/amd64
|
||||
|
||||
push: push-boards
|
||||
docker buildx build --push --platform linux/arm64/v8,linux/amd64 --target=frigate --tag $(IMAGE_REPO):${GITHUB_REF_NAME}-$(COMMIT_HASH) --file docker/main/Dockerfile .
|
||||
docker buildx build --target=frigate --file docker/main/Dockerfile . \
|
||||
--tag $(IMAGE_REPO):${GITHUB_REF_NAME}-$(COMMIT_HASH) \
|
||||
--platform linux/arm64/v8,linux/amd64 \
|
||||
--push
|
||||
|
||||
run: local
|
||||
docker run --rm --publish=5000:5000 --volume=${PWD}/config:/config frigate:latest
|
||||
|
||||
run_tests: local
|
||||
docker run --rm --workdir=/opt/frigate --entrypoint= frigate:latest python3 -u -m unittest
|
||||
docker run --rm --workdir=/opt/frigate --entrypoint= frigate:latest python3 -u -m mypy --config-file frigate/mypy.ini frigate
|
||||
docker run --rm --workdir=/opt/frigate --entrypoint= frigate:latest \
|
||||
python3 -u -m unittest
|
||||
docker run --rm --workdir=/opt/frigate --entrypoint= frigate:latest \
|
||||
python3 -u -m mypy --config-file frigate/mypy.ini frigate
|
||||
|
||||
.PHONY: run_tests
|
||||
|
@ -4,6 +4,7 @@ from statistics import mean
|
||||
|
||||
import numpy as np
|
||||
|
||||
import frigate.util as util
|
||||
from frigate.config import DetectorTypeEnum
|
||||
from frigate.object_detection import (
|
||||
ObjectDetectProcess,
|
||||
@ -60,7 +61,7 @@ def start(id, num_detections, detection_queue, event):
|
||||
object_detector.cleanup()
|
||||
print(f"{id} - Processed for {duration:.2f} seconds.")
|
||||
print(f"{id} - FPS: {object_detector.fps.eps():.2f}")
|
||||
print(f"{id} - Average frame processing time: {mean(frame_times)*1000:.2f}ms")
|
||||
print(f"{id} - Average frame processing time: {mean(frame_times) * 1000:.2f}ms")
|
||||
|
||||
|
||||
######
|
||||
@ -90,7 +91,7 @@ edgetpu_process_2 = ObjectDetectProcess(
|
||||
)
|
||||
|
||||
for x in range(0, 10):
|
||||
camera_process = mp.Process(
|
||||
camera_process = util.Process(
|
||||
target=start, args=(x, 300, detection_queue, events[str(x)])
|
||||
)
|
||||
camera_process.daemon = True
|
||||
|
@ -7,7 +7,8 @@
|
||||
"*.db",
|
||||
"node_modules",
|
||||
"__pycache__",
|
||||
"dist"
|
||||
"dist",
|
||||
"/audio-labelmap.txt"
|
||||
],
|
||||
"language": "en",
|
||||
"dictionaryDefinitions": [
|
||||
|
@ -23,7 +23,7 @@ services:
|
||||
# count: 1
|
||||
# capabilities: [gpu]
|
||||
environment:
|
||||
YOLO_MODELS: yolov7-320
|
||||
YOLO_MODELS: ""
|
||||
devices:
|
||||
- /dev/bus/usb:/dev/bus/usb
|
||||
# - /dev/dri:/dev/dri # for intel hwaccel, needs to be updated for your hardware
|
||||
|
49
docker/hailo8l/user_installation.sh
Normal file
@ -0,0 +1,49 @@
|
||||
#!/bin/bash
|
||||
|
||||
# Update package list and install dependencies
|
||||
sudo apt-get update
|
||||
sudo apt-get install -y build-essential cmake git wget
|
||||
|
||||
hailo_version="4.20.0"
|
||||
arch=$(uname -m)
|
||||
|
||||
if [[ $arch == "x86_64" ]]; then
|
||||
sudo apt install -y linux-headers-$(uname -r);
|
||||
else
|
||||
sudo apt install -y linux-modules-extra-$(uname -r);
|
||||
fi
|
||||
|
||||
# Clone the HailoRT driver repository
|
||||
git clone --depth 1 --branch v${hailo_version} https://github.com/hailo-ai/hailort-drivers.git
|
||||
|
||||
# Build and install the HailoRT driver
|
||||
cd hailort-drivers/linux/pcie
|
||||
sudo make all
|
||||
sudo make install
|
||||
|
||||
# Load the Hailo PCI driver
|
||||
sudo modprobe hailo_pci
|
||||
|
||||
if [ $? -ne 0 ]; then
|
||||
echo "Unable to load hailo_pci module, common reasons for this are:"
|
||||
echo "- Key was rejected by service: Secure Boot is enabling disallowing install."
|
||||
echo "- Permissions are not setup correctly."
|
||||
exit 1
|
||||
fi
|
||||
|
||||
# Download and install the firmware
|
||||
cd ../../
|
||||
./download_firmware.sh
|
||||
|
||||
# verify the firmware folder is present
|
||||
if [ ! -d /lib/firmware/hailo ]; then
|
||||
sudo mkdir /lib/firmware/hailo
|
||||
fi
|
||||
sudo mv hailo8_fw.*.bin /lib/firmware/hailo/hailo8_fw.bin
|
||||
|
||||
# Install udev rules
|
||||
sudo cp ./linux/pcie/51-hailo-udev.rules /etc/udev/rules.d/
|
||||
sudo udevadm control --reload-rules && sudo udevadm trigger
|
||||
|
||||
echo "HailoRT driver installation complete."
|
||||
echo "reboot your system to load the firmware!"
|
@ -3,12 +3,12 @@
|
||||
# https://askubuntu.com/questions/972516/debian-frontend-environment-variable
|
||||
ARG DEBIAN_FRONTEND=noninteractive
|
||||
|
||||
ARG BASE_IMAGE=debian:11
|
||||
ARG SLIM_BASE=debian:11-slim
|
||||
ARG BASE_IMAGE=debian:12
|
||||
ARG SLIM_BASE=debian:12-slim
|
||||
|
||||
FROM ${BASE_IMAGE} AS base
|
||||
|
||||
FROM --platform=${BUILDPLATFORM} debian:11 AS base_host
|
||||
FROM --platform=${BUILDPLATFORM} debian:12 AS base_host
|
||||
|
||||
FROM ${SLIM_BASE} AS slim-base
|
||||
|
||||
@ -30,6 +30,16 @@ RUN --mount=type=tmpfs,target=/tmp --mount=type=tmpfs,target=/var/cache/apt \
|
||||
--mount=type=cache,target=/root/.ccache \
|
||||
/deps/build_nginx.sh
|
||||
|
||||
FROM wget AS sqlite-vec
|
||||
ARG DEBIAN_FRONTEND
|
||||
|
||||
# Build sqlite_vec from source
|
||||
COPY docker/main/build_sqlite_vec.sh /deps/build_sqlite_vec.sh
|
||||
RUN --mount=type=tmpfs,target=/tmp --mount=type=tmpfs,target=/var/cache/apt \
|
||||
--mount=type=bind,source=docker/main/build_sqlite_vec.sh,target=/deps/build_sqlite_vec.sh \
|
||||
--mount=type=cache,target=/root/.ccache \
|
||||
/deps/build_sqlite_vec.sh
|
||||
|
||||
FROM scratch AS go2rtc
|
||||
ARG TARGETARCH
|
||||
WORKDIR /rootfs/usr/local/go2rtc/bin
|
||||
@ -56,8 +66,8 @@ COPY docker/main/requirements-ov.txt /requirements-ov.txt
|
||||
RUN apt-get -qq update \
|
||||
&& apt-get -qq install -y wget python3 python3-dev python3-distutils gcc pkg-config libhdf5-dev \
|
||||
&& wget -q https://bootstrap.pypa.io/get-pip.py -O get-pip.py \
|
||||
&& python3 get-pip.py "pip" \
|
||||
&& pip install -r /requirements-ov.txt
|
||||
&& python3 get-pip.py "pip" --break-system-packages \
|
||||
&& pip install --break-system-packages -r /requirements-ov.txt
|
||||
|
||||
# Get OpenVino Model
|
||||
RUN --mount=type=bind,source=docker/main/build_ov_model.py,target=/build_ov_model.py \
|
||||
@ -129,50 +139,51 @@ ARG TARGETARCH
|
||||
# Use a separate container to build wheels to prevent build dependencies in final image
|
||||
RUN apt-get -qq update \
|
||||
&& apt-get -qq install -y \
|
||||
apt-transport-https \
|
||||
gnupg \
|
||||
wget \
|
||||
# the key fingerprint can be obtained from https://ftp-master.debian.org/keys.html
|
||||
&& wget -qO- "https://keyserver.ubuntu.com/pks/lookup?op=get&search=0xA4285295FC7B1A81600062A9605C66F00D6C9793" | \
|
||||
gpg --dearmor > /usr/share/keyrings/debian-archive-bullseye-stable.gpg \
|
||||
&& echo "deb [signed-by=/usr/share/keyrings/debian-archive-bullseye-stable.gpg] http://deb.debian.org/debian bullseye main contrib non-free" | \
|
||||
tee /etc/apt/sources.list.d/debian-bullseye-nonfree.list \
|
||||
apt-transport-https wget \
|
||||
&& apt-get -qq update \
|
||||
&& apt-get -qq install -y \
|
||||
python3.9 \
|
||||
python3.9-dev \
|
||||
python3 \
|
||||
python3-dev \
|
||||
# opencv dependencies
|
||||
build-essential cmake git pkg-config libgtk-3-dev \
|
||||
libavcodec-dev libavformat-dev libswscale-dev libv4l-dev \
|
||||
libxvidcore-dev libx264-dev libjpeg-dev libpng-dev libtiff-dev \
|
||||
gfortran openexr libatlas-base-dev libssl-dev\
|
||||
libtbb2 libtbb-dev libdc1394-22-dev libopenexr-dev \
|
||||
libtbbmalloc2 libtbb-dev libdc1394-dev libopenexr-dev \
|
||||
libgstreamer-plugins-base1.0-dev libgstreamer1.0-dev \
|
||||
# sqlite3 dependencies
|
||||
tclsh \
|
||||
# scipy dependencies
|
||||
gcc gfortran libopenblas-dev liblapack-dev && \
|
||||
rm -rf /var/lib/apt/lists/*
|
||||
|
||||
# Ensure python3 defaults to python3.9
|
||||
RUN update-alternatives --install /usr/bin/python3 python3 /usr/bin/python3.9 1
|
||||
|
||||
RUN wget -q https://bootstrap.pypa.io/get-pip.py -O get-pip.py \
|
||||
&& python3 get-pip.py "pip"
|
||||
&& python3 get-pip.py "pip" --break-system-packages
|
||||
|
||||
COPY docker/main/requirements.txt /requirements.txt
|
||||
RUN pip3 install -r /requirements.txt
|
||||
RUN pip3 install -r /requirements.txt --break-system-packages
|
||||
|
||||
# Build pysqlite3 from source
|
||||
COPY docker/main/build_pysqlite3.sh /build_pysqlite3.sh
|
||||
RUN /build_pysqlite3.sh
|
||||
|
||||
COPY docker/main/requirements-wheels.txt /requirements-wheels.txt
|
||||
RUN pip3 wheel --wheel-dir=/wheels -r /requirements-wheels.txt
|
||||
|
||||
# Install HailoRT & Wheels
|
||||
RUN --mount=type=bind,source=docker/main/install_hailort.sh,target=/deps/install_hailort.sh \
|
||||
/deps/install_hailort.sh
|
||||
|
||||
# Collect deps in a single layer
|
||||
FROM scratch AS deps-rootfs
|
||||
COPY --from=nginx /usr/local/nginx/ /usr/local/nginx/
|
||||
COPY --from=sqlite-vec /usr/local/lib/ /usr/local/lib/
|
||||
COPY --from=go2rtc /rootfs/ /
|
||||
COPY --from=libusb-build /usr/local/lib /usr/local/lib
|
||||
COPY --from=tempio /rootfs/ /
|
||||
COPY --from=s6-overlay /rootfs/ /
|
||||
COPY --from=models /rootfs/ /
|
||||
COPY --from=wheels /rootfs/ /
|
||||
COPY docker/main/rootfs/ /
|
||||
|
||||
|
||||
@ -188,15 +199,24 @@ ARG APT_KEY_DONT_WARN_ON_DANGEROUS_USAGE=DontWarn
|
||||
ENV NVIDIA_VISIBLE_DEVICES=all
|
||||
ENV NVIDIA_DRIVER_CAPABILITIES="compute,video,utility"
|
||||
|
||||
ENV PATH="/usr/lib/btbn-ffmpeg/bin:/usr/local/go2rtc/bin:/usr/local/tempio/bin:/usr/local/nginx/sbin:${PATH}"
|
||||
# Disable tokenizer parallelism warning
|
||||
# https://stackoverflow.com/questions/62691279/how-to-disable-tokenizers-parallelism-true-false-warning/72926996#72926996
|
||||
ENV TOKENIZERS_PARALLELISM=true
|
||||
# https://github.com/huggingface/transformers/issues/27214
|
||||
ENV TRANSFORMERS_NO_ADVISORY_WARNINGS=1
|
||||
|
||||
# Set OpenCV ffmpeg loglevel to fatal: https://ffmpeg.org/doxygen/trunk/log_8h.html
|
||||
ENV OPENCV_FFMPEG_LOGLEVEL=8
|
||||
|
||||
ENV PATH="/usr/local/go2rtc/bin:/usr/local/tempio/bin:/usr/local/nginx/sbin:${PATH}"
|
||||
|
||||
# Install dependencies
|
||||
RUN --mount=type=bind,source=docker/main/install_deps.sh,target=/deps/install_deps.sh \
|
||||
/deps/install_deps.sh
|
||||
|
||||
RUN --mount=type=bind,from=wheels,source=/wheels,target=/deps/wheels \
|
||||
python3 -m pip install --upgrade pip && \
|
||||
pip3 install -U /deps/wheels/*.whl
|
||||
python3 -m pip install --upgrade pip --break-system-packages && \
|
||||
pip3 install -U /deps/wheels/*.whl --break-system-packages
|
||||
|
||||
COPY --from=deps-rootfs / /
|
||||
|
||||
@ -214,7 +234,7 @@ ENV S6_CMD_WAIT_FOR_SERVICES_MAXTIME=0
|
||||
ENTRYPOINT ["/init"]
|
||||
CMD []
|
||||
|
||||
HEALTHCHECK --start-period=120s --start-interval=5s --interval=15s --timeout=5s --retries=3 \
|
||||
HEALTHCHECK --start-period=300s --start-interval=5s --interval=15s --timeout=5s --retries=3 \
|
||||
CMD curl --fail --silent --show-error http://127.0.0.1:5000/api/version || exit 1
|
||||
|
||||
# Frigate deps with Node.js and NPM for devcontainer
|
||||
@ -243,7 +263,7 @@ RUN apt-get update \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
|
||||
RUN --mount=type=bind,source=./docker/main/requirements-dev.txt,target=/workspace/frigate/requirements-dev.txt \
|
||||
pip3 install -r requirements-dev.txt
|
||||
pip3 install -r requirements-dev.txt --break-system-packages
|
||||
|
||||
HEALTHCHECK NONE
|
||||
|
||||
|
@ -8,10 +8,16 @@ SECURE_TOKEN_MODULE_VERSION="1.5"
|
||||
SET_MISC_MODULE_VERSION="v0.33"
|
||||
NGX_DEVEL_KIT_VERSION="v0.3.3"
|
||||
|
||||
cp /etc/apt/sources.list /etc/apt/sources.list.d/sources-src.list
|
||||
sed -i 's|deb http|deb-src http|g' /etc/apt/sources.list.d/sources-src.list
|
||||
apt-get update
|
||||
source /etc/os-release
|
||||
|
||||
if [[ "$VERSION_ID" == "12" ]]; then
|
||||
sed -i '/^Types:/s/deb/& deb-src/' /etc/apt/sources.list.d/debian.sources
|
||||
else
|
||||
cp /etc/apt/sources.list /etc/apt/sources.list.d/sources-src.list
|
||||
sed -i 's|deb http|deb-src http|g' /etc/apt/sources.list.d/sources-src.list
|
||||
fi
|
||||
|
||||
apt-get update
|
||||
apt-get -yqq build-dep nginx
|
||||
|
||||
apt-get -yqq install --no-install-recommends ca-certificates wget
|
||||
|
@ -4,7 +4,7 @@ from openvino.tools import mo
|
||||
ov_model = mo.convert_model(
|
||||
"/models/ssdlite_mobilenet_v2_coco_2018_05_09/frozen_inference_graph.pb",
|
||||
compress_to_fp16=True,
|
||||
transformations_config="/usr/local/lib/python3.9/dist-packages/openvino/tools/mo/front/tf/ssd_v2_support.json",
|
||||
transformations_config="/usr/local/lib/python3.11/dist-packages/openvino/tools/mo/front/tf/ssd_v2_support.json",
|
||||
tensorflow_object_detection_api_pipeline_config="/models/ssdlite_mobilenet_v2_coco_2018_05_09/pipeline.config",
|
||||
reverse_input_channels=True,
|
||||
)
|
||||
|
35
docker/main/build_pysqlite3.sh
Executable file
@ -0,0 +1,35 @@
|
||||
#!/bin/bash
|
||||
|
||||
set -euxo pipefail
|
||||
|
||||
SQLITE3_VERSION="96c92aba00c8375bc32fafcdf12429c58bd8aabfcadab6683e35bbb9cdebf19e" # 3.46.0
|
||||
PYSQLITE3_VERSION="0.5.3"
|
||||
|
||||
# Fetch the source code for the latest release of Sqlite.
|
||||
if [[ ! -d "sqlite" ]]; then
|
||||
wget https://www.sqlite.org/src/tarball/sqlite.tar.gz?r=${SQLITE3_VERSION} -O sqlite.tar.gz
|
||||
tar xzf sqlite.tar.gz
|
||||
cd sqlite/
|
||||
LIBS="-lm" ./configure --disable-tcl --enable-tempstore=always
|
||||
make sqlite3.c
|
||||
cd ../
|
||||
rm sqlite.tar.gz
|
||||
fi
|
||||
|
||||
# Grab the pysqlite3 source code.
|
||||
if [[ ! -d "./pysqlite3" ]]; then
|
||||
git clone https://github.com/coleifer/pysqlite3.git
|
||||
fi
|
||||
|
||||
cd pysqlite3/
|
||||
git checkout ${PYSQLITE3_VERSION}
|
||||
|
||||
# Copy the sqlite3 source amalgamation into the pysqlite3 directory so we can
|
||||
# create a self-contained extension module.
|
||||
cp "../sqlite/sqlite3.c" ./
|
||||
cp "../sqlite/sqlite3.h" ./
|
||||
|
||||
# Create the wheel and put it in the /wheels dir.
|
||||
sed -i "s|name='pysqlite3-binary'|name=PACKAGE_NAME|g" setup.py
|
||||
python3 setup.py build_static
|
||||
pip3 wheel . -w /wheels
|
38
docker/main/build_sqlite_vec.sh
Executable file
@ -0,0 +1,38 @@
|
||||
#!/bin/bash
|
||||
|
||||
set -euxo pipefail
|
||||
|
||||
SQLITE_VEC_VERSION="0.1.3"
|
||||
|
||||
source /etc/os-release
|
||||
|
||||
if [[ "$VERSION_ID" == "12" ]]; then
|
||||
sed -i '/^Types:/s/deb/& deb-src/' /etc/apt/sources.list.d/debian.sources
|
||||
else
|
||||
cp /etc/apt/sources.list /etc/apt/sources.list.d/sources-src.list
|
||||
sed -i 's|deb http|deb-src http|g' /etc/apt/sources.list.d/sources-src.list
|
||||
fi
|
||||
|
||||
apt-get update
|
||||
apt-get -yqq build-dep sqlite3 gettext git
|
||||
|
||||
mkdir /tmp/sqlite_vec
|
||||
# Grab the sqlite_vec source code.
|
||||
wget -nv https://github.com/asg017/sqlite-vec/archive/refs/tags/v${SQLITE_VEC_VERSION}.tar.gz
|
||||
tar -zxf v${SQLITE_VEC_VERSION}.tar.gz -C /tmp/sqlite_vec
|
||||
|
||||
cd /tmp/sqlite_vec/sqlite-vec-${SQLITE_VEC_VERSION}
|
||||
|
||||
mkdir -p vendor
|
||||
wget -O sqlite-amalgamation.zip https://www.sqlite.org/2024/sqlite-amalgamation-3450300.zip
|
||||
unzip sqlite-amalgamation.zip
|
||||
mv sqlite-amalgamation-3450300/* vendor/
|
||||
rmdir sqlite-amalgamation-3450300
|
||||
rm sqlite-amalgamation.zip
|
||||
|
||||
# build loadable module
|
||||
make loadable
|
||||
|
||||
# install it
|
||||
cp dist/vec0.* /usr/local/lib
|
||||
|
@ -8,70 +8,94 @@ apt-get -qq install --no-install-recommends -y \
|
||||
apt-transport-https \
|
||||
gnupg \
|
||||
wget \
|
||||
lbzip2 \
|
||||
procps vainfo \
|
||||
unzip locales tzdata libxml2 xz-utils \
|
||||
python3.9 \
|
||||
python3 \
|
||||
python3-pip \
|
||||
curl \
|
||||
lsof \
|
||||
jq \
|
||||
nethogs
|
||||
|
||||
# ensure python3 defaults to python3.9
|
||||
update-alternatives --install /usr/bin/python3 python3 /usr/bin/python3.9 1
|
||||
nethogs \
|
||||
libgl1 \
|
||||
libglib2.0-0 \
|
||||
libusb-1.0.0
|
||||
|
||||
mkdir -p -m 600 /root/.gnupg
|
||||
|
||||
# add coral repo
|
||||
curl -fsSLo - https://packages.cloud.google.com/apt/doc/apt-key.gpg | \
|
||||
gpg --dearmor -o /etc/apt/trusted.gpg.d/google-cloud-packages-archive-keyring.gpg
|
||||
echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" | tee /etc/apt/sources.list.d/coral-edgetpu.list
|
||||
echo "libedgetpu1-max libedgetpu/accepted-eula select true" | debconf-set-selections
|
||||
# install coral runtime
|
||||
wget -q -O /tmp/libedgetpu1-max.deb "https://github.com/feranick/libedgetpu/releases/download/16.0TF2.17.0-1/libedgetpu1-max_16.0tf2.17.0-1.bookworm_${TARGETARCH}.deb"
|
||||
unset DEBIAN_FRONTEND
|
||||
yes | dpkg -i /tmp/libedgetpu1-max.deb && export DEBIAN_FRONTEND=noninteractive
|
||||
rm /tmp/libedgetpu1-max.deb
|
||||
|
||||
# enable non-free repo in Debian
|
||||
if grep -q "Debian" /etc/issue; then
|
||||
sed -i -e's/ main/ main contrib non-free/g' /etc/apt/sources.list
|
||||
# install python3 & tflite runtime
|
||||
if [[ "${TARGETARCH}" == "amd64" ]]; then
|
||||
pip3 install --break-system-packages https://github.com/feranick/TFlite-builds/releases/download/v2.17.0/tflite_runtime-2.17.0-cp311-cp311-linux_x86_64.whl
|
||||
pip3 install --break-system-packages https://github.com/feranick/pycoral/releases/download/2.0.2TF2.17.0/pycoral-2.0.2-cp311-cp311-linux_x86_64.whl
|
||||
fi
|
||||
|
||||
# coral drivers
|
||||
apt-get -qq update
|
||||
apt-get -qq install --no-install-recommends --no-install-suggests -y \
|
||||
libedgetpu1-max python3-tflite-runtime python3-pycoral
|
||||
if [[ "${TARGETARCH}" == "arm64" ]]; then
|
||||
pip3 install --break-system-packages https://github.com/feranick/TFlite-builds/releases/download/v2.17.0/tflite_runtime-2.17.0-cp311-cp311-linux_aarch64.whl
|
||||
pip3 install --break-system-packages https://github.com/feranick/pycoral/releases/download/2.0.2TF2.17.0/pycoral-2.0.2-cp311-cp311-linux_aarch64.whl
|
||||
fi
|
||||
|
||||
# btbn-ffmpeg -> amd64
|
||||
if [[ "${TARGETARCH}" == "amd64" ]]; then
|
||||
mkdir -p /usr/lib/btbn-ffmpeg
|
||||
mkdir -p /usr/lib/ffmpeg/5.0
|
||||
mkdir -p /usr/lib/ffmpeg/7.0
|
||||
wget -qO btbn-ffmpeg.tar.xz "https://github.com/NickM-27/FFmpeg-Builds/releases/download/autobuild-2022-07-31-12-37/ffmpeg-n5.1-2-g915ef932a3-linux64-gpl-5.1.tar.xz"
|
||||
tar -xf btbn-ffmpeg.tar.xz -C /usr/lib/btbn-ffmpeg --strip-components 1
|
||||
rm -rf btbn-ffmpeg.tar.xz /usr/lib/btbn-ffmpeg/doc /usr/lib/btbn-ffmpeg/bin/ffplay
|
||||
tar -xf btbn-ffmpeg.tar.xz -C /usr/lib/ffmpeg/5.0 --strip-components 1
|
||||
rm -rf btbn-ffmpeg.tar.xz /usr/lib/ffmpeg/5.0/doc /usr/lib/ffmpeg/5.0/bin/ffplay
|
||||
wget -qO btbn-ffmpeg.tar.xz "https://github.com/NickM-27/FFmpeg-Builds/releases/download/autobuild-2024-09-19-12-51/ffmpeg-n7.0.2-18-g3e6cec1286-linux64-gpl-7.0.tar.xz"
|
||||
tar -xf btbn-ffmpeg.tar.xz -C /usr/lib/ffmpeg/7.0 --strip-components 1
|
||||
rm -rf btbn-ffmpeg.tar.xz /usr/lib/ffmpeg/7.0/doc /usr/lib/ffmpeg/7.0/bin/ffplay
|
||||
fi
|
||||
|
||||
# ffmpeg -> arm64
|
||||
if [[ "${TARGETARCH}" == "arm64" ]]; then
|
||||
mkdir -p /usr/lib/btbn-ffmpeg
|
||||
mkdir -p /usr/lib/ffmpeg/5.0
|
||||
mkdir -p /usr/lib/ffmpeg/7.0
|
||||
wget -qO btbn-ffmpeg.tar.xz "https://github.com/NickM-27/FFmpeg-Builds/releases/download/autobuild-2022-07-31-12-37/ffmpeg-n5.1-2-g915ef932a3-linuxarm64-gpl-5.1.tar.xz"
|
||||
tar -xf btbn-ffmpeg.tar.xz -C /usr/lib/btbn-ffmpeg --strip-components 1
|
||||
rm -rf btbn-ffmpeg.tar.xz /usr/lib/btbn-ffmpeg/doc /usr/lib/btbn-ffmpeg/bin/ffplay
|
||||
tar -xf btbn-ffmpeg.tar.xz -C /usr/lib/ffmpeg/5.0 --strip-components 1
|
||||
rm -rf btbn-ffmpeg.tar.xz /usr/lib/ffmpeg/5.0/doc /usr/lib/ffmpeg/5.0/bin/ffplay
|
||||
wget -qO btbn-ffmpeg.tar.xz "https://github.com/NickM-27/FFmpeg-Builds/releases/download/autobuild-2024-09-19-12-51/ffmpeg-n7.0.2-18-g3e6cec1286-linuxarm64-gpl-7.0.tar.xz"
|
||||
tar -xf btbn-ffmpeg.tar.xz -C /usr/lib/ffmpeg/7.0 --strip-components 1
|
||||
rm -rf btbn-ffmpeg.tar.xz /usr/lib/ffmpeg/7.0/doc /usr/lib/ffmpeg/7.0/bin/ffplay
|
||||
fi
|
||||
|
||||
# arch specific packages
|
||||
if [[ "${TARGETARCH}" == "amd64" ]]; then
|
||||
# use debian bookworm for hwaccel packages
|
||||
echo 'deb https://deb.debian.org/debian bookworm main contrib non-free' >/etc/apt/sources.list.d/debian-bookworm.list
|
||||
# install amd / intel-i965 driver packages
|
||||
apt-get -qq install --no-install-recommends --no-install-suggests -y \
|
||||
i965-va-driver intel-gpu-tools onevpl-tools \
|
||||
libva-drm2 \
|
||||
mesa-va-drivers radeontop
|
||||
|
||||
# intel packages use zst compression so we need to update dpkg
|
||||
apt-get install -y dpkg
|
||||
|
||||
# use intel apt intel packages
|
||||
wget -qO - https://repositories.intel.com/gpu/intel-graphics.key | gpg --yes --dearmor --output /usr/share/keyrings/intel-graphics.gpg
|
||||
echo "deb [arch=amd64 signed-by=/usr/share/keyrings/intel-graphics.gpg] https://repositories.intel.com/gpu/ubuntu jammy client" | tee /etc/apt/sources.list.d/intel-gpu-jammy.list
|
||||
apt-get -qq update
|
||||
apt-get -qq install --no-install-recommends --no-install-suggests -y \
|
||||
intel-opencl-icd \
|
||||
mesa-va-drivers radeontop libva-drm2 intel-media-va-driver-non-free i965-va-driver libmfx1 intel-gpu-tools
|
||||
# something about this dependency requires it to be installed in a separate call rather than in the line above
|
||||
apt-get -qq install --no-install-recommends --no-install-suggests -y \
|
||||
i965-va-driver-shaders
|
||||
rm -f /etc/apt/sources.list.d/debian-bookworm.list
|
||||
intel-opencl-icd=24.35.30872.31-996~22.04 intel-level-zero-gpu=1.3.29735.27-914~22.04 intel-media-va-driver-non-free=24.3.3-996~22.04 \
|
||||
libmfx1=23.2.2-880~22.04 libmfxgen1=24.2.4-914~22.04 libvpl2=1:2.13.0.0-996~22.04
|
||||
|
||||
rm -f /usr/share/keyrings/intel-graphics.gpg
|
||||
rm -f /etc/apt/sources.list.d/intel-gpu-jammy.list
|
||||
fi
|
||||
|
||||
if [[ "${TARGETARCH}" == "arm64" ]]; then
|
||||
apt-get -qq install --no-install-recommends --no-install-suggests -y \
|
||||
libva-drm2 mesa-va-drivers
|
||||
libva-drm2 mesa-va-drivers radeontop
|
||||
fi
|
||||
|
||||
# install vulkan
|
||||
apt-get -qq install --no-install-recommends --no-install-suggests -y \
|
||||
libvulkan1 mesa-vulkan-drivers
|
||||
|
||||
apt-get purge gnupg apt-transport-https xz-utils -y
|
||||
apt-get clean autoclean -y
|
||||
apt-get autoremove --purge -y
|
||||
|
14
docker/main/install_hailort.sh
Executable file
@ -0,0 +1,14 @@
|
||||
#!/bin/bash
|
||||
|
||||
set -euxo pipefail
|
||||
|
||||
hailo_version="4.20.0"
|
||||
|
||||
if [[ "${TARGETARCH}" == "amd64" ]]; then
|
||||
arch="x86_64"
|
||||
elif [[ "${TARGETARCH}" == "arm64" ]]; then
|
||||
arch="aarch64"
|
||||
fi
|
||||
|
||||
wget -qO- "https://github.com/frigate-nvr/hailort/releases/download/v${hailo_version}/hailort-${TARGETARCH}.tar.gz" | tar -C / -xzf -
|
||||
wget -P /wheels/ "https://github.com/frigate-nvr/hailort/releases/download/v${hailo_version}/hailort-${hailo_version}-cp311-cp311-linux_${arch}.whl"
|
@ -1,32 +1,70 @@
|
||||
aiofiles == 24.1.*
|
||||
click == 8.1.*
|
||||
Flask == 3.0.*
|
||||
Flask_Limiter == 3.7.*
|
||||
# FastAPI
|
||||
aiohttp == 3.11.2
|
||||
starlette == 0.41.2
|
||||
starlette-context == 0.3.6
|
||||
fastapi == 0.115.*
|
||||
uvicorn == 0.30.*
|
||||
slowapi == 0.1.*
|
||||
imutils == 0.5.*
|
||||
joserfc == 0.11.*
|
||||
joserfc == 1.0.*
|
||||
pathvalidate == 3.2.*
|
||||
markupsafe == 2.1.*
|
||||
python-multipart == 0.0.12
|
||||
# General
|
||||
mypy == 1.6.1
|
||||
numpy == 1.26.*
|
||||
onvif_zeep == 0.2.12
|
||||
opencv-python-headless == 4.9.0.*
|
||||
onvif-zeep-async == 3.1.*
|
||||
paho-mqtt == 2.1.*
|
||||
pandas == 2.2.*
|
||||
peewee == 3.17.*
|
||||
peewee_migrate == 1.12.*
|
||||
psutil == 5.9.*
|
||||
pydantic == 2.7.*
|
||||
peewee_migrate == 1.13.*
|
||||
psutil == 6.1.*
|
||||
pydantic == 2.8.*
|
||||
git+https://github.com/fbcotter/py3nvml#egg=py3nvml
|
||||
PyYAML == 6.0.*
|
||||
pytz == 2024.1
|
||||
pyzmq == 26.0.*
|
||||
pytz == 2024.*
|
||||
pyzmq == 26.2.*
|
||||
ruamel.yaml == 0.18.*
|
||||
tzlocal == 5.2
|
||||
types-PyYAML == 6.0.*
|
||||
requests == 2.32.*
|
||||
types-requests == 2.32.*
|
||||
scipy == 1.13.*
|
||||
norfair == 2.2.*
|
||||
setproctitle == 1.3.*
|
||||
ws4py == 0.5.*
|
||||
unidecode == 1.3.*
|
||||
onnxruntime == 1.18.*
|
||||
openvino == 2024.1.*
|
||||
# Image Manipulation
|
||||
numpy == 1.26.*
|
||||
opencv-python-headless == 4.10.0.*
|
||||
opencv-contrib-python == 4.9.0.*
|
||||
scipy == 1.14.*
|
||||
# OpenVino & ONNX
|
||||
openvino == 2024.4.*
|
||||
onnxruntime-openvino == 1.20.* ; platform_machine == 'x86_64'
|
||||
onnxruntime == 1.20.* ; platform_machine == 'aarch64'
|
||||
# Embeddings
|
||||
transformers == 4.45.*
|
||||
# Generative AI
|
||||
google-generativeai == 0.8.*
|
||||
ollama == 0.3.*
|
||||
openai == 1.51.*
|
||||
# push notifications
|
||||
py-vapid == 1.9.*
|
||||
pywebpush == 2.0.*
|
||||
# alpr
|
||||
pyclipper == 1.3.*
|
||||
shapely == 2.0.*
|
||||
Levenshtein==0.26.*
|
||||
prometheus-client == 0.21.*
|
||||
# HailoRT Wheels
|
||||
appdirs==1.4.*
|
||||
argcomplete==2.0.*
|
||||
contextlib2==0.6.*
|
||||
distlib==0.3.*
|
||||
filelock==3.8.*
|
||||
future==0.18.*
|
||||
importlib-metadata==5.1.*
|
||||
importlib-resources==5.1.*
|
||||
netaddr==0.8.*
|
||||
netifaces==0.10.*
|
||||
verboselogs==1.7.*
|
||||
virtualenv==20.17.*
|
||||
|
@ -1,2 +1,2 @@
|
||||
scikit-build == 0.17.*
|
||||
scikit-build == 0.18.*
|
||||
nvidia-pyindex
|
||||
|
@ -42,10 +42,14 @@ function migrate_db_path() {
|
||||
fi
|
||||
}
|
||||
|
||||
function set_libva_version() {
|
||||
local ffmpeg_path=$(python3 /usr/local/ffmpeg/get_ffmpeg_path.py)
|
||||
export LIBAVFORMAT_VERSION_MAJOR=$($ffmpeg_path -version | grep -Po "libavformat\W+\K\d+")
|
||||
}
|
||||
|
||||
echo "[INFO] Preparing Frigate..."
|
||||
migrate_db_path
|
||||
export LIBAVFORMAT_VERSION_MAJOR=$(ffmpeg -version | grep -Po 'libavformat\W+\K\d+')
|
||||
|
||||
set_libva_version
|
||||
echo "[INFO] Starting Frigate..."
|
||||
|
||||
cd /opt/frigate || echo "[ERROR] Failed to change working directory to /opt/frigate"
|
||||
|
@ -43,7 +43,10 @@ function get_ip_and_port_from_supervisor() {
|
||||
export FRIGATE_GO2RTC_WEBRTC_CANDIDATE_INTERNAL="${ip_address}:${webrtc_port}"
|
||||
}
|
||||
|
||||
export LIBAVFORMAT_VERSION_MAJOR=$(ffmpeg -version | grep -Po 'libavformat\W+\K\d+')
|
||||
function set_libva_version() {
|
||||
local ffmpeg_path=$(python3 /usr/local/ffmpeg/get_ffmpeg_path.py)
|
||||
export LIBAVFORMAT_VERSION_MAJOR=$($ffmpeg_path -version | grep -Po "libavformat\W+\K\d+")
|
||||
}
|
||||
|
||||
if [[ -f "/dev/shm/go2rtc.yaml" ]]; then
|
||||
echo "[INFO] Removing stale config from last run..."
|
||||
@ -63,6 +66,8 @@ else
|
||||
echo "[WARNING] Unable to remove existing go2rtc config. Changes made to your frigate config file may not be recognized. Please remove the /dev/shm/go2rtc.yaml from your docker host manually."
|
||||
fi
|
||||
|
||||
set_libva_version
|
||||
|
||||
readonly config_path="/config"
|
||||
|
||||
if [[ -x "${config_path}/go2rtc" ]]; then
|
||||
|
45
docker/main/rootfs/usr/local/ffmpeg/get_ffmpeg_path.py
Normal file
@ -0,0 +1,45 @@
|
||||
import json
|
||||
import os
|
||||
import shutil
|
||||
import sys
|
||||
|
||||
from ruamel.yaml import YAML
|
||||
|
||||
sys.path.insert(0, "/opt/frigate")
|
||||
from frigate.const import (
|
||||
DEFAULT_FFMPEG_VERSION,
|
||||
INCLUDED_FFMPEG_VERSIONS,
|
||||
)
|
||||
|
||||
sys.path.remove("/opt/frigate")
|
||||
|
||||
yaml = YAML()
|
||||
|
||||
config_file = os.environ.get("CONFIG_FILE", "/config/config.yml")
|
||||
|
||||
# Check if we can use .yaml instead of .yml
|
||||
config_file_yaml = config_file.replace(".yml", ".yaml")
|
||||
if os.path.isfile(config_file_yaml):
|
||||
config_file = config_file_yaml
|
||||
|
||||
try:
|
||||
with open(config_file) as f:
|
||||
raw_config = f.read()
|
||||
|
||||
if config_file.endswith((".yaml", ".yml")):
|
||||
config: dict[str, any] = yaml.load(raw_config)
|
||||
elif config_file.endswith(".json"):
|
||||
config: dict[str, any] = json.loads(raw_config)
|
||||
except FileNotFoundError:
|
||||
config: dict[str, any] = {}
|
||||
|
||||
path = config.get("ffmpeg", {}).get("path", "default")
|
||||
if path == "default":
|
||||
if shutil.which("ffmpeg") is None:
|
||||
print(f"/usr/lib/ffmpeg/{DEFAULT_FFMPEG_VERSION}/bin/ffmpeg")
|
||||
else:
|
||||
print("ffmpeg")
|
||||
elif path in INCLUDED_FFMPEG_VERSIONS:
|
||||
print(f"/usr/lib/ffmpeg/{path}/bin/ffmpeg")
|
||||
else:
|
||||
print(f"{path}/bin/ffmpeg")
|
@ -2,19 +2,23 @@
|
||||
|
||||
import json
|
||||
import os
|
||||
import shutil
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
import yaml
|
||||
from ruamel.yaml import YAML
|
||||
|
||||
sys.path.insert(0, "/opt/frigate")
|
||||
from frigate.const import BIRDSEYE_PIPE # noqa: E402
|
||||
from frigate.ffmpeg_presets import ( # noqa: E402
|
||||
parse_preset_hardware_acceleration_encode,
|
||||
from frigate.const import (
|
||||
BIRDSEYE_PIPE,
|
||||
DEFAULT_FFMPEG_VERSION,
|
||||
INCLUDED_FFMPEG_VERSIONS,
|
||||
)
|
||||
from frigate.ffmpeg_presets import parse_preset_hardware_acceleration_encode
|
||||
|
||||
sys.path.remove("/opt/frigate")
|
||||
|
||||
yaml = YAML()
|
||||
|
||||
FRIGATE_ENV_VARS = {k: v for k, v in os.environ.items() if k.startswith("FRIGATE_")}
|
||||
# read docker secret files as env vars too
|
||||
@ -37,7 +41,7 @@ try:
|
||||
raw_config = f.read()
|
||||
|
||||
if config_file.endswith((".yaml", ".yml")):
|
||||
config: dict[str, any] = yaml.safe_load(raw_config)
|
||||
config: dict[str, any] = yaml.load(raw_config)
|
||||
elif config_file.endswith(".json"):
|
||||
config: dict[str, any] = json.loads(raw_config)
|
||||
except FileNotFoundError:
|
||||
@ -105,16 +109,32 @@ else:
|
||||
**FRIGATE_ENV_VARS
|
||||
)
|
||||
|
||||
# ensure ffmpeg path is set correctly
|
||||
path = config.get("ffmpeg", {}).get("path", "default")
|
||||
if path == "default":
|
||||
if shutil.which("ffmpeg") is None:
|
||||
ffmpeg_path = f"/usr/lib/ffmpeg/{DEFAULT_FFMPEG_VERSION}/bin/ffmpeg"
|
||||
else:
|
||||
ffmpeg_path = "ffmpeg"
|
||||
elif path in INCLUDED_FFMPEG_VERSIONS:
|
||||
ffmpeg_path = f"/usr/lib/ffmpeg/{path}/bin/ffmpeg"
|
||||
else:
|
||||
ffmpeg_path = f"{path}/bin/ffmpeg"
|
||||
|
||||
if go2rtc_config.get("ffmpeg") is None:
|
||||
go2rtc_config["ffmpeg"] = {"bin": ffmpeg_path}
|
||||
elif go2rtc_config["ffmpeg"].get("bin") is None:
|
||||
go2rtc_config["ffmpeg"]["bin"] = ffmpeg_path
|
||||
|
||||
# need to replace ffmpeg command when using ffmpeg4
|
||||
if int(os.environ["LIBAVFORMAT_VERSION_MAJOR"]) < 59:
|
||||
if go2rtc_config.get("ffmpeg") is None:
|
||||
go2rtc_config["ffmpeg"] = {
|
||||
"rtsp": "-fflags nobuffer -flags low_delay -stimeout 5000000 -user_agent go2rtc/ffmpeg -rtsp_transport tcp -i {input}"
|
||||
}
|
||||
elif go2rtc_config["ffmpeg"].get("rtsp") is None:
|
||||
if int(os.environ.get("LIBAVFORMAT_VERSION_MAJOR", "59") or "59") < 59:
|
||||
if go2rtc_config["ffmpeg"].get("rtsp") is None:
|
||||
go2rtc_config["ffmpeg"]["rtsp"] = (
|
||||
"-fflags nobuffer -flags low_delay -stimeout 5000000 -user_agent go2rtc/ffmpeg -rtsp_transport tcp -i {input}"
|
||||
)
|
||||
else:
|
||||
if go2rtc_config.get("ffmpeg") is None:
|
||||
go2rtc_config["ffmpeg"] = {"path": ""}
|
||||
|
||||
for name in go2rtc_config.get("streams", {}):
|
||||
stream = go2rtc_config["streams"][name]
|
||||
@ -145,7 +165,7 @@ if config.get("birdseye", {}).get("restream", False):
|
||||
birdseye: dict[str, any] = config.get("birdseye")
|
||||
|
||||
input = f"-f rawvideo -pix_fmt yuv420p -video_size {birdseye.get('width', 1280)}x{birdseye.get('height', 720)} -r 10 -i {BIRDSEYE_PIPE}"
|
||||
ffmpeg_cmd = f"exec:{parse_preset_hardware_acceleration_encode(config.get('ffmpeg', {}).get('hwaccel_args'), input, '-rtsp_transport tcp -f rtsp {output}')}"
|
||||
ffmpeg_cmd = f"exec:{parse_preset_hardware_acceleration_encode(ffmpeg_path, config.get('ffmpeg', {}).get('hwaccel_args', ''), input, '-rtsp_transport tcp -f rtsp {output}')}"
|
||||
|
||||
if go2rtc_config.get("streams"):
|
||||
go2rtc_config["streams"]["birdseye"] = ffmpeg_cmd
|
||||
|
@ -81,6 +81,9 @@ http {
|
||||
open_file_cache_errors on;
|
||||
aio on;
|
||||
|
||||
# file upload size
|
||||
client_max_body_size 10M;
|
||||
|
||||
# https://github.com/kaltura/nginx-vod-module#vod_open_file_thread_pool
|
||||
vod_open_file_thread_pool default;
|
||||
|
||||
@ -104,6 +107,16 @@ http {
|
||||
|
||||
add_header Cache-Control "no-store";
|
||||
expires off;
|
||||
|
||||
keepalive_disable safari;
|
||||
|
||||
# vod module returns 502 for non-existent media
|
||||
# https://github.com/kaltura/nginx-vod-module/issues/468
|
||||
error_page 502 =404 /vod-not-found;
|
||||
}
|
||||
|
||||
location = /vod-not-found {
|
||||
return 404;
|
||||
}
|
||||
|
||||
location /stream/ {
|
||||
@ -224,7 +237,7 @@ http {
|
||||
|
||||
location ~* /api/.*\.(jpg|jpeg|png|webp|gif)$ {
|
||||
include auth_request.conf;
|
||||
rewrite ^/api/(.*)$ $1 break;
|
||||
rewrite ^/api/(.*)$ /$1 break;
|
||||
proxy_pass http://frigate_api;
|
||||
include proxy.conf;
|
||||
}
|
||||
|
@ -3,7 +3,9 @@
|
||||
import json
|
||||
import os
|
||||
|
||||
import yaml
|
||||
from ruamel.yaml import YAML
|
||||
|
||||
yaml = YAML()
|
||||
|
||||
config_file = os.environ.get("CONFIG_FILE", "/config/config.yml")
|
||||
|
||||
@ -17,7 +19,7 @@ try:
|
||||
raw_config = f.read()
|
||||
|
||||
if config_file.endswith((".yaml", ".yml")):
|
||||
config: dict[str, any] = yaml.safe_load(raw_config)
|
||||
config: dict[str, any] = yaml.load(raw_config)
|
||||
elif config_file.endswith(".json"):
|
||||
config: dict[str, any] = json.loads(raw_config)
|
||||
except FileNotFoundError:
|
||||
|
20
docker/rockchip/COCO/coco_subset_20.txt
Normal file
@ -0,0 +1,20 @@
|
||||
./subset/000000005001.jpg
|
||||
./subset/000000038829.jpg
|
||||
./subset/000000052891.jpg
|
||||
./subset/000000075612.jpg
|
||||
./subset/000000098261.jpg
|
||||
./subset/000000181542.jpg
|
||||
./subset/000000215245.jpg
|
||||
./subset/000000277005.jpg
|
||||
./subset/000000288685.jpg
|
||||
./subset/000000301421.jpg
|
||||
./subset/000000334371.jpg
|
||||
./subset/000000348481.jpg
|
||||
./subset/000000373353.jpg
|
||||
./subset/000000397681.jpg
|
||||
./subset/000000414673.jpg
|
||||
./subset/000000419312.jpg
|
||||
./subset/000000465822.jpg
|
||||
./subset/000000475732.jpg
|
||||
./subset/000000559707.jpg
|
||||
./subset/000000574315.jpg
|
BIN
docker/rockchip/COCO/subset/000000005001.jpg
Normal file
After Width: | Height: | Size: 207 KiB |
BIN
docker/rockchip/COCO/subset/000000038829.jpg
Normal file
After Width: | Height: | Size: 209 KiB |
BIN
docker/rockchip/COCO/subset/000000052891.jpg
Normal file
After Width: | Height: | Size: 150 KiB |
BIN
docker/rockchip/COCO/subset/000000075612.jpg
Normal file
After Width: | Height: | Size: 102 KiB |
BIN
docker/rockchip/COCO/subset/000000098261.jpg
Normal file
After Width: | Height: | Size: 14 KiB |
BIN
docker/rockchip/COCO/subset/000000181542.jpg
Normal file
After Width: | Height: | Size: 201 KiB |
BIN
docker/rockchip/COCO/subset/000000215245.jpg
Normal file
After Width: | Height: | Size: 233 KiB |
BIN
docker/rockchip/COCO/subset/000000277005.jpg
Normal file
After Width: | Height: | Size: 242 KiB |
BIN
docker/rockchip/COCO/subset/000000288685.jpg
Normal file
After Width: | Height: | Size: 230 KiB |
BIN
docker/rockchip/COCO/subset/000000301421.jpg
Normal file
After Width: | Height: | Size: 80 KiB |
BIN
docker/rockchip/COCO/subset/000000334371.jpg
Normal file
After Width: | Height: | Size: 136 KiB |
BIN
docker/rockchip/COCO/subset/000000348481.jpg
Normal file
After Width: | Height: | Size: 113 KiB |
BIN
docker/rockchip/COCO/subset/000000373353.jpg
Normal file
After Width: | Height: | Size: 281 KiB |
BIN
docker/rockchip/COCO/subset/000000397681.jpg
Normal file
After Width: | Height: | Size: 272 KiB |
BIN
docker/rockchip/COCO/subset/000000414673.jpg
Normal file
After Width: | Height: | Size: 152 KiB |
BIN
docker/rockchip/COCO/subset/000000419312.jpg
Normal file
After Width: | Height: | Size: 166 KiB |
BIN
docker/rockchip/COCO/subset/000000465822.jpg
Normal file
After Width: | Height: | Size: 109 KiB |
BIN
docker/rockchip/COCO/subset/000000475732.jpg
Normal file
After Width: | Height: | Size: 103 KiB |
BIN
docker/rockchip/COCO/subset/000000559707.jpg
Normal file
After Width: | Height: | Size: 203 KiB |
BIN
docker/rockchip/COCO/subset/000000574315.jpg
Normal file
After Width: | Height: | Size: 110 KiB |
@ -7,20 +7,26 @@ FROM wheels as rk-wheels
|
||||
COPY docker/main/requirements-wheels.txt /requirements-wheels.txt
|
||||
COPY docker/rockchip/requirements-wheels-rk.txt /requirements-wheels-rk.txt
|
||||
RUN sed -i "/https:\/\//d" /requirements-wheels.txt
|
||||
RUN sed -i "/onnxruntime/d" /requirements-wheels.txt
|
||||
RUN python3 -m pip config set global.break-system-packages true
|
||||
RUN pip3 wheel --wheel-dir=/rk-wheels -c /requirements-wheels.txt -r /requirements-wheels-rk.txt
|
||||
RUN rm -rf /rk-wheels/opencv_python-*
|
||||
|
||||
FROM deps AS rk-frigate
|
||||
ARG TARGETARCH
|
||||
|
||||
RUN --mount=type=bind,from=rk-wheels,source=/rk-wheels,target=/deps/rk-wheels \
|
||||
pip3 install -U /deps/rk-wheels/*.whl
|
||||
pip3 install --no-deps -U /deps/rk-wheels/*.whl --break-system-packages
|
||||
|
||||
WORKDIR /opt/frigate/
|
||||
COPY --from=rootfs / /
|
||||
COPY docker/rockchip/COCO /COCO
|
||||
COPY docker/rockchip/conv2rknn.py /opt/conv2rknn.py
|
||||
|
||||
ADD https://github.com/MarcA711/rknn-toolkit2/releases/download/v2.0.0/librknnrt.so /usr/lib/
|
||||
ADD https://github.com/MarcA711/rknn-toolkit2/releases/download/v2.3.0/librknnrt.so /usr/lib/
|
||||
|
||||
RUN rm -rf /usr/lib/btbn-ffmpeg/bin/ffmpeg
|
||||
RUN rm -rf /usr/lib/btbn-ffmpeg/bin/ffprobe
|
||||
ADD --chmod=111 https://github.com/MarcA711/Rockchip-FFmpeg-Builds/releases/download/6.1-5/ffmpeg /usr/lib/btbn-ffmpeg/bin/
|
||||
ADD --chmod=111 https://github.com/MarcA711/Rockchip-FFmpeg-Builds/releases/download/6.1-5/ffprobe /usr/lib/btbn-ffmpeg/bin/
|
||||
ADD --chmod=111 https://github.com/MarcA711/Rockchip-FFmpeg-Builds/releases/download/6.1-7/ffmpeg /usr/lib/ffmpeg/6.0/bin/
|
||||
ADD --chmod=111 https://github.com/MarcA711/Rockchip-FFmpeg-Builds/releases/download/6.1-7/ffprobe /usr/lib/ffmpeg/6.0/bin/
|
||||
ENV PATH="/usr/lib/ffmpeg/6.0/bin/:${PATH}"
|
||||
|
82
docker/rockchip/conv2rknn.py
Normal file
@ -0,0 +1,82 @@
|
||||
import os
|
||||
|
||||
import rknn
|
||||
import yaml
|
||||
from rknn.api import RKNN
|
||||
|
||||
try:
|
||||
with open(rknn.__path__[0] + "/VERSION") as file:
|
||||
tk_version = file.read().strip()
|
||||
except FileNotFoundError:
|
||||
pass
|
||||
|
||||
try:
|
||||
with open("/config/conv2rknn.yaml", "r") as config_file:
|
||||
configuration = yaml.safe_load(config_file)
|
||||
except FileNotFoundError:
|
||||
raise Exception("Please place a config.yaml file in /config/conv2rknn.yaml")
|
||||
|
||||
if configuration["config"] != None:
|
||||
rknn_config = configuration["config"]
|
||||
else:
|
||||
rknn_config = {}
|
||||
|
||||
if not os.path.isdir("/config/model_cache/rknn_cache/onnx"):
|
||||
raise Exception(
|
||||
"Place the onnx models you want to convert to rknn format in /config/model_cache/rknn_cache/onnx"
|
||||
)
|
||||
|
||||
if "soc" not in configuration:
|
||||
try:
|
||||
with open("/proc/device-tree/compatible") as file:
|
||||
soc = file.read().split(",")[-1].strip("\x00")
|
||||
except FileNotFoundError:
|
||||
raise Exception("Make sure to run docker in privileged mode.")
|
||||
|
||||
configuration["soc"] = [
|
||||
soc,
|
||||
]
|
||||
|
||||
if "quantization" not in configuration:
|
||||
configuration["quantization"] = False
|
||||
|
||||
if "output_name" not in configuration:
|
||||
configuration["output_name"] = "{{input_basename}}"
|
||||
|
||||
for input_filename in os.listdir("/config/model_cache/rknn_cache/onnx"):
|
||||
for soc in configuration["soc"]:
|
||||
quant = "i8" if configuration["quantization"] else "fp16"
|
||||
|
||||
input_path = "/config/model_cache/rknn_cache/onnx/" + input_filename
|
||||
input_basename = input_filename[: input_filename.rfind(".")]
|
||||
|
||||
output_filename = (
|
||||
configuration["output_name"].format(
|
||||
quant=quant,
|
||||
input_basename=input_basename,
|
||||
soc=soc,
|
||||
tk_version=tk_version,
|
||||
)
|
||||
+ ".rknn"
|
||||
)
|
||||
output_path = "/config/model_cache/rknn_cache/" + output_filename
|
||||
|
||||
rknn_config["target_platform"] = soc
|
||||
|
||||
rknn = RKNN(verbose=True)
|
||||
rknn.config(**rknn_config)
|
||||
|
||||
if rknn.load_onnx(model=input_path) != 0:
|
||||
raise Exception("Error loading model.")
|
||||
|
||||
if (
|
||||
rknn.build(
|
||||
do_quantization=configuration["quantization"],
|
||||
dataset="/COCO/coco_subset_20.txt",
|
||||
)
|
||||
!= 0
|
||||
):
|
||||
raise Exception("Error building model.")
|
||||
|
||||
if rknn.export_rknn(output_path) != 0:
|
||||
raise Exception("Error exporting rknn model.")
|
@ -1 +1,2 @@
|
||||
rknn-toolkit-lite2 @ https://github.com/MarcA711/rknn-toolkit2/releases/download/v2.0.0/rknn_toolkit_lite2-2.0.0b0-cp39-cp39-linux_aarch64.whl
|
||||
rknn-toolkit2 == 2.3.0
|
||||
rknn-toolkit-lite2 == 2.3.0
|
@ -1,10 +1,15 @@
|
||||
BOARDS += rk
|
||||
|
||||
local-rk: version
|
||||
docker buildx bake --load --file=docker/rockchip/rk.hcl --set rk.tags=frigate:latest-rk rk
|
||||
docker buildx bake --file=docker/rockchip/rk.hcl rk \
|
||||
--set rk.tags=frigate:latest-rk \
|
||||
--load
|
||||
|
||||
build-rk: version
|
||||
docker buildx bake --file=docker/rockchip/rk.hcl --set rk.tags=$(IMAGE_REPO):${GITHUB_REF_NAME}-$(COMMIT_HASH)-rk rk
|
||||
docker buildx bake --file=docker/rockchip/rk.hcl rk \
|
||||
--set rk.tags=$(IMAGE_REPO):${GITHUB_REF_NAME}-$(COMMIT_HASH)-rk
|
||||
|
||||
push-rk: build-rk
|
||||
docker buildx bake --push --file=docker/rockchip/rk.hcl --set rk.tags=$(IMAGE_REPO):${GITHUB_REF_NAME}-$(COMMIT_HASH)-rk rk
|
||||
docker buildx bake --file=docker/rockchip/rk.hcl rk \
|
||||
--set rk.tags=$(IMAGE_REPO):${GITHUB_REF_NAME}-$(COMMIT_HASH)-rk \
|
||||
--push
|
@ -23,18 +23,18 @@ COPY docker/rocm/rocm-pin-600 /etc/apt/preferences.d/
|
||||
|
||||
RUN apt-get update
|
||||
|
||||
RUN apt-get -y install --no-install-recommends migraphx
|
||||
RUN apt-get -y install --no-install-recommends migraphx hipfft roctracer
|
||||
RUN apt-get -y install --no-install-recommends migraphx-dev
|
||||
|
||||
RUN mkdir -p /opt/rocm-dist/opt/rocm-$ROCM/lib
|
||||
RUN cd /opt/rocm-$ROCM/lib && cp -dpr libMIOpen*.so* libamd*.so* libhip*.so* libhsa*.so* libmigraphx*.so* librocm*.so* librocblas*.so* /opt/rocm-dist/opt/rocm-$ROCM/lib/
|
||||
RUN cd /opt/rocm-$ROCM/lib && cp -dpr libMIOpen*.so* libamd*.so* libhip*.so* libhsa*.so* libmigraphx*.so* librocm*.so* librocblas*.so* libroctracer*.so* librocfft*.so* /opt/rocm-dist/opt/rocm-$ROCM/lib/
|
||||
RUN cd /opt/rocm-dist/opt/ && ln -s rocm-$ROCM rocm
|
||||
|
||||
RUN mkdir -p /opt/rocm-dist/etc/ld.so.conf.d/
|
||||
RUN echo /opt/rocm/lib|tee /opt/rocm-dist/etc/ld.so.conf.d/rocm.conf
|
||||
|
||||
#######################################################################
|
||||
FROM --platform=linux/amd64 debian:11 as debian-base
|
||||
FROM --platform=linux/amd64 debian:12 as debian-base
|
||||
|
||||
RUN apt-get update && apt-get -y upgrade
|
||||
RUN apt-get -y install --no-install-recommends libelf1 libdrm2 libdrm-amdgpu1 libnuma1 kmod
|
||||
@ -51,7 +51,7 @@ COPY --from=rocm /opt/rocm-$ROCM /opt/rocm-$ROCM
|
||||
RUN ln -s /opt/rocm-$ROCM /opt/rocm
|
||||
|
||||
RUN apt-get -y install g++ cmake
|
||||
RUN apt-get -y install python3-pybind11 python3.9-distutils python3-dev
|
||||
RUN apt-get -y install python3-pybind11 python3-distutils python3-dev
|
||||
|
||||
WORKDIR /opt/build
|
||||
|
||||
@ -69,7 +69,12 @@ RUN apt-get -y install libnuma1
|
||||
|
||||
WORKDIR /opt/frigate/
|
||||
COPY --from=rootfs / /
|
||||
COPY docker/rocm/rootfs/ /
|
||||
|
||||
# Temporarily disabled to see if a new wheel can be built to support py3.11
|
||||
#COPY docker/rocm/requirements-wheels-rocm.txt /requirements.txt
|
||||
#RUN python3 -m pip install --upgrade pip \
|
||||
# && pip3 uninstall -y onnxruntime-openvino \
|
||||
# && pip3 install -r /requirements.txt
|
||||
|
||||
#######################################################################
|
||||
FROM scratch AS rocm-dist
|
||||
@ -79,14 +84,15 @@ ARG AMDGPU
|
||||
|
||||
COPY --from=rocm /opt/rocm-$ROCM/bin/rocminfo /opt/rocm-$ROCM/bin/migraphx-driver /opt/rocm-$ROCM/bin/
|
||||
COPY --from=rocm /opt/rocm-$ROCM/share/miopen/db/*$AMDGPU* /opt/rocm-$ROCM/share/miopen/db/
|
||||
COPY --from=rocm /opt/rocm-$ROCM/share/miopen/db/*gfx908* /opt/rocm-$ROCM/share/miopen/db/
|
||||
COPY --from=rocm /opt/rocm-$ROCM/lib/rocblas/library/*$AMDGPU* /opt/rocm-$ROCM/lib/rocblas/library/
|
||||
COPY --from=rocm /opt/rocm-dist/ /
|
||||
COPY --from=debian-build /opt/rocm/lib/migraphx.cpython-39-x86_64-linux-gnu.so /opt/rocm-$ROCM/lib/
|
||||
COPY --from=debian-build /opt/rocm/lib/migraphx.cpython-311-x86_64-linux-gnu.so /opt/rocm-$ROCM/lib/
|
||||
|
||||
#######################################################################
|
||||
FROM deps-prelim AS rocm-prelim-hsa-override0
|
||||
|
||||
ENV HSA_ENABLE_SDMA=0
|
||||
\
|
||||
ENV HSA_ENABLE_SDMA=0
|
||||
|
||||
COPY --from=rocm-dist / /
|
||||
|
||||
@ -101,6 +107,3 @@ ENV HSA_OVERRIDE_GFX_VERSION=$HSA_OVERRIDE_GFX_VERSION
|
||||
#######################################################################
|
||||
FROM rocm-prelim-hsa-override$HSA_OVERRIDE as rocm-deps
|
||||
|
||||
# Request yolov8 download at startup
|
||||
ENV DOWNLOAD_YOLOV8=1
|
||||
|
||||
|
1
docker/rocm/requirements-wheels-rocm.txt
Normal file
@ -0,0 +1 @@
|
||||
onnxruntime-rocm @ https://github.com/NickM-27/frigate-onnxruntime-rocm/releases/download/v1.0.0/onnxruntime_rocm-1.17.3-cp39-cp39-linux_x86_64.whl
|
@ -4,14 +4,50 @@ BOARDS += rocm
|
||||
ROCM_CHIPSETS:=gfx900:9.0.0 gfx1030:10.3.0 gfx1100:11.0.0
|
||||
|
||||
local-rocm: version
|
||||
$(foreach chipset,$(ROCM_CHIPSETS),AMDGPU=$(word 1,$(subst :, ,$(chipset))) HSA_OVERRIDE_GFX_VERSION=$(word 2,$(subst :, ,$(chipset))) HSA_OVERRIDE=1 docker buildx bake --load --file=docker/rocm/rocm.hcl --set rocm.tags=frigate:latest-rocm-$(word 1,$(subst :, ,$(chipset))) rocm;)
|
||||
unset HSA_OVERRIDE_GFX_VERSION && HSA_OVERRIDE=0 AMDGPU=gfx docker buildx bake --load --file=docker/rocm/rocm.hcl --set rocm.tags=frigate:latest-rocm rocm
|
||||
$(foreach chipset,$(ROCM_CHIPSETS), \
|
||||
AMDGPU=$(word 1,$(subst :, ,$(chipset))) \
|
||||
HSA_OVERRIDE_GFX_VERSION=$(word 2,$(subst :, ,$(chipset))) \
|
||||
HSA_OVERRIDE=1 \
|
||||
docker buildx bake --file=docker/rocm/rocm.hcl rocm \
|
||||
--set rocm.tags=frigate:latest-rocm-$(word 1,$(subst :, ,$(chipset))) \
|
||||
--load \
|
||||
&&) true
|
||||
|
||||
unset HSA_OVERRIDE_GFX_VERSION && \
|
||||
HSA_OVERRIDE=0 \
|
||||
AMDGPU=gfx \
|
||||
docker buildx bake --file=docker/rocm/rocm.hcl rocm \
|
||||
--set rocm.tags=frigate:latest-rocm \
|
||||
--load
|
||||
|
||||
build-rocm: version
|
||||
$(foreach chipset,$(ROCM_CHIPSETS),AMDGPU=$(word 1,$(subst :, ,$(chipset))) HSA_OVERRIDE_GFX_VERSION=$(word 2,$(subst :, ,$(chipset))) HSA_OVERRIDE=1 docker buildx bake --file=docker/rocm/rocm.hcl --set rocm.tags=$(IMAGE_REPO):${GITHUB_REF_NAME}-$(COMMIT_HASH)-rocm-$(chipset) rocm;)
|
||||
unset HSA_OVERRIDE_GFX_VERSION && HSA_OVERRIDE=0 AMDGPU=gfx docker buildx bake --file=docker/rocm/rocm.hcl --set rocm.tags=$(IMAGE_REPO):${GITHUB_REF_NAME}-$(COMMIT_HASH)-rocm rocm
|
||||
$(foreach chipset,$(ROCM_CHIPSETS), \
|
||||
AMDGPU=$(word 1,$(subst :, ,$(chipset))) \
|
||||
HSA_OVERRIDE_GFX_VERSION=$(word 2,$(subst :, ,$(chipset))) \
|
||||
HSA_OVERRIDE=1 \
|
||||
docker buildx bake --file=docker/rocm/rocm.hcl rocm \
|
||||
--set rocm.tags=$(IMAGE_REPO):${GITHUB_REF_NAME}-$(COMMIT_HASH)-rocm-$(chipset) \
|
||||
&&) true
|
||||
|
||||
unset HSA_OVERRIDE_GFX_VERSION && \
|
||||
HSA_OVERRIDE=0 \
|
||||
AMDGPU=gfx \
|
||||
docker buildx bake --file=docker/rocm/rocm.hcl rocm \
|
||||
--set rocm.tags=$(IMAGE_REPO):${GITHUB_REF_NAME}-$(COMMIT_HASH)-rocm
|
||||
|
||||
push-rocm: build-rocm
|
||||
$(foreach chipset,$(ROCM_CHIPSETS),AMDGPU=$(word 1,$(subst :, ,$(chipset))) HSA_OVERRIDE_GFX_VERSION=$(word 2,$(subst :, ,$(chipset))) HSA_OVERRIDE=1 docker buildx bake --push --file=docker/rocm/rocm.hcl --set rocm.tags=$(IMAGE_REPO):${GITHUB_REF_NAME}-$(COMMIT_HASH)-rocm-$(chipset) rocm;)
|
||||
unset HSA_OVERRIDE_GFX_VERSION && HSA_OVERRIDE=0 AMDGPU=gfx docker buildx bake --push --file=docker/rocm/rocm.hcl --set rocm.tags=$(IMAGE_REPO):${GITHUB_REF_NAME}-$(COMMIT_HASH)-rocm rocm
|
||||
$(foreach chipset,$(ROCM_CHIPSETS), \
|
||||
AMDGPU=$(word 1,$(subst :, ,$(chipset))) \
|
||||
HSA_OVERRIDE_GFX_VERSION=$(word 2,$(subst :, ,$(chipset))) \
|
||||
HSA_OVERRIDE=1 \
|
||||
docker buildx bake --file=docker/rocm/rocm.hcl rocm \
|
||||
--set rocm.tags=$(IMAGE_REPO):${GITHUB_REF_NAME}-$(COMMIT_HASH)-rocm-$(chipset) \
|
||||
--push \
|
||||
&&) true
|
||||
|
||||
unset HSA_OVERRIDE_GFX_VERSION && \
|
||||
HSA_OVERRIDE=0 \
|
||||
AMDGPU=gfx \
|
||||
docker buildx bake --file=docker/rocm/rocm.hcl rocm \
|
||||
--set rocm.tags=$(IMAGE_REPO):${GITHUB_REF_NAME}-$(COMMIT_HASH)-rocm \
|
||||
--push
|
||||
|
@ -1,20 +0,0 @@
|
||||
#!/command/with-contenv bash
|
||||
# shellcheck shell=bash
|
||||
# Compile YoloV8 ONNX files into ROCm MIGraphX files
|
||||
|
||||
OVERRIDE=$(cd /opt/frigate && python3 -c 'import frigate.detectors.plugins.rocm as rocm; print(rocm.auto_override_gfx_version())')
|
||||
|
||||
if ! test -z "$OVERRIDE"; then
|
||||
echo "Using HSA_OVERRIDE_GFX_VERSION=${OVERRIDE}"
|
||||
export HSA_OVERRIDE_GFX_VERSION=$OVERRIDE
|
||||
fi
|
||||
|
||||
for onnx in /config/model_cache/yolov8/*.onnx
|
||||
do
|
||||
mxr="${onnx%.onnx}.mxr"
|
||||
if ! test -f $mxr; then
|
||||
echo "processing $onnx into $mxr"
|
||||
/opt/rocm/bin/migraphx-driver compile $onnx --optimize --gpu --enable-offload-copy --binary -o $mxr
|
||||
fi
|
||||
done
|
||||
|
@ -1 +0,0 @@
|
||||
oneshot
|
@ -1 +0,0 @@
|
||||
/etc/s6-overlay/s6-rc.d/compile-rocm-models/run
|
@ -18,13 +18,14 @@ apt-get -qq install --no-install-recommends -y \
|
||||
mkdir -p -m 600 /root/.gnupg
|
||||
|
||||
# enable non-free repo
|
||||
sed -i -e's/ main/ main contrib non-free/g' /etc/apt/sources.list
|
||||
echo "deb http://deb.debian.org/debian bookworm main contrib non-free non-free-firmware" | tee -a /etc/apt/sources.list
|
||||
apt update
|
||||
|
||||
# ffmpeg -> arm64
|
||||
if [[ "${TARGETARCH}" == "arm64" ]]; then
|
||||
# add raspberry pi repo
|
||||
gpg --no-default-keyring --keyring /usr/share/keyrings/raspbian.gpg --keyserver keyserver.ubuntu.com --recv-keys 82B129927FA3303E
|
||||
echo "deb [signed-by=/usr/share/keyrings/raspbian.gpg] https://archive.raspberrypi.org/debian/ bullseye main" | tee /etc/apt/sources.list.d/raspi.list
|
||||
echo "deb [signed-by=/usr/share/keyrings/raspbian.gpg] https://archive.raspberrypi.org/debian/ bookworm main" | tee /etc/apt/sources.list.d/raspi.list
|
||||
apt-get -qq update
|
||||
apt-get -qq install --no-install-recommends --no-install-suggests -y ffmpeg
|
||||
fi
|
||||
|
@ -1,10 +1,15 @@
|
||||
BOARDS += rpi
|
||||
|
||||
local-rpi: version
|
||||
docker buildx bake --load --file=docker/rpi/rpi.hcl --set rpi.tags=frigate:latest-rpi rpi
|
||||
docker buildx bake --file=docker/rpi/rpi.hcl rpi \
|
||||
--set rpi.tags=frigate:latest-rpi \
|
||||
--load
|
||||
|
||||
build-rpi: version
|
||||
docker buildx bake --file=docker/rpi/rpi.hcl --set rpi.tags=$(IMAGE_REPO):${GITHUB_REF_NAME}-$(COMMIT_HASH)-rpi rpi
|
||||
docker buildx bake --file=docker/rpi/rpi.hcl rpi \
|
||||
--set rpi.tags=$(IMAGE_REPO):${GITHUB_REF_NAME}-$(COMMIT_HASH)-rpi
|
||||
|
||||
push-rpi: build-rpi
|
||||
docker buildx bake --push --file=docker/rpi/rpi.hcl --set rpi.tags=$(IMAGE_REPO):${GITHUB_REF_NAME}-$(COMMIT_HASH)-rpi rpi
|
||||
docker buildx bake --file=docker/rpi/rpi.hcl rpi \
|
||||
--set rpi.tags=$(IMAGE_REPO):${GITHUB_REF_NAME}-$(COMMIT_HASH)-rpi \
|
||||
--push
|
||||
|
@ -7,15 +7,17 @@ ARG DEBIAN_FRONTEND=noninteractive
|
||||
FROM wheels as trt-wheels
|
||||
ARG DEBIAN_FRONTEND
|
||||
ARG TARGETARCH
|
||||
RUN python3 -m pip config set global.break-system-packages true
|
||||
|
||||
# Add TensorRT wheels to another folder
|
||||
COPY docker/tensorrt/requirements-amd64.txt /requirements-tensorrt.txt
|
||||
RUN mkdir -p /trt-wheels && pip3 wheel --wheel-dir=/trt-wheels -r /requirements-tensorrt.txt
|
||||
|
||||
FROM tensorrt-base AS frigate-tensorrt
|
||||
ENV TRT_VER=8.5.3
|
||||
ENV TRT_VER=8.6.1
|
||||
RUN python3 -m pip config set global.break-system-packages true
|
||||
RUN --mount=type=bind,from=trt-wheels,source=/trt-wheels,target=/deps/trt-wheels \
|
||||
pip3 install -U /deps/trt-wheels/*.whl && \
|
||||
pip3 install -U /deps/trt-wheels/*.whl --break-system-packages && \
|
||||
ldconfig
|
||||
|
||||
WORKDIR /opt/frigate/
|
||||
@ -26,7 +28,8 @@ FROM devcontainer AS devcontainer-trt
|
||||
|
||||
COPY --from=trt-deps /usr/local/lib/libyolo_layer.so /usr/local/lib/libyolo_layer.so
|
||||
COPY --from=trt-deps /usr/local/src/tensorrt_demos /usr/local/src/tensorrt_demos
|
||||
COPY --from=trt-deps /usr/local/cuda-12.1 /usr/local/cuda
|
||||
COPY docker/tensorrt/detector/rootfs/ /
|
||||
COPY --from=trt-deps /usr/local/lib/libyolo_layer.so /usr/local/lib/libyolo_layer.so
|
||||
RUN --mount=type=bind,from=trt-wheels,source=/trt-wheels,target=/deps/trt-wheels \
|
||||
pip3 install -U /deps/trt-wheels/*.whl
|
||||
pip3 install -U /deps/trt-wheels/*.whl --break-system-packages
|
||||
|
@ -10,8 +10,8 @@ ARG DEBIAN_FRONTEND
|
||||
# Use a separate container to build wheels to prevent build dependencies in final image
|
||||
RUN apt-get -qq update \
|
||||
&& apt-get -qq install -y --no-install-recommends \
|
||||
python3.9 python3.9-dev \
|
||||
wget build-essential cmake git \
|
||||
python3.9 python3.9-dev \
|
||||
wget build-essential cmake git \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
|
||||
# Ensure python3 defaults to python3.9
|
||||
@ -41,7 +41,11 @@ RUN --mount=type=bind,source=docker/tensorrt/detector/build_python_tensorrt.sh,t
|
||||
&& TENSORRT_VER=$(cat /etc/TENSORRT_VER) /deps/build_python_tensorrt.sh
|
||||
|
||||
COPY docker/tensorrt/requirements-arm64.txt /requirements-tensorrt.txt
|
||||
RUN pip3 wheel --wheel-dir=/trt-wheels -r /requirements-tensorrt.txt
|
||||
ADD https://nvidia.box.com/shared/static/psl23iw3bh7hlgku0mjo1xekxpego3e3.whl /tmp/onnxruntime_gpu-1.15.1-cp311-cp311-linux_aarch64.whl
|
||||
|
||||
RUN pip3 uninstall -y onnxruntime-openvino \
|
||||
&& pip3 wheel --wheel-dir=/trt-wheels -r /requirements-tensorrt.txt \
|
||||
&& pip3 install --no-deps /tmp/onnxruntime_gpu-1.15.1-cp311-cp311-linux_aarch64.whl
|
||||
|
||||
FROM build-wheels AS trt-model-wheels
|
||||
ARG DEBIAN_FRONTEND
|
||||
|
@ -3,7 +3,7 @@
|
||||
# https://askubuntu.com/questions/972516/debian-frontend-environment-variable
|
||||
ARG DEBIAN_FRONTEND=noninteractive
|
||||
|
||||
ARG TRT_BASE=nvcr.io/nvidia/tensorrt:23.03-py3
|
||||
ARG TRT_BASE=nvcr.io/nvidia/tensorrt:23.12-py3
|
||||
|
||||
# Build TensorRT-specific library
|
||||
FROM ${TRT_BASE} AS trt-deps
|
||||
@ -24,8 +24,9 @@ ENV S6_CMD_WAIT_FOR_SERVICES_MAXTIME=0
|
||||
|
||||
COPY --from=trt-deps /usr/local/lib/libyolo_layer.so /usr/local/lib/libyolo_layer.so
|
||||
COPY --from=trt-deps /usr/local/src/tensorrt_demos /usr/local/src/tensorrt_demos
|
||||
COPY --from=trt-deps /usr/local/cuda-12.* /usr/local/cuda
|
||||
COPY docker/tensorrt/detector/rootfs/ /
|
||||
ENV YOLO_MODELS="yolov7-320"
|
||||
ENV YOLO_MODELS=""
|
||||
|
||||
HEALTHCHECK --start-period=600s --start-interval=5s --interval=15s --timeout=5s --retries=3 \
|
||||
CMD curl --fail --silent --show-error http://127.0.0.1:5000/api/version || exit 1
|
||||
|
@ -1,6 +1,8 @@
|
||||
/usr/local/lib
|
||||
/usr/local/lib/python3.9/dist-packages/nvidia/cudnn/lib
|
||||
/usr/local/lib/python3.9/dist-packages/nvidia/cuda_runtime/lib
|
||||
/usr/local/lib/python3.9/dist-packages/nvidia/cublas/lib
|
||||
/usr/local/lib/python3.9/dist-packages/nvidia/cuda_nvrtc/lib
|
||||
/usr/local/lib/python3.9/dist-packages/tensorrt
|
||||
/usr/local/cuda/lib64
|
||||
/usr/local/lib/python3.11/dist-packages/nvidia/cudnn/lib
|
||||
/usr/local/lib/python3.11/dist-packages/nvidia/cuda_runtime/lib
|
||||
/usr/local/lib/python3.11/dist-packages/nvidia/cublas/lib
|
||||
/usr/local/lib/python3.11/dist-packages/nvidia/cuda_nvrtc/lib
|
||||
/usr/local/lib/python3.11/dist-packages/tensorrt
|
||||
/usr/local/lib/python3.11/dist-packages/nvidia/cufft/lib
|
@ -11,6 +11,7 @@ set -o errexit -o nounset -o pipefail
|
||||
MODEL_CACHE_DIR=${MODEL_CACHE_DIR:-"/config/model_cache/tensorrt"}
|
||||
TRT_VER=${TRT_VER:-$(cat /etc/TENSORRT_VER)}
|
||||
OUTPUT_FOLDER="${MODEL_CACHE_DIR}/${TRT_VER}"
|
||||
YOLO_MODELS=${YOLO_MODELS:-""}
|
||||
|
||||
# Create output folder
|
||||
mkdir -p ${OUTPUT_FOLDER}
|
||||
@ -19,6 +20,11 @@ FIRST_MODEL=true
|
||||
MODEL_DOWNLOAD=""
|
||||
MODEL_CONVERT=""
|
||||
|
||||
if [ -z "$YOLO_MODELS"]; then
|
||||
echo "tensorrt model preparation disabled"
|
||||
exit 0
|
||||
fi
|
||||
|
||||
for model in ${YOLO_MODELS//,/ }
|
||||
do
|
||||
# Remove old link in case path/version changed
|
||||
|
@ -1,12 +1,14 @@
|
||||
# NVidia TensorRT Support (amd64 only)
|
||||
--extra-index-url 'https://pypi.nvidia.com'
|
||||
numpy < 1.24; platform_machine == 'x86_64'
|
||||
tensorrt == 8.5.3.*; platform_machine == 'x86_64'
|
||||
cuda-python == 11.8; platform_machine == 'x86_64'
|
||||
cython == 0.29.*; platform_machine == 'x86_64'
|
||||
tensorrt == 8.6.1.*; platform_machine == 'x86_64'
|
||||
cuda-python == 11.8.*; platform_machine == 'x86_64'
|
||||
cython == 3.0.*; platform_machine == 'x86_64'
|
||||
nvidia-cuda-runtime-cu12 == 12.1.*; platform_machine == 'x86_64'
|
||||
nvidia-cuda-runtime-cu11 == 11.8.*; platform_machine == 'x86_64'
|
||||
nvidia-cublas-cu11 == 11.11.3.6; platform_machine == 'x86_64'
|
||||
nvidia-cudnn-cu11 == 8.6.0.*; platform_machine == 'x86_64'
|
||||
onnx==1.14.0; platform_machine == 'x86_64'
|
||||
protobuf==3.20.3; platform_machine == 'x86_64'
|
||||
nvidia-cudnn-cu12 == 9.5.0.*; platform_machine == 'x86_64'
|
||||
nvidia-cufft-cu11==10.*; platform_machine == 'x86_64'
|
||||
onnx==1.16.*; platform_machine == 'x86_64'
|
||||
onnxruntime-gpu==1.20.*; platform_machine == 'x86_64'
|
||||
protobuf==3.20.3; platform_machine == 'x86_64'
|
||||
|
@ -1 +1 @@
|
||||
cuda-python == 11.7; platform_machine == 'aarch64'
|
||||
cuda-python == 11.7; platform_machine == 'aarch64'
|
@ -7,20 +7,35 @@ JETPACK4_ARGS := ARCH=arm64 BASE_IMAGE=$(JETPACK4_BASE) SLIM_BASE=$(JETPACK4_BAS
|
||||
JETPACK5_ARGS := ARCH=arm64 BASE_IMAGE=$(JETPACK5_BASE) SLIM_BASE=$(JETPACK5_BASE) TRT_BASE=$(JETPACK5_BASE)
|
||||
|
||||
local-trt: version
|
||||
$(X86_DGPU_ARGS) docker buildx bake --load --file=docker/tensorrt/trt.hcl --set tensorrt.tags=frigate:latest-tensorrt tensorrt
|
||||
$(X86_DGPU_ARGS) docker buildx bake --file=docker/tensorrt/trt.hcl tensorrt \
|
||||
--set tensorrt.tags=frigate:latest-tensorrt \
|
||||
--load
|
||||
|
||||
local-trt-jp4: version
|
||||
$(JETPACK4_ARGS) docker buildx bake --load --file=docker/tensorrt/trt.hcl --set tensorrt.tags=frigate:latest-tensorrt-jp4 tensorrt
|
||||
$(JETPACK4_ARGS) docker buildx bake --file=docker/tensorrt/trt.hcl tensorrt \
|
||||
--set tensorrt.tags=frigate:latest-tensorrt-jp4 \
|
||||
--load
|
||||
|
||||
local-trt-jp5: version
|
||||
$(JETPACK5_ARGS) docker buildx bake --load --file=docker/tensorrt/trt.hcl --set tensorrt.tags=frigate:latest-tensorrt-jp5 tensorrt
|
||||
$(JETPACK5_ARGS) docker buildx bake --file=docker/tensorrt/trt.hcl tensorrt \
|
||||
--set tensorrt.tags=frigate:latest-tensorrt-jp5 \
|
||||
--load
|
||||
|
||||
build-trt:
|
||||
$(X86_DGPU_ARGS) docker buildx bake --file=docker/tensorrt/trt.hcl --set tensorrt.tags=$(IMAGE_REPO):${GITHUB_REF_NAME}-$(COMMIT_HASH)-tensorrt tensorrt
|
||||
$(JETPACK4_ARGS) docker buildx bake --file=docker/tensorrt/trt.hcl --set tensorrt.tags=$(IMAGE_REPO):${GITHUB_REF_NAME}-$(COMMIT_HASH)-tensorrt-jp4 tensorrt
|
||||
$(JETPACK5_ARGS) docker buildx bake --file=docker/tensorrt/trt.hcl --set tensorrt.tags=$(IMAGE_REPO):${GITHUB_REF_NAME}-$(COMMIT_HASH)-tensorrt-jp5 tensorrt
|
||||
$(X86_DGPU_ARGS) docker buildx bake --file=docker/tensorrt/trt.hcl tensorrt \
|
||||
--set tensorrt.tags=$(IMAGE_REPO):${GITHUB_REF_NAME}-$(COMMIT_HASH)-tensorrt
|
||||
$(JETPACK4_ARGS) docker buildx bake --file=docker/tensorrt/trt.hcl tensorrt \
|
||||
--set tensorrt.tags=$(IMAGE_REPO):${GITHUB_REF_NAME}-$(COMMIT_HASH)-tensorrt-jp4
|
||||
$(JETPACK5_ARGS) docker buildx bake --file=docker/tensorrt/trt.hcl tensorrt \
|
||||
--set tensorrt.tags=$(IMAGE_REPO):${GITHUB_REF_NAME}-$(COMMIT_HASH)-tensorrt-jp5
|
||||
|
||||
push-trt: build-trt
|
||||
$(X86_DGPU_ARGS) docker buildx bake --push --file=docker/tensorrt/trt.hcl --set tensorrt.tags=$(IMAGE_REPO):${GITHUB_REF_NAME}-$(COMMIT_HASH)-tensorrt tensorrt
|
||||
$(JETPACK4_ARGS) docker buildx bake --push --file=docker/tensorrt/trt.hcl --set tensorrt.tags=$(IMAGE_REPO):${GITHUB_REF_NAME}-$(COMMIT_HASH)-tensorrt-jp4 tensorrt
|
||||
$(JETPACK5_ARGS) docker buildx bake --push --file=docker/tensorrt/trt.hcl --set tensorrt.tags=$(IMAGE_REPO):${GITHUB_REF_NAME}-$(COMMIT_HASH)-tensorrt-jp5 tensorrt
|
||||
$(X86_DGPU_ARGS) docker buildx bake --file=docker/tensorrt/trt.hcl tensorrt \
|
||||
--set tensorrt.tags=$(IMAGE_REPO):${GITHUB_REF_NAME}-$(COMMIT_HASH)-tensorrt \
|
||||
--push
|
||||
$(JETPACK4_ARGS) docker buildx bake --file=docker/tensorrt/trt.hcl tensorrt \
|
||||
--set tensorrt.tags=$(IMAGE_REPO):${GITHUB_REF_NAME}-$(COMMIT_HASH)-tensorrt-jp4 \
|
||||
--push
|
||||
$(JETPACK5_ARGS) docker buildx bake --file=docker/tensorrt/trt.hcl tensorrt \
|
||||
--set tensorrt.tags=$(IMAGE_REPO):${GITHUB_REF_NAME}-$(COMMIT_HASH)-tensorrt-jp5 \
|
||||
--push
|
||||
|
@ -1,5 +1,10 @@
|
||||
# Website
|
||||
|
||||
This website is built using [Docusaurus 2](https://v2.docusaurus.io/), a modern static website generator.
|
||||
This website is built using [Docusaurus 3.5](https://docusaurus.io/docs), a modern static website generator.
|
||||
|
||||
For installation and contributing instructions, please follow the [Contributing Docs](https://docs.frigate.video/development/contributing).
|
||||
|
||||
# Development
|
||||
|
||||
1. Run `npm i` to install dependencies
|
||||
2. Run `npm run start` to start the website
|
||||
|
@ -4,7 +4,9 @@ title: Advanced Options
|
||||
sidebar_label: Advanced Options
|
||||
---
|
||||
|
||||
### `logger`
|
||||
### Logging
|
||||
|
||||
#### Frigate `logger`
|
||||
|
||||
Change the default log level for troubleshooting purposes.
|
||||
|
||||
@ -28,6 +30,18 @@ Examples of available modules are:
|
||||
- `watchdog.<camera_name>`
|
||||
- `ffmpeg.<camera_name>.<sorted_roles>` NOTE: All FFmpeg logs are sent as `error` level.
|
||||
|
||||
#### Go2RTC Logging
|
||||
|
||||
See [the go2rtc docs](https://github.com/AlexxIT/go2rtc?tab=readme-ov-file#module-log) for logging configuration
|
||||
|
||||
```yaml
|
||||
go2rtc:
|
||||
streams:
|
||||
...
|
||||
log:
|
||||
exec: trace
|
||||
```
|
||||
|
||||
### `environment_vars`
|
||||
|
||||
This section can be used to set environment variables for those unable to modify the environment of the container (ie. within HassOS)
|
||||
@ -41,7 +55,7 @@ environment_vars:
|
||||
|
||||
### `database`
|
||||
|
||||
Event and recording information is managed in a sqlite database at `/config/frigate.db`. If that database is deleted, recordings will be orphaned and will need to be cleaned up manually. They also won't show up in the Media Browser within Home Assistant.
|
||||
Tracked object and recording information is managed in a sqlite database at `/config/frigate.db`. If that database is deleted, recordings will be orphaned and will need to be cleaned up manually. They also won't show up in the Media Browser within Home Assistant.
|
||||
|
||||
If you are storing your database on a network share (SMB, NFS, etc), you may get a `database is locked` error message on startup. You can customize the location of the database in the config if necessary.
|
||||
|
||||
@ -162,19 +176,19 @@ listen [::]:5000 ipv6only=off;
|
||||
|
||||
### Custom ffmpeg build
|
||||
|
||||
Included with Frigate is a build of ffmpeg that works for the vast majority of users. However, there exists some hardware setups which have incompatibilities with the included build. In this case, a docker volume mapping can be used to overwrite the included ffmpeg build with an ffmpeg build that works for your specific hardware setup.
|
||||
Included with Frigate is a build of ffmpeg that works for the vast majority of users. However, there exists some hardware setups which have incompatibilities with the included build. In this case, statically built ffmpeg binary can be downloaded to /config and used.
|
||||
|
||||
To do this:
|
||||
|
||||
1. Download your ffmpeg build and uncompress to a folder on the host (let's use `/home/appdata/frigate/custom-ffmpeg` for this example).
|
||||
1. Download your ffmpeg build and uncompress to the Frigate config folder.
|
||||
2. Update your docker-compose or docker CLI to include `'/home/appdata/frigate/custom-ffmpeg':'/usr/lib/btbn-ffmpeg':'ro'` in the volume mappings.
|
||||
3. Restart Frigate and the custom version will be used if the mapping was done correctly.
|
||||
|
||||
NOTE: The folder that is mapped from the host needs to be the folder that contains `/bin`. So if the full structure is `/home/appdata/frigate/custom-ffmpeg/bin/ffmpeg` then `/home/appdata/frigate/custom-ffmpeg` needs to be mapped to `/usr/lib/btbn-ffmpeg`.
|
||||
NOTE: The folder that is set for the config needs to be the folder that contains `/bin`. So if the full structure is `/home/appdata/frigate/custom-ffmpeg/bin/ffmpeg` then the `ffmpeg -> path` field should be `/config/custom-ffmpeg/bin`.
|
||||
|
||||
### Custom go2rtc version
|
||||
|
||||
Frigate currently includes go2rtc v1.9.4, there may be certain cases where you want to run a different version of go2rtc.
|
||||
Frigate currently includes go2rtc v1.9.2, there may be certain cases where you want to run a different version of go2rtc.
|
||||
|
||||
To do this:
|
||||
|
||||
@ -183,22 +197,22 @@ To do this:
|
||||
3. Give `go2rtc` execute permission.
|
||||
4. Restart Frigate and the custom version will be used, you can verify by checking go2rtc logs.
|
||||
|
||||
## Validating your config.yaml file updates
|
||||
## Validating your config.yml file updates
|
||||
|
||||
When frigate starts up, it checks whether your config file is valid, and if it is not, the process exits. To minimize interruptions when updating your config, you have three options -- you can edit the config via the WebUI which has built in validation, use the config API, or you can validate on the command line using the frigate docker container.
|
||||
|
||||
### Via API
|
||||
|
||||
Frigate can accept a new configuration file as JSON at the `/config/save` endpoint. When updating the config this way, Frigate will validate the config before saving it, and return a `400` if the config is not valid.
|
||||
Frigate can accept a new configuration file as JSON at the `/api/config/save` endpoint. When updating the config this way, Frigate will validate the config before saving it, and return a `400` if the config is not valid.
|
||||
|
||||
```bash
|
||||
curl -X POST http://frigate_host:5000/config/save -d @config.json
|
||||
curl -X POST http://frigate_host:5000/api/config/save -d @config.json
|
||||
```
|
||||
|
||||
if you'd like you can use your yaml config directly by using [`yq`](https://github.com/mikefarah/yq) to convert it to json:
|
||||
|
||||
```bash
|
||||
yq r -j config.yml | curl -X POST http://frigate_host:5000/config/save -d @-
|
||||
yq r -j config.yml | curl -X POST http://frigate_host:5000/api/config/save -d @-
|
||||
```
|
||||
|
||||
### Via Command Line
|
||||
@ -211,5 +225,5 @@ docker run \
|
||||
--entrypoint python3 \
|
||||
ghcr.io/blakeblackshear/frigate:stable \
|
||||
-u -m frigate \
|
||||
--validate_config
|
||||
--validate-config
|
||||
```
|
||||
|
@ -24,9 +24,14 @@ On startup, an admin user and password are generated and printed in the logs. It
|
||||
|
||||
In the event that you are locked out of your instance, you can tell Frigate to reset the admin password and print it in the logs on next startup using the `reset_admin_password` setting in your config file.
|
||||
|
||||
```yaml
|
||||
auth:
|
||||
reset_admin_password: true
|
||||
```
|
||||
|
||||
## Login failure rate limiting
|
||||
|
||||
In order to limit the risk of brute force attacks, rate limiting is available for login failures. This is implemented with Flask-Limiter, and the string notation for valid values is available in [the documentation](https://flask-limiter.readthedocs.io/en/stable/configuration.html#rate-limit-string-notation).
|
||||
In order to limit the risk of brute force attacks, rate limiting is available for login failures. This is implemented with SlowApi, and the string notation for valid values is available in [the documentation](https://limits.readthedocs.io/en/stable/quickstart.html#examples).
|
||||
|
||||
For example, `1/second;5/minute;20/hour` will rate limit the login endpoint when failures occur more than:
|
||||
|
||||
|
@ -41,6 +41,7 @@ cameras:
|
||||
...
|
||||
onvif:
|
||||
# Required: host of the camera being connected to.
|
||||
# NOTE: HTTP is assumed by default; HTTPS is supported if you specify the scheme, ex: "https://0.0.0.0".
|
||||
host: 0.0.0.0
|
||||
# Optional: ONVIF port for device (default: shown below).
|
||||
port: 8000
|
||||
@ -49,6 +50,8 @@ cameras:
|
||||
user: admin
|
||||
# Optional: password for login.
|
||||
password: admin
|
||||
# Optional: Skip TLS verification from the ONVIF server (default: shown below)
|
||||
tls_insecure: False
|
||||
# Optional: PTZ camera object autotracking. Keeps a moving object in
|
||||
# the center of the frame by automatically moving the PTZ camera.
|
||||
autotracking:
|
||||
@ -164,3 +167,7 @@ To maintain object tracking during PTZ moves, Frigate tracks the motion of your
|
||||
### Calibration seems to have completed, but the camera is not actually moving to track my object. Why?
|
||||
|
||||
Some cameras have firmware that reports that FOV RelativeMove, the ONVIF command that Frigate uses for autotracking, is supported. However, if the camera does not pan or tilt when an object comes into the required zone, your camera's firmware does not actually support FOV RelativeMove. One such camera is the Uniview IPC672LR-AX4DUPK. It actually moves its zoom motor instead of panning and tilting and does not follow the ONVIF standard whatsoever.
|
||||
|
||||
### Frigate reports an error saying that calibration has failed. Why?
|
||||
|
||||
Calibration measures the amount of time it takes for Frigate to make a series of movements with your PTZ. This error message is recorded in the log if these values are too high for Frigate to support calibrated autotracking. This is often the case when your camera's motor or network connection is too slow or your camera's firmware doesn't report the motor status in a timely manner. You can try running without calibration (just remove the `movement_weights` line from your config and restart), but if calibration fails, this often means that autotracking will behave unpredictably.
|
||||
|
@ -9,6 +9,12 @@ This page makes use of presets of FFmpeg args. For more information on presets,
|
||||
|
||||
:::
|
||||
|
||||
:::note
|
||||
|
||||
Many cameras support encoding options which greatly affect the live view experience, see the [Live view](/configuration/live) page for more info.
|
||||
|
||||
:::
|
||||
|
||||
## MJPEG Cameras
|
||||
|
||||
Note that mjpeg cameras require encoding the video into h264 for recording, and restream roles. This will use significantly more CPU than if the cameras supported h264 feeds directly. It is recommended to use the restream role to create an h264 restream and then use that as the source for ffmpeg.
|
||||
@ -16,7 +22,7 @@ Note that mjpeg cameras require encoding the video into h264 for recording, and
|
||||
```yaml
|
||||
go2rtc:
|
||||
streams:
|
||||
mjpeg_cam: "ffmpeg:{your_mjpeg_stream_url}#video=h264#hardware" # <- use hardware acceleration to create an h264 stream usable for other components.
|
||||
mjpeg_cam: "ffmpeg:http://your_mjpeg_stream_url#video=h264#hardware" # <- use hardware acceleration to create an h264 stream usable for other components.
|
||||
|
||||
cameras:
|
||||
...
|
||||
@ -59,19 +65,32 @@ ffmpeg:
|
||||
|
||||
## Model/vendor specific setup
|
||||
|
||||
### Amcrest & Dahua
|
||||
|
||||
Amcrest & Dahua cameras should be connected to via RTSP using the following format:
|
||||
|
||||
```
|
||||
rtsp://USERNAME:PASSWORD@CAMERA-IP/cam/realmonitor?channel=1&subtype=0 # this is the main stream
|
||||
rtsp://USERNAME:PASSWORD@CAMERA-IP/cam/realmonitor?channel=1&subtype=1 # this is the sub stream, typically supporting low resolutions only
|
||||
rtsp://USERNAME:PASSWORD@CAMERA-IP/cam/realmonitor?channel=1&subtype=2 # higher end cameras support a third stream with a mid resolution (1280x720, 1920x1080)
|
||||
rtsp://USERNAME:PASSWORD@CAMERA-IP/cam/realmonitor?channel=1&subtype=3 # new higher end cameras support a fourth stream with another mid resolution (1280x720, 1920x1080)
|
||||
|
||||
```
|
||||
|
||||
### Annke C800
|
||||
|
||||
This camera is H.265 only. To be able to play clips on some devices (like MacOs or iPhone) the H.265 stream has to be repackaged and the audio stream has to be converted to aac. Unfortunately direct playback of in the browser is not working (yet), but the downloaded clip can be played locally.
|
||||
This camera is H.265 only. To be able to play clips on some devices (like MacOs or iPhone) the H.265 stream has to be adjusted using the `apple_compatibility` config.
|
||||
|
||||
```yaml
|
||||
cameras:
|
||||
annkec800: # <------ Name the camera
|
||||
ffmpeg:
|
||||
apple_compatibility: true # <- Adds compatibility with MacOS and iPhone
|
||||
output_args:
|
||||
record: -f segment -segment_time 10 -segment_format mp4 -reset_timestamps 1 -strftime 1 -c:v copy -tag:v hvc1 -bsf:v hevc_mp4toannexb -c:a aac
|
||||
record: preset-record-generic-audio-aac
|
||||
|
||||
inputs:
|
||||
- path: rtsp://user:password@camera-ip:554/H264/ch1/main/av_stream # <----- Update for your camera
|
||||
- path: rtsp://USERNAME:PASSWORD@CAMERA-IP/H264/ch1/main/av_stream # <----- Update for your camera
|
||||
roles:
|
||||
- detect
|
||||
- record
|
||||
@ -89,6 +108,29 @@ ffmpeg:
|
||||
input_args: preset-rtsp-blue-iris
|
||||
```
|
||||
|
||||
### Hikvision Cameras
|
||||
|
||||
Hikvision cameras should be connected to via RTSP using the following format:
|
||||
|
||||
```
|
||||
rtsp://USERNAME:PASSWORD@CAMERA-IP/streaming/channels/101 # this is the main stream
|
||||
rtsp://USERNAME:PASSWORD@CAMERA-IP/streaming/channels/102 # this is the sub stream, typically supporting low resolutions only
|
||||
rtsp://USERNAME:PASSWORD@CAMERA-IP/streaming/channels/103 # higher end cameras support a third stream with a mid resolution (1280x720, 1920x1080)
|
||||
```
|
||||
|
||||
:::note
|
||||
|
||||
[Some users have reported](https://www.reddit.com/r/frigate_nvr/comments/1hg4ze7/hikvision_security_settings) that newer Hikvision cameras require adjustments to the security settings:
|
||||
|
||||
```
|
||||
RTSP Authentication - digest/basic
|
||||
RTSP Digest Algorithm - MD5
|
||||
WEB Authentication - digest/basic
|
||||
WEB Digest Algorithm - MD5
|
||||
```
|
||||
|
||||
:::
|
||||
|
||||
### Reolink Cameras
|
||||
|
||||
Reolink has older cameras (ex: 410 & 520) as well as newer camera (ex: 520a & 511wa) which support different subsets of options. In both cases using the http stream is recommended.
|
||||
@ -150,7 +192,9 @@ cameras:
|
||||
|
||||
#### Reolink Doorbell
|
||||
|
||||
The reolink doorbell supports 2-way audio via go2rtc and other applications. It is important that the http-flv stream is still used for stability, a secondary rtsp stream can be added that will be using for the two way audio only.
|
||||
The reolink doorbell supports two way audio via go2rtc and other applications. It is important that the http-flv stream is still used for stability, a secondary rtsp stream can be added that will be using for the two way audio only.
|
||||
|
||||
Ensure HTTP is enabled in the camera's advanced network settings. To use two way talk with Frigate, see the [Live view documentation](/configuration/live#two-way-talk).
|
||||
|
||||
```yaml
|
||||
go2rtc:
|
||||
@ -175,7 +219,7 @@ go2rtc:
|
||||
- rtspx://192.168.1.1:7441/abcdefghijk
|
||||
```
|
||||
|
||||
[See the go2rtc docs for more information](https://github.com/AlexxIT/go2rtc/tree/v1.9.4#source-rtsp)
|
||||
[See the go2rtc docs for more information](https://github.com/AlexxIT/go2rtc/tree/v1.9.2#source-rtsp)
|
||||
|
||||
In the Unifi 2.0 update Unifi Protect Cameras had a change in audio sample rate which causes issues for ffmpeg. The input rate needs to be set for record if used directly with unifi protect.
|
||||
|
||||
@ -187,4 +231,4 @@ ffmpeg:
|
||||
|
||||
### TP-Link VIGI Cameras
|
||||
|
||||
TP-Link VIGI cameras need some adjustments to the main stream settings on the camera itself to avoid issues. The stream needs to be configured as `H264` with `Smart Coding` set to `off`. Without these settings you may have problems when trying to watch recorded events. For example Firefox will stop playback after a few seconds and show the following error message: `The media playback was aborted due to a corruption problem or because the media used features your browser did not support.`.
|
||||
TP-Link VIGI cameras need some adjustments to the main stream settings on the camera itself to avoid issues. The stream needs to be configured as `H264` with `Smart Coding` set to `off`. Without these settings you may have problems when trying to watch recorded footage. For example Firefox will stop playback after a few seconds and show the following error message: `The media playback was aborted due to a corruption problem or because the media used features your browser did not support.`.
|
||||
|
@ -7,7 +7,7 @@ title: Camera Configuration
|
||||
|
||||
Several inputs can be configured for each camera and the role of each input can be mixed and matched based on your needs. This allows you to use a lower resolution stream for object detection, but create recordings from a higher resolution stream, or vice versa.
|
||||
|
||||
A camera is enabled by default but can be temporarily disabled by using `enabled: False`. Existing events and recordings can still be accessed. Live streams, recording and detecting are not working. Camera specific configurations will be used.
|
||||
A camera is enabled by default but can be temporarily disabled by using `enabled: False`. Existing tracked objects and recordings can still be accessed. Live streams, recording and detecting are not working. Camera specific configurations will be used.
|
||||
|
||||
Each role can only be assigned to one input per camera. The options for roles are as follows:
|
||||
|
||||
@ -46,6 +46,14 @@ cameras:
|
||||
side: ...
|
||||
```
|
||||
|
||||
:::note
|
||||
|
||||
If you only define one stream in your `inputs` and do not assign a `detect` role to it, Frigate will automatically assign it the `detect` role. Frigate will always decode a stream to support motion detection, Birdseye, the API image endpoints, and other features, even if you have disabled object detection with `enabled: False` in your config's `detect` section.
|
||||
|
||||
If you plan to use Frigate for recording only, it is still recommended to define a `detect` role for a low resolution stream to minimize resource usage from the required stream decoding.
|
||||
|
||||
:::
|
||||
|
||||
For camera model specific settings check the [camera specific](camera_specific.md) infos.
|
||||
|
||||
## Setting up camera PTZ controls
|
||||
@ -71,29 +79,41 @@ cameras:
|
||||
|
||||
If the ONVIF connection is successful, PTZ controls will be available in the camera's WebUI.
|
||||
|
||||
:::tip
|
||||
|
||||
If your ONVIF camera does not require authentication credentials, you may still need to specify an empty string for `user` and `password`, eg: `user: ""` and `password: ""`.
|
||||
|
||||
:::
|
||||
|
||||
An ONVIF-capable camera that supports relative movement within the field of view (FOV) can also be configured to automatically track moving objects and keep them in the center of the frame. For autotracking setup, see the [autotracking](autotracking.md) docs.
|
||||
|
||||
## ONVIF PTZ camera recommendations
|
||||
|
||||
This list of working and non-working PTZ cameras is based on user feedback.
|
||||
|
||||
| Brand or specific camera | PTZ Controls | Autotracking | Notes |
|
||||
| ------------------------ | :----------: | :----------: | ----------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| Amcrest | ✅ | ✅ | ⛔️ Generally, Amcrest should work, but some older models (like the common IP2M-841) don't support autotracking |
|
||||
| Amcrest ASH21 | ❌ | ❌ | No ONVIF support |
|
||||
| Ctronics PTZ | ✅ | ❌ | |
|
||||
| Dahua | ✅ | ✅ | |
|
||||
| Foscam R5 | ✅ | ❌ | |
|
||||
| Hanwha XNP-6550RH | ✅ | ❌ | |
|
||||
| Hikvision | ✅ | ❌ | Incomplete ONVIF support (MoveStatus won't update even on latest firmware) - reported with HWP-N4215IH-DE and DS-2DE3304W-DE, but likely others |
|
||||
| Reolink 511WA | ✅ | ❌ | Zoom only |
|
||||
| Reolink E1 Pro | ✅ | ❌ | |
|
||||
| Reolink E1 Zoom | ✅ | ❌ | |
|
||||
| Reolink RLC-823A 16x | ✅ | ❌ | |
|
||||
| Sunba 405-D20X | ✅ | ❌ | |
|
||||
| Tapo | ✅ | ❌ | Many models supported, ONVIF Service Port: 2020 |
|
||||
| Uniview IPC672LR-AX4DUPK | ✅ | ❌ | Firmware says FOV relative movement is supported, but camera doesn't actually move when sending ONVIF commands |
|
||||
| Vikylin PTZ-2804X-I2 | ❌ | ❌ | Incomplete ONVIF support |
|
||||
| Brand or specific camera | PTZ Controls | Autotracking | Notes |
|
||||
| ---------------------------- | :----------: | :----------: | ----------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| Amcrest | ✅ | ✅ | ⛔️ Generally, Amcrest should work, but some older models (like the common IP2M-841) don't support autotracking |
|
||||
| Amcrest ASH21 | ✅ | ❌ | ONVIF service port: 80 |
|
||||
| Amcrest IP4M-S2112EW-AI | ✅ | ❌ | FOV relative movement not supported. |
|
||||
| Amcrest IP5M-1190EW | ✅ | ❌ | ONVIF Port: 80. FOV relative movement not supported. |
|
||||
| Ctronics PTZ | ✅ | ❌ | |
|
||||
| Dahua | ✅ | ✅ | |
|
||||
| Dahua DH-SD2A500HB | ✅ | ❌ | |
|
||||
| Foscam R5 | ✅ | ❌ | |
|
||||
| Hanwha XNP-6550RH | ✅ | ❌ | |
|
||||
| Hikvision | ✅ | ❌ | Incomplete ONVIF support (MoveStatus won't update even on latest firmware) - reported with HWP-N4215IH-DE and DS-2DE3304W-DE, but likely others |
|
||||
| Hikvision DS-2DE3A404IWG-E/W | ✅ | ✅ | |
|
||||
| Reolink 511WA | ✅ | ❌ | Zoom only |
|
||||
| Reolink E1 Pro | ✅ | ❌ | |
|
||||
| Reolink E1 Zoom | ✅ | ❌ | |
|
||||
| Reolink RLC-823A 16x | ✅ | ❌ | |
|
||||
| Speco O8P32X | ✅ | ❌ | |
|
||||
| Sunba 405-D20X | ✅ | ❌ | Incomplete ONVIF support reported on original, and 4k models. All models are suspected incompatable. |
|
||||
| Tapo | ✅ | ❌ | Many models supported, ONVIF Service Port: 2020 |
|
||||
| Uniview IPC672LR-AX4DUPK | ✅ | ❌ | Firmware says FOV relative movement is supported, but camera doesn't actually move when sending ONVIF commands |
|
||||
| Uniview IPC6612SR-X33-VG | ✅ | ✅ | Leave `calibrate_on_startup` as `False`. A user has reported that zooming with `absolute` is working. |
|
||||
| Vikylin PTZ-2804X-I2 | ❌ | ❌ | Incomplete ONVIF support |
|
||||
|
||||
## Setting up camera groups
|
||||
|
||||
|
59
docs/docs/configuration/face_recognition.md
Normal file
@ -0,0 +1,59 @@
|
||||
---
|
||||
id: face_recognition
|
||||
title: Face Recognition
|
||||
---
|
||||
|
||||
Face recognition allows people to be assigned names and when their face is recognized Frigate will assign the person's name as a sub label. This information is included in the UI, filters, as well as in notifications.
|
||||
|
||||
Frigate has support for FaceNet to create face embeddings, which runs locally. Embeddings are then saved to Frigate's database.
|
||||
|
||||
## Minimum System Requirements
|
||||
|
||||
Face recognition works by running a large AI model locally on your system. Systems without a GPU will not run Face Recognition reliably or at all.
|
||||
|
||||
## Configuration
|
||||
|
||||
Face recognition is disabled by default and requires semantic search to be enabled, face recognition must be enabled in your config file before it can be used. Semantic Search and face recognition are global configuration settings.
|
||||
|
||||
```yaml
|
||||
face_recognition:
|
||||
enabled: true
|
||||
```
|
||||
|
||||
## Dataset
|
||||
|
||||
The number of images needed for a sufficient training set for face recognition varies depending on several factors:
|
||||
|
||||
- Diversity of the dataset: A dataset with diverse images, including variations in lighting, pose, and facial expressions, will require fewer images per person than a less diverse dataset.
|
||||
- Desired accuracy: The higher the desired accuracy, the more images are typically needed.
|
||||
|
||||
However, here are some general guidelines:
|
||||
|
||||
- Minimum: For basic face recognition tasks, a minimum of 10-20 images per person is often recommended.
|
||||
- Recommended: For more robust and accurate systems, 30-50 images per person is a good starting point.
|
||||
- Ideal: For optimal performance, especially in challenging conditions, 100 or more images per person can be beneficial.
|
||||
|
||||
## Creating a Robust Training Set
|
||||
|
||||
The accuracy of face recognition is heavily dependent on the quality of data given to it for training. It is recommended to build the face training library in phases.
|
||||
|
||||
:::tip
|
||||
|
||||
When choosing images to include in the face training set it is recommended to always follow these recommendations:
|
||||
- If it is difficult to make out details in a persons face it will not be helpful in training.
|
||||
- Avoid images with under/over-exposure.
|
||||
- Avoid blurry / pixelated images.
|
||||
- Be careful when uploading images of people when they are wearing clothing that covers a lot of their face as this may confuse the training.
|
||||
- Do not upload too many images at the same time, it is recommended to train 4-6 images for each person each day so it is easier to know if the previously added images helped or hurt performance.
|
||||
|
||||
:::
|
||||
|
||||
### Step 1 - Building a Strong Foundation
|
||||
|
||||
When first enabling face recognition it is important to build a foundation of strong images. It is recommended to start by uploading 1-2 photos taken by a smartphone for each person. It is important that the person's face in the photo is straight-on and not turned which will ensure a good starting point.
|
||||
|
||||
Then it is recommended to use the `Face Library` tab in Frigate to select and train images for each person as they are detected. When building a strong foundation it is strongly recommended to only train on images that are straight-on. Ignore images from cameras that recognize faces from an angle. Once a person starts to be consistently recognized correctly on images that are straight-on, it is time to move on to the next step.
|
||||
|
||||
### Step 2 - Expanding The Dataset
|
||||
|
||||
Once straight-on images are performing well, start choosing slightly off-angle images to include for training. It is important to still choose images where enough face detail is visible to recognize someone.
|
211
docs/docs/configuration/genai.md
Normal file
@ -0,0 +1,211 @@
|
||||
---
|
||||
id: genai
|
||||
title: Generative AI
|
||||
---
|
||||
|
||||
Generative AI can be used to automatically generate descriptive text based on the thumbnails of your tracked objects. This helps with [Semantic Search](/configuration/semantic_search) in Frigate to provide more context about your tracked objects. Descriptions are accessed via the _Explore_ view in the Frigate UI by clicking on a tracked object's thumbnail.
|
||||
|
||||
Requests for a description are sent off automatically to your AI provider at the end of the tracked object's lifecycle. Descriptions can also be regenerated manually via the Frigate UI.
|
||||
|
||||
:::info
|
||||
|
||||
Semantic Search must be enabled to use Generative AI.
|
||||
|
||||
:::
|
||||
|
||||
## Configuration
|
||||
|
||||
Generative AI can be enabled for all cameras or only for specific cameras. There are currently 3 native providers available to integrate with Frigate. Other providers that support the OpenAI standard API can also be used. See the OpenAI section below.
|
||||
|
||||
To use Generative AI, you must define a single provider at the global level of your Frigate configuration. If the provider you choose requires an API key, you may either directly paste it in your configuration, or store it in an environment variable prefixed with `FRIGATE_`.
|
||||
|
||||
```yaml
|
||||
genai:
|
||||
enabled: True
|
||||
provider: gemini
|
||||
api_key: "{FRIGATE_GEMINI_API_KEY}"
|
||||
model: gemini-1.5-flash
|
||||
|
||||
cameras:
|
||||
front_camera: ...
|
||||
indoor_camera:
|
||||
genai: # <- disable GenAI for your indoor camera
|
||||
enabled: False
|
||||
```
|
||||
|
||||
## Ollama
|
||||
|
||||
:::warning
|
||||
|
||||
Using Ollama on CPU is not recommended, high inference times make using Generative AI impractical.
|
||||
|
||||
:::
|
||||
|
||||
[Ollama](https://ollama.com/) allows you to self-host large language models and keep everything running locally. It provides a nice API over [llama.cpp](https://github.com/ggerganov/llama.cpp). It is highly recommended to host this server on a machine with an Nvidia graphics card, or on a Apple silicon Mac for best performance.
|
||||
|
||||
Most of the 7b parameter 4-bit vision models will fit inside 8GB of VRAM. There is also a [Docker container](https://hub.docker.com/r/ollama/ollama) available.
|
||||
|
||||
Parallel requests also come with some caveats. You will need to set `OLLAMA_NUM_PARALLEL=1` and choose a `OLLAMA_MAX_QUEUE` and `OLLAMA_MAX_LOADED_MODELS` values that are appropriate for your hardware and preferences. See the [Ollama documentation](https://github.com/ollama/ollama/blob/main/docs/faq.md#how-does-ollama-handle-concurrent-requests).
|
||||
|
||||
### Supported Models
|
||||
|
||||
You must use a vision capable model with Frigate. Current model variants can be found [in their model library](https://ollama.com/library). At the time of writing, this includes `llava`, `llava-llama3`, `llava-phi3`, and `moondream`. Note that Frigate will not automatically download the model you specify in your config, you must download the model to your local instance of Ollama first i.e. by running `ollama pull llava:7b` on your Ollama server/Docker container. Note that the model specified in Frigate's config must match the downloaded model tag.
|
||||
|
||||
:::note
|
||||
|
||||
You should have at least 8 GB of RAM available (or VRAM if running on GPU) to run the 7B models, 16 GB to run the 13B models, and 32 GB to run the 33B models.
|
||||
|
||||
:::
|
||||
|
||||
### Configuration
|
||||
|
||||
```yaml
|
||||
genai:
|
||||
enabled: True
|
||||
provider: ollama
|
||||
base_url: http://localhost:11434
|
||||
model: llava:7b
|
||||
```
|
||||
|
||||
## Google Gemini
|
||||
|
||||
Google Gemini has a free tier allowing [15 queries per minute](https://ai.google.dev/pricing) to the API, which is more than sufficient for standard Frigate usage.
|
||||
|
||||
### Supported Models
|
||||
|
||||
You must use a vision capable model with Frigate. Current model variants can be found [in their documentation](https://ai.google.dev/gemini-api/docs/models/gemini). At the time of writing, this includes `gemini-1.5-pro` and `gemini-1.5-flash`.
|
||||
|
||||
### Get API Key
|
||||
|
||||
To start using Gemini, you must first get an API key from [Google AI Studio](https://aistudio.google.com).
|
||||
|
||||
1. Accept the Terms of Service
|
||||
2. Click "Get API Key" from the right hand navigation
|
||||
3. Click "Create API key in new project"
|
||||
4. Copy the API key for use in your config
|
||||
|
||||
### Configuration
|
||||
|
||||
```yaml
|
||||
genai:
|
||||
enabled: True
|
||||
provider: gemini
|
||||
api_key: "{FRIGATE_GEMINI_API_KEY}"
|
||||
model: gemini-1.5-flash
|
||||
```
|
||||
|
||||
## OpenAI
|
||||
|
||||
OpenAI does not have a free tier for their API. With the release of gpt-4o, pricing has been reduced and each generation should cost fractions of a cent if you choose to go this route.
|
||||
|
||||
### Supported Models
|
||||
|
||||
You must use a vision capable model with Frigate. Current model variants can be found [in their documentation](https://platform.openai.com/docs/models). At the time of writing, this includes `gpt-4o` and `gpt-4-turbo`.
|
||||
|
||||
### Get API Key
|
||||
|
||||
To start using OpenAI, you must first [create an API key](https://platform.openai.com/api-keys) and [configure billing](https://platform.openai.com/settings/organization/billing/overview).
|
||||
|
||||
### Configuration
|
||||
|
||||
```yaml
|
||||
genai:
|
||||
enabled: True
|
||||
provider: openai
|
||||
api_key: "{FRIGATE_OPENAI_API_KEY}"
|
||||
model: gpt-4o
|
||||
```
|
||||
|
||||
:::note
|
||||
|
||||
To use a different OpenAI-compatible API endpoint, set the `OPENAI_BASE_URL` environment variable to your provider's API URL.
|
||||
|
||||
:::
|
||||
|
||||
## Azure OpenAI
|
||||
|
||||
Microsoft offers several vision models through Azure OpenAI. A subscription is required.
|
||||
|
||||
### Supported Models
|
||||
|
||||
You must use a vision capable model with Frigate. Current model variants can be found [in their documentation](https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/models). At the time of writing, this includes `gpt-4o` and `gpt-4-turbo`.
|
||||
|
||||
### Create Resource and Get API Key
|
||||
|
||||
To start using Azure OpenAI, you must first [create a resource](https://learn.microsoft.com/azure/cognitive-services/openai/how-to/create-resource?pivots=web-portal#create-a-resource). You'll need your API key and resource URL, which must include the `api-version` parameter (see the example below). The model field is not required in your configuration as the model is part of the deployment name you chose when deploying the resource.
|
||||
|
||||
### Configuration
|
||||
|
||||
```yaml
|
||||
genai:
|
||||
enabled: True
|
||||
provider: azure_openai
|
||||
base_url: https://example-endpoint.openai.azure.com/openai/deployments/gpt-4o/chat/completions?api-version=2023-03-15-preview
|
||||
api_key: "{FRIGATE_OPENAI_API_KEY}"
|
||||
```
|
||||
|
||||
## Usage and Best Practices
|
||||
|
||||
Frigate's thumbnail search excels at identifying specific details about tracked objects – for example, using an "image caption" approach to find a "person wearing a yellow vest," "a white dog running across the lawn," or "a red car on a residential street." To enhance this further, Frigate’s default prompts are designed to ask your AI provider about the intent behind the object's actions, rather than just describing its appearance.
|
||||
|
||||
While generating simple descriptions of detected objects is useful, understanding intent provides a deeper layer of insight. Instead of just recognizing "what" is in a scene, Frigate’s default prompts aim to infer "why" it might be there or "what" it could do next. Descriptions tell you what’s happening, but intent gives context. For instance, a person walking toward a door might seem like a visitor, but if they’re moving quickly after hours, you can infer a potential break-in attempt. Detecting a person loitering near a door at night can trigger an alert sooner than simply noting "a person standing by the door," helping you respond based on the situation’s context.
|
||||
|
||||
### Using GenAI for notifications
|
||||
|
||||
Frigate provides an [MQTT topic](/integrations/mqtt), `frigate/tracked_object_update`, that is updated with a JSON payload containing `event_id` and `description` when your AI provider returns a description for a tracked object. This description could be used directly in notifications, such as sending alerts to your phone or making audio announcements. If additional details from the tracked object are needed, you can query the [HTTP API](/integrations/api/event-events-event-id-get) using the `event_id`, eg: `http://frigate_ip:5000/api/events/<event_id>`.
|
||||
|
||||
## Custom Prompts
|
||||
|
||||
Frigate sends multiple frames from the tracked object along with a prompt to your Generative AI provider asking it to generate a description. The default prompt is as follows:
|
||||
|
||||
```
|
||||
Analyze the sequence of images containing the {label}. Focus on the likely intent or behavior of the {label} based on its actions and movement, rather than describing its appearance or the surroundings. Consider what the {label} is doing, why, and what it might do next.
|
||||
```
|
||||
|
||||
:::tip
|
||||
|
||||
Prompts can use variable replacements like `{label}`, `{sub_label}`, and `{camera}` to substitute information from the tracked object as part of the prompt.
|
||||
|
||||
:::
|
||||
|
||||
You are also able to define custom prompts in your configuration.
|
||||
|
||||
```yaml
|
||||
genai:
|
||||
enabled: True
|
||||
provider: ollama
|
||||
base_url: http://localhost:11434
|
||||
model: llava
|
||||
prompt: "Analyze the {label} in these images from the {camera} security camera. Focus on the actions, behavior, and potential intent of the {label}, rather than just describing its appearance."
|
||||
object_prompts:
|
||||
person: "Examine the main person in these images. What are they doing and what might their actions suggest about their intent (e.g., approaching a door, leaving an area, standing still)? Do not describe the surroundings or static details."
|
||||
car: "Observe the primary vehicle in these images. Focus on its movement, direction, or purpose (e.g., parking, approaching, circling). If it's a delivery vehicle, mention the company."
|
||||
```
|
||||
|
||||
Prompts can also be overriden at the camera level to provide a more detailed prompt to the model about your specific camera, if you desire. By default, descriptions will be generated for all tracked objects and all zones. But you can also optionally specify `objects` and `required_zones` to only generate descriptions for certain tracked objects or zones.
|
||||
|
||||
Optionally, you can generate the description using a snapshot (if enabled) by setting `use_snapshot` to `True`. By default, this is set to `False`, which sends the uncompressed images from the `detect` stream collected over the object's lifetime to the model. Once the object lifecycle ends, only a single compressed and cropped thumbnail is saved with the tracked object. Using a snapshot might be useful when you want to _regenerate_ a tracked object's description as it will provide the AI with a higher-quality image (typically downscaled by the AI itself) than the cropped/compressed thumbnail. Using a snapshot otherwise has a trade-off in that only a single image is sent to your provider, which will limit the model's ability to determine object movement or direction.
|
||||
|
||||
```yaml
|
||||
cameras:
|
||||
front_door:
|
||||
genai:
|
||||
use_snapshot: True
|
||||
prompt: "Analyze the {label} in these images from the {camera} security camera at the front door. Focus on the actions and potential intent of the {label}."
|
||||
object_prompts:
|
||||
person: "Examine the person in these images. What are they doing, and how might their actions suggest their purpose (e.g., delivering something, approaching, leaving)? If they are carrying or interacting with a package, include details about its source or destination."
|
||||
cat: "Observe the cat in these images. Focus on its movement and intent (e.g., wandering, hunting, interacting with objects). If the cat is near the flower pots or engaging in any specific actions, mention it."
|
||||
objects:
|
||||
- person
|
||||
- cat
|
||||
required_zones:
|
||||
- steps
|
||||
```
|
||||
|
||||
### Experiment with prompts
|
||||
|
||||
Many providers also have a public facing chat interface for their models. Download a couple of different thumbnails or snapshots from Frigate and try new things in the playground to get descriptions to your liking before updating the prompt in Frigate.
|
||||
|
||||
- OpenAI - [ChatGPT](https://chatgpt.com)
|
||||
- Gemini - [Google AI Studio](https://aistudio.google.com)
|
||||
- Ollama - [Open WebUI](https://docs.openwebui.com/)
|
@ -65,24 +65,37 @@ Or map in all the `/dev/video*` devices.
|
||||
|
||||
## Intel-based CPUs
|
||||
|
||||
:::info
|
||||
|
||||
**Recommended hwaccel Preset**
|
||||
|
||||
| CPU Generation | Intel Driver | Recommended Preset | Notes |
|
||||
| -------------- | ------------ | ------------------ | ----------------------------------- |
|
||||
| gen1 - gen7 | i965 | preset-vaapi | qsv is not supported |
|
||||
| gen8 - gen12 | iHD | preset-vaapi | preset-intel-qsv-* can also be used |
|
||||
| gen13+ | iHD / Xe | preset-intel-qsv-* | |
|
||||
| Intel Arc GPU | iHD / Xe | preset-intel-qsv-* | |
|
||||
|
||||
:::
|
||||
|
||||
:::note
|
||||
|
||||
The default driver is `iHD`. You may need to change the driver to `i965` by adding the following environment variable `LIBVA_DRIVER_NAME=i965` to your docker-compose file or [in the `frigate.yaml` for HA OS users](advanced.md#environment_vars).
|
||||
|
||||
See [The Intel Docs](https://www.intel.com/content/www/us/en/support/articles/000005505/processors.html) to figure out what generation your CPU is.
|
||||
|
||||
:::
|
||||
|
||||
### Via VAAPI
|
||||
|
||||
VAAPI supports automatic profile selection so it will work automatically with both H.264 and H.265 streams. VAAPI is recommended for all generations of Intel-based CPUs.
|
||||
VAAPI supports automatic profile selection so it will work automatically with both H.264 and H.265 streams.
|
||||
|
||||
```yaml
|
||||
ffmpeg:
|
||||
hwaccel_args: preset-vaapi
|
||||
```
|
||||
|
||||
:::note
|
||||
|
||||
With some of the processors, like the J4125, the default driver `iHD` doesn't seem to work correctly for hardware acceleration. You may need to change the driver to `i965` by adding the following environment variable `LIBVA_DRIVER_NAME=i965` to your docker-compose file or [in the `frigate.yaml` for HA OS users](advanced.md#environment_vars).
|
||||
|
||||
:::
|
||||
|
||||
### Via Quicksync (>=10th Generation only)
|
||||
|
||||
If VAAPI does not work for you, you can try QSV if your processor supports it. QSV must be set specifically based on the video encoding of the stream.
|
||||
### Via Quicksync
|
||||
|
||||
#### H.264 streams
|
||||
|
||||
@ -162,6 +175,16 @@ For more information on the various values across different distributions, see h
|
||||
|
||||
Depending on your OS and kernel configuration, you may need to change the `/proc/sys/kernel/perf_event_paranoid` kernel tunable. You can test the change by running `sudo sh -c 'echo 2 >/proc/sys/kernel/perf_event_paranoid'` which will persist until a reboot. Make it permanent by running `sudo sh -c 'echo kernel.perf_event_paranoid=2 >> /etc/sysctl.d/local.conf'`
|
||||
|
||||
#### Stats for SR-IOV devices
|
||||
|
||||
When using virtualized GPUs via SR-IOV, additional args are needed for GPU stats to function. This can be enabled with the following config:
|
||||
|
||||
```yaml
|
||||
telemetry:
|
||||
stats:
|
||||
sriov: True
|
||||
```
|
||||
|
||||
## AMD/ATI GPUs (Radeon HD 2000 and newer GPUs) via libva-mesa-driver
|
||||
|
||||
VAAPI supports automatic profile selection so it will work automatically with both H.264 and H.265 streams.
|
||||
@ -218,28 +241,11 @@ docker run -d \
|
||||
|
||||
### Setup Decoder
|
||||
|
||||
The decoder you need to pass in the `hwaccel_args` will depend on the input video.
|
||||
|
||||
A list of supported codecs (you can use `ffmpeg -decoders | grep cuvid` in the container to get the ones your card supports)
|
||||
|
||||
```
|
||||
V..... h263_cuvid Nvidia CUVID H263 decoder (codec h263)
|
||||
V..... h264_cuvid Nvidia CUVID H264 decoder (codec h264)
|
||||
V..... hevc_cuvid Nvidia CUVID HEVC decoder (codec hevc)
|
||||
V..... mjpeg_cuvid Nvidia CUVID MJPEG decoder (codec mjpeg)
|
||||
V..... mpeg1_cuvid Nvidia CUVID MPEG1VIDEO decoder (codec mpeg1video)
|
||||
V..... mpeg2_cuvid Nvidia CUVID MPEG2VIDEO decoder (codec mpeg2video)
|
||||
V..... mpeg4_cuvid Nvidia CUVID MPEG4 decoder (codec mpeg4)
|
||||
V..... vc1_cuvid Nvidia CUVID VC1 decoder (codec vc1)
|
||||
V..... vp8_cuvid Nvidia CUVID VP8 decoder (codec vp8)
|
||||
V..... vp9_cuvid Nvidia CUVID VP9 decoder (codec vp9)
|
||||
```
|
||||
|
||||
For example, for H264 video, you'll select `preset-nvidia-h264`.
|
||||
Using `preset-nvidia` ffmpeg will automatically select the necessary profile for the incoming video, and will log an error if the profile is not supported by your GPU.
|
||||
|
||||
```yaml
|
||||
ffmpeg:
|
||||
hwaccel_args: preset-nvidia-h264
|
||||
hwaccel_args: preset-nvidia
|
||||
```
|
||||
|
||||
If everything is working correctly, you should see a significant improvement in performance.
|
||||
@ -370,7 +376,7 @@ Make sure to follow the [Rockchip specific installation instructions](/frigate/i
|
||||
|
||||
### Configuration
|
||||
|
||||
Add one of the following FFmpeg presets to your `config.yaml` to enable hardware video processing:
|
||||
Add one of the following FFmpeg presets to your `config.yml` to enable hardware video processing:
|
||||
|
||||
```yaml
|
||||
# if you try to decode a h264 encoded stream
|
||||
|
@ -56,6 +56,11 @@ go2rtc:
|
||||
password: "{FRIGATE_GO2RTC_RTSP_PASSWORD}"
|
||||
```
|
||||
|
||||
```yaml
|
||||
genai:
|
||||
api_key: "{FRIGATE_GENAI_API_KEY}"
|
||||
```
|
||||
|
||||
## Common configuration examples
|
||||
|
||||
Here are some common starter configuration examples. Refer to the [reference config](./reference.md) for detailed information about all the config values.
|
||||
@ -67,7 +72,7 @@ Here are some common starter configuration examples. Refer to the [reference con
|
||||
- Hardware acceleration for decoding video
|
||||
- USB Coral detector
|
||||
- Save all video with any detectable motion for 7 days regardless of whether any objects were detected or not
|
||||
- Continue to keep all video if it was during any event for 30 days
|
||||
- Continue to keep all video if it qualified as an alert or detection for 30 days
|
||||
- Save snapshots for 30 days
|
||||
- Motion mask for the camera timestamp
|
||||
|
||||
@ -90,10 +95,12 @@ record:
|
||||
retain:
|
||||
days: 7
|
||||
mode: motion
|
||||
events:
|
||||
alerts:
|
||||
retain:
|
||||
default: 30
|
||||
mode: motion
|
||||
days: 30
|
||||
detections:
|
||||
retain:
|
||||
days: 30
|
||||
|
||||
snapshots:
|
||||
enabled: True
|
||||
@ -123,7 +130,7 @@ cameras:
|
||||
- VAAPI hardware acceleration for decoding video
|
||||
- USB Coral detector
|
||||
- Save all video with any detectable motion for 7 days regardless of whether any objects were detected or not
|
||||
- Continue to keep all video if it was during any event for 30 days
|
||||
- Continue to keep all video if it qualified as an alert or detection for 30 days
|
||||
- Save snapshots for 30 days
|
||||
- Motion mask for the camera timestamp
|
||||
|
||||
@ -144,10 +151,12 @@ record:
|
||||
retain:
|
||||
days: 7
|
||||
mode: motion
|
||||
events:
|
||||
alerts:
|
||||
retain:
|
||||
default: 30
|
||||
mode: motion
|
||||
days: 30
|
||||
detections:
|
||||
retain:
|
||||
days: 30
|
||||
|
||||
snapshots:
|
||||
enabled: True
|
||||
@ -177,7 +186,7 @@ cameras:
|
||||
- VAAPI hardware acceleration for decoding video
|
||||
- OpenVino detector
|
||||
- Save all video with any detectable motion for 7 days regardless of whether any objects were detected or not
|
||||
- Continue to keep all video if it was during any event for 30 days
|
||||
- Continue to keep all video if it qualified as an alert or detection for 30 days
|
||||
- Save snapshots for 30 days
|
||||
- Motion mask for the camera timestamp
|
||||
|
||||
@ -194,14 +203,13 @@ detectors:
|
||||
ov:
|
||||
type: openvino
|
||||
device: AUTO
|
||||
model:
|
||||
path: /openvino-model/ssdlite_mobilenet_v2.xml
|
||||
|
||||
model:
|
||||
width: 300
|
||||
height: 300
|
||||
input_tensor: nhwc
|
||||
input_pixel_format: bgr
|
||||
path: /openvino-model/ssdlite_mobilenet_v2.xml
|
||||
labelmap_path: /openvino-model/coco_91cl_bkgr.txt
|
||||
|
||||
record:
|
||||
@ -209,10 +217,12 @@ record:
|
||||
retain:
|
||||
days: 7
|
||||
mode: motion
|
||||
events:
|
||||
alerts:
|
||||
retain:
|
||||
default: 30
|
||||
mode: motion
|
||||
days: 30
|
||||
detections:
|
||||
retain:
|
||||
days: 30
|
||||
|
||||
snapshots:
|
||||
enabled: True
|
||||
|
88
docs/docs/configuration/license_plate_recognition.md
Normal file
@ -0,0 +1,88 @@
|
||||
---
|
||||
id: license_plate_recognition
|
||||
title: License Plate Recognition (LPR)
|
||||
---
|
||||
|
||||
Frigate can recognize license plates on vehicles and automatically add the detected characters as a `sub_label` to objects that are of type `car`. A common use case may be to read the license plates of cars pulling into a driveway or cars passing by on a street with a dedicated LPR camera.
|
||||
|
||||
Users running a Frigate+ model (or any custom model that natively detects license plates) should ensure that `license_plate` is added to the [list of objects to track](https://docs.frigate.video/plus/#available-label-types) either globally or for a specific camera. This will improve the accuracy and performance of the LPR model.
|
||||
|
||||
Users without a model that detects license plates can still run LPR. A small, CPU inference, YOLOv9 license plate detection model will be used instead. You should _not_ define `license_plate` in your list of objects to track.
|
||||
|
||||
LPR is most effective when the vehicle’s license plate is fully visible to the camera. For moving vehicles, Frigate will attempt to read the plate continuously, refining recognition and keeping the most confident result. LPR will not run on stationary vehicles.
|
||||
|
||||
## Minimum System Requirements
|
||||
|
||||
License plate recognition works by running AI models locally on your system. The models are relatively lightweight and run on your CPU. At least 4GB of RAM is required.
|
||||
|
||||
## Configuration
|
||||
|
||||
License plate recognition is disabled by default. Enable it in your config file:
|
||||
|
||||
```yaml
|
||||
lpr:
|
||||
enabled: True
|
||||
```
|
||||
|
||||
## Advanced Configuration
|
||||
|
||||
Fine-tune the LPR feature using these optional parameters:
|
||||
|
||||
### Detection
|
||||
|
||||
- **`detection_threshold`**: License plate object detection confidence score required before recognition runs.
|
||||
- Default: `0.7`
|
||||
- Note: If you are using a Frigate+ model and you set the `threshold` in your objects config for `license_plate` higher than this value, recognition will never run. It's best to ensure these values match, or this `detection_threshold` is lower than your object config `threshold`.
|
||||
- **`min_area`**: Defines the minimum size (in pixels) a license plate must be before recognition runs.
|
||||
- Default: `1000` pixels.
|
||||
- Depending on the resolution of your cameras, you can increase this value to ignore small or distant plates.
|
||||
|
||||
### Recognition
|
||||
|
||||
- **`recognition_threshold`**: Recognition confidence score required to add the plate to the object as a sub label.
|
||||
- Default: `0.9`.
|
||||
- **`min_plate_length`**: Specifies the minimum number of characters a detected license plate must have to be added as a sub-label to an object.
|
||||
- Use this to filter out short, incomplete, or incorrect detections.
|
||||
- **`format`**: A regular expression defining the expected format of detected plates. Plates that do not match this format will be discarded.
|
||||
- `"^[A-Z]{1,3} [A-Z]{1,2} [0-9]{1,4}$"` matches plates like "B AB 1234" or "M X 7"
|
||||
- `"^[A-Z]{2}[0-9]{2} [A-Z]{3}$"` matches plates like "AB12 XYZ" or "XY68 ABC"
|
||||
|
||||
### Matching
|
||||
|
||||
- **`known_plates`**: List of strings or regular expressions that assign custom a `sub_label` to `car` objects when a recognized plate matches a known value.
|
||||
- These labels appear in the UI, filters, and notifications.
|
||||
- **`match_distance`**: Allows for minor variations (missing/incorrect characters) when matching a detected plate to a known plate.
|
||||
- For example, setting `match_distance: 1` allows a plate `ABCDE` to match `ABCBE` or `ABCD`.
|
||||
- This parameter will not operate on known plates that are defined as regular expressions. You should define the full string of your plate in `known_plates` in order to use `match_distance`.
|
||||
|
||||
### Examples
|
||||
|
||||
```yaml
|
||||
lpr:
|
||||
enabled: True
|
||||
min_area: 1500 # Ignore plates smaller than 1500 pixels
|
||||
min_plate_length: 4 # Only recognize plates with 4 or more characters
|
||||
known_plates:
|
||||
Wife's Car:
|
||||
- "ABC-1234"
|
||||
- "ABC-I234" # Accounts for potential confusion between the number one (1) and capital letter I
|
||||
Johnny:
|
||||
- "J*N-*234" # Matches JHN-1234 and JMN-I234, but also note that "*" matches any number of characters
|
||||
Sally:
|
||||
- "[S5]LL-1234" # Matches both SLL-1234 and 5LL-1234
|
||||
```
|
||||
|
||||
```yaml
|
||||
lpr:
|
||||
enabled: True
|
||||
min_area: 4000 # Run recognition on larger plates only
|
||||
recognition_threshold: 0.85
|
||||
format: "^[A-Z]{3}-[0-9]{4}$" # Only recognize plates that are three letters, followed by a dash, followed by 4 numbers
|
||||
match_distance: 1 # Allow one character variation in plate matching
|
||||
known_plates:
|
||||
Delivery Van:
|
||||
- "RJK-5678"
|
||||
- "UPS-1234"
|
||||
Employee Parking:
|
||||
- "EMP-[0-9]{3}[A-Z]" # Matches plates like EMP-123A, EMP-456Z
|
||||
```
|
@ -3,23 +3,33 @@ id: live
|
||||
title: Live View
|
||||
---
|
||||
|
||||
Frigate intelligently displays your camera streams on the Live view dashboard. Your camera images update once per minute when no detectable activity is occurring to conserve bandwidth and resources. As soon as any motion is detected, cameras seamlessly switch to a live stream.
|
||||
Frigate intelligently displays your camera streams on the Live view dashboard. By default, Frigate employs "smart streaming" where camera images update once per minute when no detectable activity is occurring to conserve bandwidth and resources. As soon as any motion or active objects are detected, cameras seamlessly switch to a live stream.
|
||||
|
||||
## Live View technologies
|
||||
### Live View technologies
|
||||
|
||||
Frigate intelligently uses three different streaming technologies to display your camera streams on the dashboard and the single camera view, switching between available modes based on network bandwidth, player errors, or required features like two-way talk. The highest quality and fluency of the Live view requires the bundled `go2rtc` to be configured as shown in the [step by step guide](/guides/configuring_go2rtc).
|
||||
|
||||
The jsmpeg live view will use more browser and client GPU resources. Using go2rtc is highly recommended and will provide a superior experience.
|
||||
|
||||
| Source | Latency | Frame Rate | Resolution | Audio | Requires go2rtc | Other Limitations |
|
||||
| ------ | ------- | ------------------------------------- | ---------- | ---------------------------- | --------------- | ------------------------------------------------------------------------------------ |
|
||||
| jsmpeg | low | same as `detect -> fps`, capped at 10 | 720p | no | no | resolution is configurable, but go2rtc is recommended if you want higher resolutions |
|
||||
| mse | low | native | native | yes (depends on audio codec) | yes | iPhone requires iOS 17.1+, Firefox is h.264 only |
|
||||
| webrtc | lowest | native | native | yes (depends on audio codec) | yes | requires extra config, doesn't support h.265 |
|
||||
| Source | Frame Rate | Resolution | Audio | Requires go2rtc | Notes |
|
||||
| ------ | ------------------------------------- | ---------- | ---------------------------- | --------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| jsmpeg | same as `detect -> fps`, capped at 10 | 720p | no | no | Resolution is configurable, but go2rtc is recommended if you want higher resolutions and better frame rates. jsmpeg is Frigate's default without go2rtc configured. |
|
||||
| mse | native | native | yes (depends on audio codec) | yes | iPhone requires iOS 17.1+, Firefox is h.264 only. This is Frigate's default when go2rtc is configured. |
|
||||
| webrtc | native | native | yes (depends on audio codec) | yes | Requires extra configuration, doesn't support h.265. Frigate attempts to use WebRTC when MSE fails or when using a camera's two-way talk feature. |
|
||||
|
||||
### Camera Settings Recommendations
|
||||
|
||||
If you are using go2rtc, you should adjust the following settings in your camera's firmware for the best experience with Live view:
|
||||
|
||||
- Video codec: **H.264** - provides the most compatible video codec with all Live view technologies and browsers. Avoid any kind of "smart codec" or "+" codec like _H.264+_ or _H.265+_. as these non-standard codecs remove keyframes (see below).
|
||||
- Audio codec: **AAC** - provides the most compatible audio codec with all Live view technologies and browsers that support audio.
|
||||
- I-frame interval (sometimes called the keyframe interval, the interframe space, or the GOP length): match your camera's frame rate, or choose "1x" (for interframe space on Reolink cameras). For example, if your stream outputs 20fps, your i-frame interval should be 20 (or 1x on Reolink). Values higher than the frame rate will cause the stream to take longer to begin playback. See [this page](https://gardinal.net/understanding-the-keyframe-interval/) for more on keyframes. For many users this may not be an issue, but it should be noted that that a 1x i-frame interval will cause more storage utilization if you are using the stream for the `record` role as well.
|
||||
|
||||
The default video and audio codec on your camera may not always be compatible with your browser, which is why setting them to H.264 and AAC is recommended. See the [go2rtc docs](https://github.com/AlexxIT/go2rtc?tab=readme-ov-file#codecs-madness) for codec support information.
|
||||
|
||||
### Audio Support
|
||||
|
||||
MSE Requires AAC audio, WebRTC requires PCMU/PCMA, or opus audio. If you want to support both MSE and WebRTC then your restream config needs to make sure both are enabled.
|
||||
MSE Requires PCMA/PCMU or AAC audio, WebRTC requires PCMA/PCMU or opus audio. If you want to support both MSE and WebRTC then your restream config needs to make sure both are enabled.
|
||||
|
||||
```yaml
|
||||
go2rtc:
|
||||
@ -32,19 +42,41 @@ go2rtc:
|
||||
- "ffmpeg:http_cam#audio=opus" # <- copy of the stream which transcodes audio to the missing codec (usually will be opus)
|
||||
```
|
||||
|
||||
### Setting Stream For Live UI
|
||||
If your camera does not have audio and you are having problems with Live view, you should have go2rtc send video only:
|
||||
|
||||
There may be some cameras that you would prefer to use the sub stream for live view, but the main stream for recording. This can be done via `live -> stream_name`.
|
||||
```yaml
|
||||
go2rtc:
|
||||
streams:
|
||||
no_audio_camera:
|
||||
- ffmpeg:rtsp://192.168.1.5:554/live0#video=copy
|
||||
```
|
||||
|
||||
### Setting Streams For Live UI
|
||||
|
||||
You can configure Frigate to allow manual selection of the stream you want to view in the Live UI. For example, you may want to view your camera's substream on mobile devices, but the full resolution stream on desktop devices. Setting the `live -> streams` list will populate a dropdown in the UI's Live view that allows you to choose between the streams. This stream setting is _per device_ and is saved in your browser's local storage.
|
||||
|
||||
Additionally, when creating and editing camera groups in the UI, you can choose the stream you want to use for your camera group's Live dashboard.
|
||||
|
||||
:::note
|
||||
|
||||
Frigate's default dashboard ("All Cameras") will always use the first entry you've defined in `streams:` when playing live streams from your cameras.
|
||||
|
||||
:::
|
||||
|
||||
Configure the `streams` option with a "friendly name" for your stream followed by the go2rtc stream name.
|
||||
|
||||
Using Frigate's internal version of go2rtc is required to use this feature. You cannot specify paths in the `streams` configuration, only go2rtc stream names.
|
||||
|
||||
```yaml
|
||||
go2rtc:
|
||||
streams:
|
||||
test_cam:
|
||||
- rtsp://192.168.1.5:554/live0 # <- stream which supports video & aac audio.
|
||||
- rtsp://192.168.1.5:554/live_main # <- stream which supports video & aac audio.
|
||||
- "ffmpeg:test_cam#audio=opus" # <- copy of the stream which transcodes audio to opus for webrtc
|
||||
test_cam_sub:
|
||||
- rtsp://192.168.1.5:554/substream # <- stream which supports video & aac audio.
|
||||
- "ffmpeg:test_cam_sub#audio=opus" # <- copy of the stream which transcodes audio to opus for webrtc
|
||||
- rtsp://192.168.1.5:554/live_sub # <- stream which supports video & aac audio.
|
||||
test_cam_another_sub:
|
||||
- rtsp://192.168.1.5:554/live_alt # <- stream which supports video & aac audio.
|
||||
|
||||
cameras:
|
||||
test_cam:
|
||||
@ -61,7 +93,10 @@ cameras:
|
||||
roles:
|
||||
- detect
|
||||
live:
|
||||
stream_name: test_cam_sub
|
||||
streams: # <--- Multiple streams for Frigate 0.16 and later
|
||||
Main Stream: test_cam # <--- Specify a "friendly name" followed by the go2rtc stream name
|
||||
Sub Stream: test_cam_sub
|
||||
Special Stream: test_cam_another_sub
|
||||
```
|
||||
|
||||
### WebRTC extra configuration:
|
||||
@ -82,6 +117,7 @@ WebRTC works by creating a TCP or UDP connection on port `8555`. However, it req
|
||||
```
|
||||
|
||||
- For access through Tailscale, the Frigate system's Tailscale IP must be added as a WebRTC candidate. Tailscale IPs all start with `100.`, and are reserved within the `100.64.0.0/10` CIDR block.
|
||||
- Note that WebRTC does not support H.265.
|
||||
|
||||
:::tip
|
||||
|
||||
@ -119,3 +155,60 @@ services:
|
||||
:::
|
||||
|
||||
See [go2rtc WebRTC docs](https://github.com/AlexxIT/go2rtc/tree/v1.8.3#module-webrtc) for more information about this.
|
||||
|
||||
### Two way talk
|
||||
|
||||
For devices that support two way talk, Frigate can be configured to use the feature from the camera's Live view in the Web UI. You should:
|
||||
|
||||
- Set up go2rtc with [WebRTC](#webrtc-extra-configuration).
|
||||
- Ensure you access Frigate via https (may require [opening port 8971](/frigate/installation/#ports)).
|
||||
- For the Home Assistant Frigate card, [follow the docs](https://github.com/dermotduffy/frigate-hass-card?tab=readme-ov-file#using-2-way-audio) for the correct source.
|
||||
|
||||
To use the Reolink Doorbell with two way talk, you should use the [recommended Reolink configuration](/configuration/camera_specific#reolink-doorbell)
|
||||
|
||||
### Streaming options on camera group dashboards
|
||||
|
||||
Frigate provides a dialog in the Camera Group Edit pane with several options for streaming on a camera group's dashboard. These settings are _per device_ and are saved in your device's local storage.
|
||||
|
||||
- Stream selection using the `live -> streams` configuration option (see _Setting Streams For Live UI_ above)
|
||||
- Streaming type:
|
||||
- _No streaming_: Camera images will only update once per minute and no live streaming will occur.
|
||||
- _Smart Streaming_ (default, recommended setting): Smart streaming will update your camera image once per minute when no detectable activity is occurring to conserve bandwidth and resources, since a static picture is the same as a streaming image with no motion or objects. When motion or objects are detected, the image seamlessly switches to a live stream.
|
||||
- _Continuous Streaming_: Camera image will always be a live stream when visible on the dashboard, even if no activity is being detected. Continuous streaming may cause high bandwidth usage and performance issues. **Use with caution.**
|
||||
- _Compatibility mode_: Enable this option only if your camera's live stream is displaying color artifacts and has a diagonal line on the right side of the image. Before enabling this, try setting your camera's `detect` width and height to a standard aspect ratio (for example: 640x352 becomes 640x360, and 800x443 becomes 800x450, 2688x1520 becomes 2688x1512, etc). Depending on your browser and device, more than a few cameras in compatibility mode may not be supported, so only use this option if changing your config fails to resolve the color artifacts and diagonal line.
|
||||
|
||||
:::note
|
||||
|
||||
The default dashboard ("All Cameras") will always use Smart Streaming and the first entry set in your `streams` configuration, if defined. Use a camera group if you want to change any of these settings from the defaults.
|
||||
|
||||
:::
|
||||
|
||||
## Live view FAQ
|
||||
|
||||
1. Why don't I have audio in my Live view?
|
||||
You must use go2rtc to hear audio in your live streams. If you have go2rtc already configured, you need to ensure your camera is sending PCMA/PCMU or AAC audio. If you can't change your camera's audio codec, you need to [transcode the audio](https://github.com/AlexxIT/go2rtc?tab=readme-ov-file#source-ffmpeg) using go2rtc.
|
||||
|
||||
Note that the low bandwidth mode player is a video-only stream. You should not expect to hear audio when in low bandwidth mode, even if you've set up go2rtc.
|
||||
|
||||
2. Frigate shows that my live stream is in "low bandwidth mode". What does this mean?
|
||||
Frigate intelligently selects the live streaming technology based on a number of factors (user-selected modes like two-way talk, camera settings, browser capabilities, available bandwidth) and prioritizes showing an actual up-to-date live view of your camera's stream as quickly as possible.
|
||||
|
||||
When you have go2rtc configured, Live view initially attempts to load and play back your stream with a clearer, fluent stream technology (MSE). An initial timeout, a low bandwidth condition that would cause buffering of the stream, or decoding errors in the stream will cause Frigate to switch to the stream defined by the `detect` role, using the jsmpeg format. This is what the UI labels as "low bandwidth mode". On Live dashboards, the mode will automatically reset when smart streaming is configured and activity stops. You can also try using the _Reset_ button to force a reload of your stream.
|
||||
|
||||
If you are still experiencing Frigate falling back to low bandwidth mode, you may need to adjust your camera's settings per the recommendations above or ensure you have enough bandwidth available.
|
||||
|
||||
3. It doesn't seem like my cameras are streaming on the Live dashboard. Why?
|
||||
On the default Live dashboard ("All Cameras"), your camera images will update once per minute when no detectable activity is occurring to conserve bandwidth and resources. As soon as any activity is detected, cameras seamlessly switch to a full-resolution live stream. If you want to customize this behavior, use a camera group.
|
||||
|
||||
4. I see a strange diagonal line on my live view, but my recordings look fine. How can I fix it?
|
||||
This is caused by incorrect dimensions set in your detect width or height (or incorrectly auto-detected), causing the jsmpeg player's rendering engine to display a slightly distorted image. You should enlarge the width and height of your `detect` resolution up to a standard aspect ratio (example: 640x352 becomes 640x360, and 800x443 becomes 800x450, 2688x1520 becomes 2688x1512, etc). If changing the resolution to match a standard (4:3, 16:9, or 32:9, etc) aspect ratio does not solve the issue, you can enable "compatibility mode" in your camera group dashboard's stream settings. Depending on your browser and device, more than a few cameras in compatibility mode may not be supported, so only use this option if changing your `detect` width and height fails to resolve the color artifacts and diagonal line.
|
||||
|
||||
5. How does "smart streaming" work?
|
||||
Because a static image of a scene looks exactly the same as a live stream with no motion or activity, smart streaming updates your camera images once per minute when no detectable activity is occurring to conserve bandwidth and resources. As soon as any activity (motion or object/audio detection) occurs, cameras seamlessly switch to a live stream.
|
||||
|
||||
This static image is pulled from the stream defined in your config with the `detect` role. When activity is detected, images from the `detect` stream immediately begin updating at ~5 frames per second so you can see the activity until the live player is loaded and begins playing. This usually only takes a second or two. If the live player times out, buffers, or has streaming errors, the jsmpeg player is loaded and plays a video-only stream from the `detect` role. When activity ends, the players are destroyed and a static image is displayed until activity is detected again, and the process repeats.
|
||||
|
||||
This is Frigate's default and recommended setting because it results in a significant bandwidth savings, especially for high resolution cameras.
|
||||
|
||||
6. I have unmuted some cameras on my dashboard, but I do not hear sound. Why?
|
||||
If your camera is streaming (as indicated by a red dot in the upper right, or if it has been set to continuous streaming mode), your browser may be blocking audio until you interact with the page. This is an intentional browser limitation. See [this article](https://developer.mozilla.org/en-US/docs/Web/Media/Autoplay_guide#autoplay_availability). Many browsers have a whitelist feature to change this behavior.
|
||||
|
99
docs/docs/configuration/metrics.md
Normal file
@ -0,0 +1,99 @@
|
||||
---
|
||||
id: metrics
|
||||
title: Metrics
|
||||
---
|
||||
|
||||
# Metrics
|
||||
|
||||
Frigate exposes Prometheus metrics at the `/api/metrics` endpoint that can be used to monitor the performance and health of your Frigate instance.
|
||||
|
||||
## Available Metrics
|
||||
|
||||
### System Metrics
|
||||
- `frigate_cpu_usage_percent{pid="", name="", process="", type="", cmdline=""}` - Process CPU usage percentage
|
||||
- `frigate_mem_usage_percent{pid="", name="", process="", type="", cmdline=""}` - Process memory usage percentage
|
||||
- `frigate_gpu_usage_percent{gpu_name=""}` - GPU utilization percentage
|
||||
- `frigate_gpu_mem_usage_percent{gpu_name=""}` - GPU memory usage percentage
|
||||
|
||||
### Camera Metrics
|
||||
- `frigate_camera_fps{camera_name=""}` - Frames per second being consumed from your camera
|
||||
- `frigate_detection_fps{camera_name=""}` - Number of times detection is run per second
|
||||
- `frigate_process_fps{camera_name=""}` - Frames per second being processed
|
||||
- `frigate_skipped_fps{camera_name=""}` - Frames per second skipped for processing
|
||||
- `frigate_detection_enabled{camera_name=""}` - Detection enabled status for camera
|
||||
- `frigate_audio_dBFS{camera_name=""}` - Audio dBFS for camera
|
||||
- `frigate_audio_rms{camera_name=""}` - Audio RMS for camera
|
||||
|
||||
### Detector Metrics
|
||||
- `frigate_detector_inference_speed_seconds{name=""}` - Time spent running object detection in seconds
|
||||
- `frigate_detection_start{name=""}` - Detector start time (unix timestamp)
|
||||
|
||||
### Storage Metrics
|
||||
- `frigate_storage_free_bytes{storage=""}` - Storage free bytes
|
||||
- `frigate_storage_total_bytes{storage=""}` - Storage total bytes
|
||||
- `frigate_storage_used_bytes{storage=""}` - Storage used bytes
|
||||
- `frigate_storage_mount_type{mount_type="", storage=""}` - Storage mount type info
|
||||
|
||||
### Service Metrics
|
||||
- `frigate_service_uptime_seconds` - Uptime in seconds
|
||||
- `frigate_service_last_updated_timestamp` - Stats recorded time (unix timestamp)
|
||||
- `frigate_device_temperature{device=""}` - Device Temperature
|
||||
|
||||
### Event Metrics
|
||||
- `frigate_camera_events{camera="", label=""}` - Count of camera events since exporter started
|
||||
|
||||
## Configuring Prometheus
|
||||
|
||||
To scrape metrics from Frigate, add the following to your Prometheus configuration:
|
||||
|
||||
```yaml
|
||||
scrape_configs:
|
||||
- job_name: 'frigate'
|
||||
metrics_path: '/api/metrics'
|
||||
static_configs:
|
||||
- targets: ['frigate:5000']
|
||||
scrape_interval: 15s
|
||||
```
|
||||
|
||||
## Example Queries
|
||||
|
||||
Here are some example PromQL queries that might be useful:
|
||||
|
||||
```promql
|
||||
# Average CPU usage across all processes
|
||||
avg(frigate_cpu_usage_percent)
|
||||
|
||||
# Total GPU memory usage
|
||||
sum(frigate_gpu_mem_usage_percent)
|
||||
|
||||
# Detection FPS by camera
|
||||
rate(frigate_detection_fps{camera_name="front_door"}[5m])
|
||||
|
||||
# Storage usage percentage
|
||||
(frigate_storage_used_bytes / frigate_storage_total_bytes) * 100
|
||||
|
||||
# Event count by camera in last hour
|
||||
increase(frigate_camera_events[1h])
|
||||
```
|
||||
|
||||
## Grafana Dashboard
|
||||
|
||||
You can use these metrics to create Grafana dashboards to monitor your Frigate instance. Here's an example of metrics you might want to track:
|
||||
|
||||
- CPU, Memory and GPU usage over time
|
||||
- Camera FPS and detection rates
|
||||
- Storage usage and trends
|
||||
- Event counts by camera
|
||||
- System temperatures
|
||||
|
||||
A sample Grafana dashboard JSON will be provided in a future update.
|
||||
|
||||
## Metric Types
|
||||
|
||||
The metrics exposed by Frigate use the following Prometheus metric types:
|
||||
|
||||
- **Counter**: Cumulative values that only increase (e.g., `frigate_camera_events`)
|
||||
- **Gauge**: Values that can go up and down (e.g., `frigate_cpu_usage_percent`)
|
||||
- **Info**: Key-value pairs for metadata (e.g., `frigate_storage_mount_type`)
|
||||
|
||||
For more information about Prometheus metric types, see the [Prometheus documentation](https://prometheus.io/docs/concepts/metric_types/).
|
@ -13,11 +13,11 @@ Once motion is detected, it tries to group up nearby areas of motion together in
|
||||
|
||||
The default motion settings should work well for the majority of cameras, however there are cases where tuning motion detection can lead to better and more optimal results. Each camera has its own environment with different variables that affect motion, this means that the same motion settings will not fit all of your cameras.
|
||||
|
||||
Before tuning motion it is important to understand the goal. In an optimal configuration, motion from people and cars would be detected, but not grass moving, lighting changes, timestamps, etc. If your motion detection is too sensitive, you will experience higher CPU loads and greater false positives from the increased rate of object detection. If it is not sensitive enough, you will miss events.
|
||||
Before tuning motion it is important to understand the goal. In an optimal configuration, motion from people and cars would be detected, but not grass moving, lighting changes, timestamps, etc. If your motion detection is too sensitive, you will experience higher CPU loads and greater false positives from the increased rate of object detection. If it is not sensitive enough, you will miss objects that you want to track.
|
||||
|
||||
## Create Motion Masks
|
||||
|
||||
First, mask areas with regular motion not caused by the objects you want to detect. The best way to find candidates for motion masks is by watching the debug stream with motion boxes enabled. Good use cases for motion masks are timestamps or tree limbs and large bushes that regularly move due to wind. When possible, avoid creating motion masks that would block motion detection for objects you want to track **even if they are in locations where you don't want events**. Motion masks should not be used to avoid detecting objects in specific areas. More details can be found [in the masks docs.](/configuration/masks.md).
|
||||
First, mask areas with regular motion not caused by the objects you want to detect. The best way to find candidates for motion masks is by watching the debug stream with motion boxes enabled. Good use cases for motion masks are timestamps or tree limbs and large bushes that regularly move due to wind. When possible, avoid creating motion masks that would block motion detection for objects you want to track **even if they are in locations where you don't want alerts or detections**. Motion masks should not be used to avoid detecting objects in specific areas. More details can be found [in the masks docs.](/configuration/masks.md).
|
||||
|
||||
## Prepare For Testing
|
||||
|
||||
@ -29,7 +29,7 @@ Now that things are set up, find a time to tune that represents normal circumsta
|
||||
|
||||
:::note
|
||||
|
||||
Remember that motion detection is just used to determine when object detection should be used. You should aim to have motion detection sensitive enough that you won't miss events from objects you want to detect with object detection. The goal is to prevent object detection from running constantly for every small pixel change in the image. Windy days are still going to result in lots of motion being detected.
|
||||
Remember that motion detection is just used to determine when object detection should be used. You should aim to have motion detection sensitive enough that you won't miss objects you want to detect with object detection. The goal is to prevent object detection from running constantly for every small pixel change in the image. Windy days are still going to result in lots of motion being detected.
|
||||
|
||||
:::
|
||||
|
||||
@ -92,9 +92,15 @@ motion:
|
||||
lightning_threshold: 0.8
|
||||
```
|
||||
|
||||
:::tip
|
||||
:::warning
|
||||
|
||||
Some cameras like doorbell cameras may have missed detections when someone walks directly in front of the camera and the lightning_threshold causes motion detection to be re-calibrated. In this case, it may be desirable to increase the `lightning_threshold` to ensure these events are not missed.
|
||||
Some cameras like doorbell cameras may have missed detections when someone walks directly in front of the camera and the lightning_threshold causes motion detection to be re-calibrated. In this case, it may be desirable to increase the `lightning_threshold` to ensure these objects are not missed.
|
||||
|
||||
:::
|
||||
|
||||
:::note
|
||||
|
||||
Lightning threshold does not stop motion based recordings from being saved.
|
||||
|
||||
:::
|
||||
|
||||
|
42
docs/docs/configuration/notifications.md
Normal file
@ -0,0 +1,42 @@
|
||||
---
|
||||
id: notifications
|
||||
title: Notifications
|
||||
---
|
||||
|
||||
# Notifications
|
||||
|
||||
Frigate offers native notifications using the [WebPush Protocol](https://web.dev/articles/push-notifications-web-push-protocol) which uses the [VAPID spec](https://tools.ietf.org/html/draft-thomson-webpush-vapid) to deliver notifications to web apps using encryption.
|
||||
|
||||
## Setting up Notifications
|
||||
|
||||
In order to use notifications the following requirements must be met:
|
||||
|
||||
- Frigate must be accessed via a secure https connection
|
||||
- A supported browser must be used. Currently Chrome, Firefox, and Safari are known to be supported.
|
||||
- In order for notifications to be usable externally, Frigate must be accessible externally
|
||||
|
||||
### Configuration
|
||||
|
||||
To configure notifications, go to the Frigate WebUI -> Settings -> Notifications and enable, then fill out the fields and save.
|
||||
|
||||
### Registration
|
||||
|
||||
Once notifications are enabled, press the `Register for Notifications` button on all devices that you would like to receive notifications on. This will register the background worker. After this Frigate must be restarted and then notifications will begin to be sent.
|
||||
|
||||
## Supported Notifications
|
||||
|
||||
Currently notifications are only supported for review alerts. More notifications will be supported in the future.
|
||||
|
||||
:::note
|
||||
|
||||
Currently, only Chrome supports images in notifications. Safari and Firefox will only show a title and message in the notification.
|
||||
|
||||
:::
|
||||
|
||||
## Reduce Notification Latency
|
||||
|
||||
Different platforms handle notifications differently, some settings changes may be required to get optimal notification delivery.
|
||||
|
||||
### Android
|
||||
|
||||
Most Android phones have battery optimization settings. To get reliable Notification delivery the browser (Chrome, Firefox) should have battery optimizations disabled. If Frigate is running as a PWA then the Frigate app should have battery optimizations disabled as well.
|
@ -3,37 +3,47 @@ id: object_detectors
|
||||
title: Object Detectors
|
||||
---
|
||||
|
||||
# Officially Supported Detectors
|
||||
# Supported Hardware
|
||||
|
||||
Frigate provides the following builtin detector types: `cpu`, `edgetpu`, `openvino`, `tensorrt`, and `rknn`. By default, Frigate will use a single CPU detector. Other detectors may require additional configuration as described below. When using multiple detectors they will run in dedicated processes, but pull from a common queue of detection requests from across all cameras.
|
||||
:::info
|
||||
|
||||
## CPU Detector (not recommended)
|
||||
Frigate supports multiple different detectors that work on different types of hardware:
|
||||
|
||||
The CPU detector type runs a TensorFlow Lite model utilizing the CPU without hardware acceleration. It is recommended to use a hardware accelerated detector type instead for better performance. To configure a CPU based detector, set the `"type"` attribute to `"cpu"`.
|
||||
**Most Hardware**
|
||||
- [Coral EdgeTPU](#edge-tpu-detector): The Google Coral EdgeTPU is available in USB and m.2 format allowing for a wide range of compatibility with devices.
|
||||
- [Hailo](#hailo-8l): The Hailo8 AI Acceleration module is available in m.2 format with a HAT for RPi devices, offering a wide range of compatibility with devices.
|
||||
|
||||
:::tip
|
||||
**AMD**
|
||||
- [ROCm](#amdrocm-gpu-detector): ROCm can run on AMD Discrete GPUs to provide efficient object detection.
|
||||
- [ONNX](#onnx): ROCm will automatically be detected and used as a detector in the `-rocm` Frigate image when a supported ONNX model is configured.
|
||||
|
||||
If you do not have GPU or Edge TPU hardware, using the [OpenVINO Detector](#openvino-detector) is often more efficient than using the CPU detector.
|
||||
**Intel**
|
||||
- [OpenVino](#openvino-detector): OpenVino can run on Intel Arc GPUs, Intel integrated GPUs, and Intel CPUs to provide efficient object detection.
|
||||
- [ONNX](#onnx): OpenVINO will automatically be detected and used as a detector in the default Frigate image when a supported ONNX model is configured.
|
||||
|
||||
**Nvidia**
|
||||
- [TensortRT](#nvidia-tensorrt-detector): TensorRT can run on Nvidia GPUs and Jetson devices, using one of many default models.
|
||||
- [ONNX](#onnx): TensorRT will automatically be detected and used as a detector in the `-tensorrt` or `-tensorrt-jp(4/5)` Frigate images when a supported ONNX model is configured.
|
||||
|
||||
**Rockchip**
|
||||
- [RKNN](#rockchip-platform): RKNN models can run on Rockchip devices with included NPUs.
|
||||
|
||||
**For Testing**
|
||||
- [CPU Detector (not recommended for actual use](#cpu-detector-not-recommended): Use a CPU to run tflite model, this is not recommended and in most cases OpenVINO can be used in CPU mode with better results.
|
||||
|
||||
:::
|
||||
|
||||
The number of threads used by the interpreter can be specified using the `"num_threads"` attribute, and defaults to `3.`
|
||||
:::note
|
||||
|
||||
A TensorFlow Lite model is provided in the container at `/cpu_model.tflite` and is used by this detector type by default. To provide your own model, bind mount the file into the container and provide the path with `model.path`.
|
||||
Multiple detectors can not be mixed for object detection (ex: OpenVINO and Coral EdgeTPU can not be used for object detection at the same time).
|
||||
|
||||
```yaml
|
||||
detectors:
|
||||
cpu1:
|
||||
type: cpu
|
||||
num_threads: 3
|
||||
model:
|
||||
path: "/custom_model.tflite"
|
||||
cpu2:
|
||||
type: cpu
|
||||
num_threads: 3
|
||||
```
|
||||
This does not affect using hardware for accelerating other tasks such as [semantic search](./semantic_search.md)
|
||||
|
||||
When using CPU detectors, you can add one CPU detector per camera. Adding more detectors than the number of cameras should not improve performance.
|
||||
:::
|
||||
|
||||
# Officially Supported Detectors
|
||||
|
||||
Frigate provides the following builtin detector types: `cpu`, `edgetpu`, `hailo8l`, `onnx`, `openvino`, `rknn`, `rocm`, and `tensorrt`. By default, Frigate will use a single CPU detector. Other detectors may require additional configuration as described below. When using multiple detectors they will run in dedicated processes, but pull from a common queue of detection requests from across all cameras.
|
||||
|
||||
## Edge TPU Detector
|
||||
|
||||
@ -114,6 +124,30 @@ detectors:
|
||||
device: pci
|
||||
```
|
||||
|
||||
## Hailo-8l
|
||||
|
||||
This detector is available for use with Hailo-8 AI Acceleration Module.
|
||||
|
||||
See the [installation docs](../frigate/installation.md#hailo-8l) for information on configuring the hailo8.
|
||||
|
||||
### Configuration
|
||||
|
||||
```yaml
|
||||
detectors:
|
||||
hailo8l:
|
||||
type: hailo8l
|
||||
device: PCIe
|
||||
|
||||
model:
|
||||
width: 300
|
||||
height: 300
|
||||
input_tensor: nhwc
|
||||
input_pixel_format: bgr
|
||||
model_type: ssd
|
||||
path: /config/model_cache/h8l_cache/ssd_mobilenet_v1.hef
|
||||
```
|
||||
|
||||
|
||||
## OpenVINO Detector
|
||||
|
||||
The OpenVINO detector type runs an OpenVINO IR model on AMD and Intel CPUs, Intel GPUs and Intel VPU hardware. To configure an OpenVINO detector, set the `"type"` attribute to `"openvino"`.
|
||||
@ -122,11 +156,29 @@ The OpenVINO device to be used is specified using the `"device"` attribute accor
|
||||
|
||||
OpenVINO is supported on 6th Gen Intel platforms (Skylake) and newer. It will also run on AMD CPUs despite having no official support for it. A supported Intel platform is required to use the `GPU` device with OpenVINO. For detailed system requirements, see [OpenVINO System Requirements](https://docs.openvino.ai/2024/about-openvino/release-notes-openvino/system-requirements.html)
|
||||
|
||||
:::tip
|
||||
|
||||
When using many cameras one detector may not be enough to keep up. Multiple detectors can be defined assuming GPU resources are available. An example configuration would be:
|
||||
|
||||
```yaml
|
||||
detectors:
|
||||
ov_0:
|
||||
type: openvino
|
||||
device: GPU
|
||||
ov_1:
|
||||
type: openvino
|
||||
device: GPU
|
||||
```
|
||||
|
||||
:::
|
||||
|
||||
### Supported Models
|
||||
|
||||
#### SSDLite MobileNet v2
|
||||
|
||||
An OpenVINO model is provided in the container at `/openvino-model/ssdlite_mobilenet_v2.xml` and is used by this detector type by default. The model comes from Intel's Open Model Zoo [SSDLite MobileNet V2](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/ssdlite_mobilenet_v2) and is converted to an FP16 precision IR model. Use the model configuration shown below when using the OpenVINO detector with the default model.
|
||||
An OpenVINO model is provided in the container at `/openvino-model/ssdlite_mobilenet_v2.xml` and is used by this detector type by default. The model comes from Intel's Open Model Zoo [SSDLite MobileNet V2](https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/public/ssdlite_mobilenet_v2) and is converted to an FP16 precision IR model.
|
||||
|
||||
Use the model configuration shown below when using the OpenVINO detector with the default OpenVINO model:
|
||||
|
||||
```yaml
|
||||
detectors:
|
||||
@ -149,15 +201,7 @@ This detector also supports YOLOX. Frigate does not come with any YOLOX models p
|
||||
|
||||
#### YOLO-NAS
|
||||
|
||||
[YOLO-NAS](https://github.com/Deci-AI/super-gradients/blob/master/YOLONAS.md) models are supported, but not included by default. You can build and download a compatible model with pre-trained weights using [this notebook](https://github.com/frigate/blob/dev/notebooks/YOLO_NAS_Pretrained_Export.ipynb) [](https://colab.research.google.com/github/blakeblackshear/frigate/blob/dev/notebooks/YOLO_NAS_Pretrained_Export.ipynb).
|
||||
|
||||
:::warning
|
||||
|
||||
The pre-trained YOLO-NAS weights from DeciAI are subject to their license and can't be used commercially. For more information, see: https://docs.deci.ai/super-gradients/latest/LICENSE.YOLONAS.html
|
||||
|
||||
:::
|
||||
|
||||
The input image size in this notebook is set to 320x320. This results in lower CPU usage and faster inference times without impacting performance in most cases due to the way Frigate crops video frames to areas of interest before running detection. The notebook and config can be updated to 640x640 if desired.
|
||||
[YOLO-NAS](https://github.com/Deci-AI/super-gradients/blob/master/YOLONAS.md) models are supported, but not included by default. See [the models section](#downloading-yolo-nas-model) for more information on downloading the YOLO-NAS model for use in Frigate.
|
||||
|
||||
After placing the downloaded onnx model in your config folder, you can use the following configuration:
|
||||
|
||||
@ -179,13 +223,43 @@ model:
|
||||
|
||||
Note that the labelmap uses a subset of the complete COCO label set that has only 80 objects.
|
||||
|
||||
#### YOLOv9
|
||||
|
||||
[YOLOv9](https://github.com/MultimediaTechLab/YOLO) models are supported, but not included by default.
|
||||
|
||||
:::tip
|
||||
|
||||
The YOLOv9 detector has been designed to support YOLOv9 models, but may support other YOLO model architectures as well.
|
||||
|
||||
:::
|
||||
|
||||
After placing the downloaded onnx model in your config folder, you can use the following configuration:
|
||||
|
||||
```yaml
|
||||
detectors:
|
||||
ov:
|
||||
type: openvino
|
||||
device: GPU
|
||||
|
||||
model:
|
||||
model_type: yolov9
|
||||
width: 640 # <--- should match the imgsize set during model export
|
||||
height: 640 # <--- should match the imgsize set during model export
|
||||
input_tensor: nchw
|
||||
input_dtype: float
|
||||
path: /config/model_cache/yolov9-t.onnx
|
||||
labelmap_path: /labelmap/coco-80.txt
|
||||
```
|
||||
|
||||
Note that the labelmap uses a subset of the complete COCO label set that has only 80 objects.
|
||||
|
||||
## NVidia TensorRT Detector
|
||||
|
||||
Nvidia GPUs may be used for object detection using the TensorRT libraries. Due to the size of the additional libraries, this detector is only provided in images with the `-tensorrt` tag suffix, e.g. `ghcr.io/blakeblackshear/frigate:stable-tensorrt`. This detector is designed to work with Yolo models for object detection.
|
||||
|
||||
### Minimum Hardware Support
|
||||
|
||||
The TensorRT detector uses the 12.x series of CUDA libraries which have minor version compatibility. The minimum driver version on the host system must be `>=530`. Also the GPU must support a Compute Capability of `5.0` or greater. This generally correlates to a Maxwell-era GPU or newer, check the NVIDIA GPU Compute Capability table linked below.
|
||||
The TensorRT detector uses the 12.x series of CUDA libraries which have minor version compatibility. The minimum driver version on the host system must be `>=545`. Also the GPU must support a Compute Capability of `5.0` or greater. This generally correlates to a Maxwell-era GPU or newer, check the NVIDIA GPU Compute Capability table linked below.
|
||||
|
||||
To use the TensorRT detector, make sure your host system has the [nvidia-container-runtime](https://docs.docker.com/config/containers/resource_constraints/#access-an-nvidia-gpu) installed to pass through the GPU to the container and the host system has a compatible driver installed for your GPU.
|
||||
|
||||
@ -205,7 +279,7 @@ The model used for TensorRT must be preprocessed on the same hardware platform t
|
||||
|
||||
The Frigate image will generate model files during startup if the specified model is not found. Processed models are stored in the `/config/model_cache` folder. Typically the `/config` path is mapped to a directory on the host already and the `model_cache` does not need to be mapped separately unless the user wants to store it in a different location on the host.
|
||||
|
||||
By default, the `yolov7-320` model will be generated, but this can be overridden by specifying the `YOLO_MODELS` environment variable in Docker. One or more models may be listed in a comma-separated format, and each one will be generated. To select no model generation, set the variable to an empty string, `YOLO_MODELS=""`. Models will only be generated if the corresponding `{model}.trt` file is not present in the `model_cache` folder, so you can force a model to be regenerated by deleting it from your Frigate data folder.
|
||||
By default, no models will be generated, but this can be overridden by specifying the `YOLO_MODELS` environment variable in Docker. One or more models may be listed in a comma-separated format, and each one will be generated. Models will only be generated if the corresponding `{model}.trt` file is not present in the `model_cache` folder, so you can force a model to be regenerated by deleting it from your Frigate data folder.
|
||||
|
||||
If you have a Jetson device with DLAs (Xavier or Orin), you can generate a model that will run on the DLA by appending `-dla` to your model name, e.g. specify `YOLO_MODELS=yolov7-320-dla`. The model will run on DLA0 (Frigate does not currently support DLA1). DLA-incompatible layers will fall back to running on the GPU.
|
||||
|
||||
@ -213,6 +287,8 @@ If your GPU does not support FP16 operations, you can pass the environment varia
|
||||
|
||||
Specific models can be selected by passing an environment variable to the `docker run` command or in your `docker-compose.yml` file. Use the form `-e YOLO_MODELS=yolov4-416,yolov4-tiny-416` to select one or more model names. The models available are shown below.
|
||||
|
||||
<details>
|
||||
<summary>Available Models</summary>
|
||||
```
|
||||
yolov3-288
|
||||
yolov3-416
|
||||
@ -236,17 +312,19 @@ yolov4x-mish-640
|
||||
yolov7-tiny-288
|
||||
yolov7-tiny-416
|
||||
yolov7-640
|
||||
yolov7-416
|
||||
yolov7-320
|
||||
yolov7x-640
|
||||
yolov7x-320
|
||||
```
|
||||
</details>
|
||||
|
||||
An example `docker-compose.yml` fragment that converts the `yolov4-608` and `yolov7x-640` models for a Pascal card would look something like this:
|
||||
|
||||
```yml
|
||||
frigate:
|
||||
environment:
|
||||
- YOLO_MODELS=yolov4-608,yolov7x-640
|
||||
- YOLO_MODELS=yolov7-320,yolov7x-640
|
||||
- USE_FP16=false
|
||||
```
|
||||
|
||||
@ -264,6 +342,8 @@ The TensorRT detector can be selected by specifying `tensorrt` as the model type
|
||||
|
||||
The TensorRT detector uses `.trt` model files that are located in `/config/model_cache/tensorrt` by default. These model path and dimensions used will depend on which model you have generated.
|
||||
|
||||
Use the config below to work with generated TRT models:
|
||||
|
||||
```yaml
|
||||
detectors:
|
||||
tensorrt:
|
||||
@ -278,6 +358,232 @@ model:
|
||||
height: 320
|
||||
```
|
||||
|
||||
## AMD/ROCm GPU detector
|
||||
|
||||
### Setup
|
||||
|
||||
The `rocm` detector supports running YOLO-NAS models on AMD GPUs. Use a frigate docker image with `-rocm` suffix, for example `ghcr.io/blakeblackshear/frigate:stable-rocm`.
|
||||
|
||||
### Docker settings for GPU access
|
||||
|
||||
ROCm needs access to the `/dev/kfd` and `/dev/dri` devices. When docker or frigate is not run under root then also `video` (and possibly `render` and `ssl/_ssl`) groups should be added.
|
||||
|
||||
When running docker directly the following flags should be added for device access:
|
||||
|
||||
```bash
|
||||
$ docker run --device=/dev/kfd --device=/dev/dri \
|
||||
...
|
||||
```
|
||||
|
||||
When using docker compose:
|
||||
|
||||
```yaml
|
||||
services:
|
||||
frigate:
|
||||
---
|
||||
devices:
|
||||
- /dev/dri
|
||||
- /dev/kfd
|
||||
```
|
||||
|
||||
For reference on recommended settings see [running ROCm/pytorch in Docker](https://rocm.docs.amd.com/projects/install-on-linux/en/develop/how-to/3rd-party/pytorch-install.html#using-docker-with-pytorch-pre-installed).
|
||||
|
||||
### Docker settings for overriding the GPU chipset
|
||||
|
||||
Your GPU might work just fine without any special configuration but in many cases they need manual settings. AMD/ROCm software stack comes with a limited set of GPU drivers and for newer or missing models you will have to override the chipset version to an older/generic version to get things working.
|
||||
|
||||
Also AMD/ROCm does not "officially" support integrated GPUs. It still does work with most of them just fine but requires special settings. One has to configure the `HSA_OVERRIDE_GFX_VERSION` environment variable. See the [ROCm bug report](https://github.com/ROCm/ROCm/issues/1743) for context and examples.
|
||||
|
||||
For the rocm frigate build there is some automatic detection:
|
||||
|
||||
- gfx90c -> 9.0.0
|
||||
- gfx1031 -> 10.3.0
|
||||
- gfx1103 -> 11.0.0
|
||||
|
||||
If you have something else you might need to override the `HSA_OVERRIDE_GFX_VERSION` at Docker launch. Suppose the version you want is `9.0.0`, then you should configure it from command line as:
|
||||
|
||||
```bash
|
||||
$ docker run -e HSA_OVERRIDE_GFX_VERSION=9.0.0 \
|
||||
...
|
||||
```
|
||||
|
||||
When using docker compose:
|
||||
|
||||
```yaml
|
||||
services:
|
||||
frigate:
|
||||
...
|
||||
environment:
|
||||
HSA_OVERRIDE_GFX_VERSION: "9.0.0"
|
||||
```
|
||||
|
||||
Figuring out what version you need can be complicated as you can't tell the chipset name and driver from the AMD brand name.
|
||||
|
||||
- first make sure that rocm environment is running properly by running `/opt/rocm/bin/rocminfo` in the frigate container -- it should list both the CPU and the GPU with their properties
|
||||
- find the chipset version you have (gfxNNN) from the output of the `rocminfo` (see below)
|
||||
- use a search engine to query what `HSA_OVERRIDE_GFX_VERSION` you need for the given gfx name ("gfxNNN ROCm HSA_OVERRIDE_GFX_VERSION")
|
||||
- override the `HSA_OVERRIDE_GFX_VERSION` with relevant value
|
||||
- if things are not working check the frigate docker logs
|
||||
|
||||
#### Figuring out if AMD/ROCm is working and found your GPU
|
||||
|
||||
```bash
|
||||
$ docker exec -it frigate /opt/rocm/bin/rocminfo
|
||||
```
|
||||
|
||||
#### Figuring out your AMD GPU chipset version:
|
||||
|
||||
We unset the `HSA_OVERRIDE_GFX_VERSION` to prevent an existing override from messing up the result:
|
||||
|
||||
```bash
|
||||
$ docker exec -it frigate /bin/bash -c '(unset HSA_OVERRIDE_GFX_VERSION && /opt/rocm/bin/rocminfo |grep gfx)'
|
||||
```
|
||||
|
||||
### Supported Models
|
||||
|
||||
There is no default model provided, the following formats are supported:
|
||||
|
||||
#### YOLO-NAS
|
||||
|
||||
[YOLO-NAS](https://github.com/Deci-AI/super-gradients/blob/master/YOLONAS.md) models are supported, but not included by default. See [the models section](#downloading-yolo-nas-model) for more information on downloading the YOLO-NAS model for use in Frigate.
|
||||
|
||||
After placing the downloaded onnx model in your config folder, you can use the following configuration:
|
||||
|
||||
```yaml
|
||||
detectors:
|
||||
rocm:
|
||||
type: rocm
|
||||
|
||||
model:
|
||||
model_type: yolonas
|
||||
width: 320 # <--- should match whatever was set in notebook
|
||||
height: 320 # <--- should match whatever was set in notebook
|
||||
input_pixel_format: bgr
|
||||
path: /config/yolo_nas_s.onnx
|
||||
labelmap_path: /labelmap/coco-80.txt
|
||||
```
|
||||
|
||||
Note that the labelmap uses a subset of the complete COCO label set that has only 80 objects.
|
||||
|
||||
## ONNX
|
||||
|
||||
ONNX is an open format for building machine learning models, Frigate supports running ONNX models on CPU, OpenVINO, ROCm, and TensorRT. On startup Frigate will automatically try to use a GPU if one is available.
|
||||
|
||||
:::info
|
||||
|
||||
If the correct build is used for your GPU then the GPU will be detected and used automatically.
|
||||
|
||||
- **AMD**
|
||||
|
||||
- ROCm will automatically be detected and used with the ONNX detector in the `-rocm` Frigate image.
|
||||
|
||||
- **Intel**
|
||||
|
||||
- OpenVINO will automatically be detected and used with the ONNX detector in the default Frigate image.
|
||||
|
||||
- **Nvidia**
|
||||
- Nvidia GPUs will automatically be detected and used with the ONNX detector in the `-tensorrt` Frigate image.
|
||||
- Jetson devices will automatically be detected and used with the ONNX detector in the `-tensorrt-jp(4/5)` Frigate image.
|
||||
|
||||
:::
|
||||
|
||||
:::tip
|
||||
|
||||
When using many cameras one detector may not be enough to keep up. Multiple detectors can be defined assuming GPU resources are available. An example configuration would be:
|
||||
|
||||
```yaml
|
||||
detectors:
|
||||
onnx_0:
|
||||
type: onnx
|
||||
onnx_1:
|
||||
type: onnx
|
||||
```
|
||||
|
||||
:::
|
||||
|
||||
### Supported Models
|
||||
|
||||
There is no default model provided, the following formats are supported:
|
||||
|
||||
#### YOLO-NAS
|
||||
|
||||
[YOLO-NAS](https://github.com/Deci-AI/super-gradients/blob/master/YOLONAS.md) models are supported, but not included by default. See [the models section](#downloading-yolo-nas-model) for more information on downloading the YOLO-NAS model for use in Frigate.
|
||||
|
||||
After placing the downloaded onnx model in your config folder, you can use the following configuration:
|
||||
|
||||
```yaml
|
||||
detectors:
|
||||
onnx:
|
||||
type: onnx
|
||||
|
||||
model:
|
||||
model_type: yolonas
|
||||
width: 320 # <--- should match whatever was set in notebook
|
||||
height: 320 # <--- should match whatever was set in notebook
|
||||
input_pixel_format: bgr
|
||||
input_tensor: nchw
|
||||
path: /config/yolo_nas_s.onnx
|
||||
labelmap_path: /labelmap/coco-80.txt
|
||||
```
|
||||
|
||||
#### YOLOv9
|
||||
|
||||
[YOLOv9](https://github.com/MultimediaTechLab/YOLO) models are supported, but not included by default.
|
||||
|
||||
:::tip
|
||||
|
||||
The YOLOv9 detector has been designed to support YOLOv9 models, but may support other YOLO model architectures as well.
|
||||
|
||||
:::
|
||||
|
||||
After placing the downloaded onnx model in your config folder, you can use the following configuration:
|
||||
|
||||
```yaml
|
||||
detectors:
|
||||
onnx:
|
||||
type: onnx
|
||||
|
||||
model:
|
||||
model_type: yolov9
|
||||
width: 640 # <--- should match the imgsize set during model export
|
||||
height: 640 # <--- should match the imgsize set during model export
|
||||
input_tensor: nchw
|
||||
input_dtype: float
|
||||
path: /config/model_cache/yolov9-t.onnx
|
||||
labelmap_path: /labelmap/coco-80.txt
|
||||
```
|
||||
|
||||
Note that the labelmap uses a subset of the complete COCO label set that has only 80 objects.
|
||||
|
||||
## CPU Detector (not recommended)
|
||||
|
||||
The CPU detector type runs a TensorFlow Lite model utilizing the CPU without hardware acceleration. It is recommended to use a hardware accelerated detector type instead for better performance. To configure a CPU based detector, set the `"type"` attribute to `"cpu"`.
|
||||
|
||||
:::danger
|
||||
|
||||
The CPU detector is not recommended for general use. If you do not have GPU or Edge TPU hardware, using the [OpenVINO Detector](#openvino-detector) in CPU mode is often more efficient than using the CPU detector.
|
||||
|
||||
:::
|
||||
|
||||
The number of threads used by the interpreter can be specified using the `"num_threads"` attribute, and defaults to `3.`
|
||||
|
||||
A TensorFlow Lite model is provided in the container at `/cpu_model.tflite` and is used by this detector type by default. To provide your own model, bind mount the file into the container and provide the path with `model.path`.
|
||||
|
||||
```yaml
|
||||
detectors:
|
||||
cpu1:
|
||||
type: cpu
|
||||
num_threads: 3
|
||||
cpu2:
|
||||
type: cpu
|
||||
num_threads: 3
|
||||
|
||||
model:
|
||||
path: "/custom_model.tflite"
|
||||
```
|
||||
|
||||
When using CPU detectors, you can add one CPU detector per camera. Adding more detectors than the number of cameras should not improve performance.
|
||||
|
||||
## Deepstack / CodeProject.AI Server Detector
|
||||
|
||||
The Deepstack / CodeProject.AI Server detector for Frigate allows you to integrate Deepstack and CodeProject.AI object detection capabilities into Frigate. CodeProject.AI and DeepStack are open-source AI platforms that can be run on various devices such as the Raspberry Pi, Nvidia Jetson, and other compatible hardware. It is important to note that the integration is performed over the network, so the inference times may not be as fast as native Frigate detectors, but it still provides an efficient and reliable solution for object detection and tracking.
|
||||
@ -312,7 +618,7 @@ Hardware accelerated object detection is supported on the following SoCs:
|
||||
- RK3576
|
||||
- RK3588
|
||||
|
||||
This implementation uses the [Rockchip's RKNN-Toolkit2](https://github.com/airockchip/rknn-toolkit2/), version v2.0.0.beta0. Currently, only [Yolo-NAS](https://github.com/Deci-AI/super-gradients/blob/master/YOLONAS.md) is supported as object detection model.
|
||||
This implementation uses the [Rockchip's RKNN-Toolkit2](https://github.com/airockchip/rknn-toolkit2/), version v2.3.0. Currently, only [Yolo-NAS](https://github.com/Deci-AI/super-gradients/blob/master/YOLONAS.md) is supported as object detection model.
|
||||
|
||||
### Prerequisites
|
||||
|
||||
@ -386,3 +692,57 @@ $ cat /sys/kernel/debug/rknpu/load
|
||||
|
||||
- All models are automatically downloaded and stored in the folder `config/model_cache/rknn_cache`. After upgrading Frigate, you should remove older models to free up space.
|
||||
- You can also provide your own `.rknn` model. You should not save your own models in the `rknn_cache` folder, store them directly in the `model_cache` folder or another subfolder. To convert a model to `.rknn` format see the `rknn-toolkit2` (requires a x86 machine). Note, that there is only post-processing for the supported models.
|
||||
|
||||
### Converting your own onnx model to rknn format
|
||||
|
||||
To convert a onnx model to the rknn format using the [rknn-toolkit2](https://github.com/airockchip/rknn-toolkit2/) you have to:
|
||||
|
||||
- Place one ore more models in onnx format in the directory `config/model_cache/rknn_cache/onnx` on your docker host (this might require `sudo` privileges).
|
||||
- Save the configuration file under `config/conv2rknn.yaml` (see below for details).
|
||||
- Run `docker exec <frigate_container_id> python3 /opt/conv2rknn.py`. If the conversion was successful, the rknn models will be placed in `config/model_cache/rknn_cache`.
|
||||
|
||||
This is an example configuration file that you need to adjust to your specific onnx model:
|
||||
|
||||
```yaml
|
||||
soc: ["rk3562","rk3566", "rk3568", "rk3576", "rk3588"]
|
||||
quantization: false
|
||||
|
||||
output_name: "{input_basename}"
|
||||
|
||||
config:
|
||||
mean_values: [[0, 0, 0]]
|
||||
std_values: [[255, 255, 255]]
|
||||
quant_img_rgb2bgr: true
|
||||
```
|
||||
|
||||
Explanation of the paramters:
|
||||
|
||||
- `soc`: A list of all SoCs you want to build the rknn model for. If you don't specify this parameter, the script tries to find out your SoC and builds the rknn model for this one.
|
||||
- `quantization`: true: 8 bit integer (i8) quantization, false: 16 bit float (fp16). Default: false.
|
||||
- `output_name`: The output name of the model. The following variables are available:
|
||||
- `quant`: "i8" or "fp16" depending on the config
|
||||
- `input_basename`: the basename of the input model (e.g. "my_model" if the input model is calles "my_model.onnx")
|
||||
- `soc`: the SoC this model was build for (e.g. "rk3588")
|
||||
- `tk_version`: Version of `rknn-toolkit2` (e.g. "2.3.0")
|
||||
- **example**: Specifying `output_name = "frigate-{quant}-{input_basename}-{soc}-v{tk_version}"` could result in a model called `frigate-i8-my_model-rk3588-v2.3.0.rknn`.
|
||||
- `config`: Configuration passed to `rknn-toolkit2` for model conversion. For an explanation of all available parameters have a look at section "2.2. Model configuration" of [this manual](https://github.com/MarcA711/rknn-toolkit2/releases/download/v2.3.0/03_Rockchip_RKNPU_API_Reference_RKNN_Toolkit2_V2.3.0_EN.pdf).
|
||||
|
||||
# Models
|
||||
|
||||
Some model types are not included in Frigate by default.
|
||||
|
||||
## Downloading Models
|
||||
|
||||
Here are some tips for getting different model types
|
||||
|
||||
### Downloading YOLO-NAS Model
|
||||
|
||||
You can build and download a compatible model with pre-trained weights using [this notebook](https://github.com/blakeblackshear/frigate/blob/dev/notebooks/YOLO_NAS_Pretrained_Export.ipynb) [](https://colab.research.google.com/github/blakeblackshear/frigate/blob/dev/notebooks/YOLO_NAS_Pretrained_Export.ipynb).
|
||||
|
||||
:::warning
|
||||
|
||||
The pre-trained YOLO-NAS weights from DeciAI are subject to their license and can't be used commercially. For more information, see: https://docs.deci.ai/super-gradients/latest/LICENSE.YOLONAS.html
|
||||
|
||||
:::
|
||||
|
||||
The input image size in this notebook is set to 320x320. This results in lower CPU usage and faster inference times without impacting performance in most cases due to the way Frigate crops video frames to areas of interest before running detection. The notebook and config can be updated to 640x640 if desired.
|
||||
|
@ -20,15 +20,13 @@ For object filters in your configuration, any single detection below `min_score`
|
||||
|
||||
In frame 2, the score is below the `min_score` value, so Frigate ignores it and it becomes a 0.0. The computed score is the median of the score history (padding to at least 3 values), and only when that computed score crosses the `threshold` is the object marked as a true positive. That happens in frame 4 in the example.
|
||||
|
||||
show image of snapshot vs event with differing scores
|
||||
|
||||
### Minimum Score
|
||||
|
||||
Any detection below `min_score` will be immediately thrown out and never tracked because it is considered a false positive. If `min_score` is too low then false positives may be detected and tracked which can confuse the object tracker and may lead to wasted resources. If `min_score` is too high then lower scoring true positives like objects that are further away or partially occluded may be thrown out which can also confuse the tracker and cause valid events to be lost or disjointed.
|
||||
Any detection below `min_score` will be immediately thrown out and never tracked because it is considered a false positive. If `min_score` is too low then false positives may be detected and tracked which can confuse the object tracker and may lead to wasted resources. If `min_score` is too high then lower scoring true positives like objects that are further away or partially occluded may be thrown out which can also confuse the tracker and cause valid tracked objects to be lost or disjointed.
|
||||
|
||||
### Threshold
|
||||
|
||||
`threshold` is used to determine that the object is a true positive. Once an object is detected with a score >= `threshold` object is considered a true positive. If `threshold` is too low then some higher scoring false positives may create an event. If `threshold` is too high then true positive events may be missed due to the object never scoring high enough.
|
||||
`threshold` is used to determine that the object is a true positive. Once an object is detected with a score >= `threshold` object is considered a true positive. If `threshold` is too low then some higher scoring false positives may create an tracked object. If `threshold` is too high then true positive tracked objects may be missed due to the object never scoring high enough.
|
||||
|
||||
## Object Shape
|
||||
|
||||
@ -36,7 +34,7 @@ False positives can also be reduced by filtering a detection based on its shape.
|
||||
|
||||
### Object Area
|
||||
|
||||
`min_area` and `max_area` filter on the area of an objects bounding box in pixels and can be used to reduce false positives that are outside the range of expected sizes. For example when a leaf is detected as a dog or when a large tree is detected as a person, these can be reduced by adding a `min_area` / `max_area` filter.
|
||||
`min_area` and `max_area` filter on the area of an objects bounding box and can be used to reduce false positives that are outside the range of expected sizes. For example when a leaf is detected as a dog or when a large tree is detected as a person, these can be reduced by adding a `min_area` / `max_area` filter. These values can either be in pixels or as a percentage of the frame (for example, 0.12 represents 12% of the frame).
|
||||
|
||||
### Object Proportions
|
||||
|
||||
@ -52,7 +50,7 @@ Conceptually, a ratio of 1 is a square, 0.5 is a "tall skinny" box, and 2 is a "
|
||||
|
||||
### Zones
|
||||
|
||||
[Required zones](/configuration/zones.md) can be a great tool to reduce false positives that may be detected in the sky or other areas that are not of interest. The required zones will only create events for objects that enter the zone.
|
||||
[Required zones](/configuration/zones.md) can be a great tool to reduce false positives that may be detected in the sky or other areas that are not of interest. The required zones will only create tracked objects for objects that enter the zone.
|
||||
|
||||
### Object Masks
|
||||
|
||||
|
@ -5,7 +5,7 @@ title: Available Objects
|
||||
|
||||
import labels from "../../../labelmap.txt";
|
||||
|
||||
Frigate includes the object models listed below from the Google Coral test data.
|
||||
Frigate includes the object labels listed below from the Google Coral test data.
|
||||
|
||||
Please note:
|
||||
|
||||
|
24
docs/docs/configuration/pwa.md
Normal file
@ -0,0 +1,24 @@
|
||||
---
|
||||
id: pwa
|
||||
title: Installing Frigate App
|
||||
---
|
||||
|
||||
Frigate supports being installed as a [Progressive Web App](https://web.dev/explore/progressive-web-apps) on Desktop, Android, and iOS.
|
||||
|
||||
This adds features including the ability to deep link directly into the app.
|
||||
|
||||
## Requirements
|
||||
|
||||
In order to install Frigate as a PWA, the following requirements must be met:
|
||||
|
||||
- Frigate must be accessed via a secure context (localhost, secure https, etc.)
|
||||
- On Android, Firefox, Chrome, Edge, Opera, and Samsung Internet Browser all support installing PWAs.
|
||||
- On iOS 16.4 and later, PWAs can be installed from the Share menu in Safari, Chrome, Edge, Firefox, and Orion.
|
||||
|
||||
## Installation
|
||||
|
||||
Installation varies slightly based on the device that is being used:
|
||||
|
||||
- Desktop: Use the install button typically found in right edge of the address bar
|
||||
- Android: Use the `Install as App` button in the more options menu
|
||||
- iOS: Use the `Add to Homescreen` button in the share menu
|
@ -3,7 +3,7 @@ id: record
|
||||
title: Recording
|
||||
---
|
||||
|
||||
Recordings can be enabled and are stored at `/media/frigate/recordings`. The folder structure for the recordings is `YYYY-MM-DD/HH/<camera_name>/MM.SS.mp4` in **UTC time**. These recordings are written directly from your camera stream without re-encoding. Each camera supports a configurable retention policy in the config. Frigate chooses the largest matching retention value between the recording retention and the event retention when determining if a recording should be removed.
|
||||
Recordings can be enabled and are stored at `/media/frigate/recordings`. The folder structure for the recordings is `YYYY-MM-DD/HH/<camera_name>/MM.SS.mp4` in **UTC time**. These recordings are written directly from your camera stream without re-encoding. Each camera supports a configurable retention policy in the config. Frigate chooses the largest matching retention value between the recording retention and the tracked object retention when determining if a recording should be removed.
|
||||
|
||||
New recording segments are written from the camera stream to cache, they are only moved to disk if they match the setup recording retention policy.
|
||||
|
||||
@ -13,7 +13,7 @@ H265 recordings can be viewed in Chrome 108+, Edge and Safari only. All other br
|
||||
|
||||
### Most conservative: Ensure all video is saved
|
||||
|
||||
For users deploying Frigate in environments where it is important to have contiguous video stored even if there was no detectable motion, the following config will store all video for 3 days. After 3 days, only video containing motion and overlapping with events will be retained until 30 days have passed.
|
||||
For users deploying Frigate in environments where it is important to have contiguous video stored even if there was no detectable motion, the following config will store all video for 3 days. After 3 days, only video containing motion and overlapping with alerts or detections will be retained until 30 days have passed.
|
||||
|
||||
```yaml
|
||||
record:
|
||||
@ -21,9 +21,13 @@ record:
|
||||
retain:
|
||||
days: 3
|
||||
mode: all
|
||||
events:
|
||||
alerts:
|
||||
retain:
|
||||
default: 30
|
||||
days: 30
|
||||
mode: motion
|
||||
detections:
|
||||
retain:
|
||||
days: 30
|
||||
mode: motion
|
||||
```
|
||||
|
||||
@ -37,25 +41,28 @@ record:
|
||||
retain:
|
||||
days: 3
|
||||
mode: motion
|
||||
events:
|
||||
alerts:
|
||||
retain:
|
||||
default: 30
|
||||
days: 30
|
||||
mode: motion
|
||||
detections:
|
||||
retain:
|
||||
days: 30
|
||||
mode: motion
|
||||
```
|
||||
|
||||
### Minimum: Events only
|
||||
### Minimum: Alerts only
|
||||
|
||||
If you only want to retain video that occurs during an event, this config will discard video unless an event is ongoing.
|
||||
If you only want to retain video that occurs during a tracked object, this config will discard video unless an alert is ongoing.
|
||||
|
||||
```yaml
|
||||
record:
|
||||
enabled: True
|
||||
retain:
|
||||
days: 0
|
||||
mode: all
|
||||
events:
|
||||
alerts:
|
||||
retain:
|
||||
default: 30
|
||||
days: 30
|
||||
mode: motion
|
||||
```
|
||||
|
||||
@ -65,7 +72,7 @@ As of Frigate 0.12 if there is less than an hour left of storage, the oldest 2 h
|
||||
|
||||
## Configuring Recording Retention
|
||||
|
||||
Frigate supports both continuous and event based recordings with separate retention modes and retention periods.
|
||||
Frigate supports both continuous and tracked object based recordings with separate retention modes and retention periods.
|
||||
|
||||
:::tip
|
||||
|
||||
@ -86,25 +93,28 @@ record:
|
||||
|
||||
Continuous recording supports different retention modes [which are described below](#what-do-the-different-retain-modes-mean)
|
||||
|
||||
### Event Recording
|
||||
### Object Recording
|
||||
|
||||
If you only used clips in previous versions with recordings disabled, you can use the following config to get the same behavior. This is also the default behavior when recordings are enabled.
|
||||
The number of days to record review items can be specified for review items classified as alerts as well as tracked objects.
|
||||
|
||||
```yaml
|
||||
record:
|
||||
enabled: True
|
||||
events:
|
||||
alerts:
|
||||
retain:
|
||||
default: 10 # <- number of days to keep event recordings
|
||||
days: 10 # <- number of days to keep alert recordings
|
||||
detections:
|
||||
retain:
|
||||
days: 10 # <- number of days to keep detections recordings
|
||||
```
|
||||
|
||||
This configuration will retain recording segments that overlap with events and have active tracked objects for 10 days. Because multiple events can reference the same recording segments, this avoids storing duplicate footage for overlapping events and reduces overall storage needs.
|
||||
This configuration will retain recording segments that overlap with alerts and detections for 10 days. Because multiple tracked objects can reference the same recording segments, this avoids storing duplicate footage for overlapping tracked objects and reduces overall storage needs.
|
||||
|
||||
**WARNING**: Recordings still must be enabled in the config. If a camera has recordings disabled in the config, enabling via the methods listed above will have no effect.
|
||||
|
||||
## What do the different retain modes mean?
|
||||
|
||||
Frigate saves from the stream with the `record` role in 10 second segments. These options determine which recording segments are kept for continuous recording (but can also affect events).
|
||||
Frigate saves from the stream with the `record` role in 10 second segments. These options determine which recording segments are kept for continuous recording (but can also affect tracked objects).
|
||||
|
||||
Let's say you have Frigate configured so that your doorbell camera would retain the last **2** days of continuous recording.
|
||||
|
||||
@ -112,11 +122,7 @@ Let's say you have Frigate configured so that your doorbell camera would retain
|
||||
- With the `motion` option the only parts of those 48 hours would be segments that Frigate detected motion. This is the middle ground option that won't keep all 48 hours, but will likely keep all segments of interest along with the potential for some extra segments.
|
||||
- With the `active_objects` option the only segments that would be kept are those where there was a true positive object that was not considered stationary.
|
||||
|
||||
The same options are available with events. Let's consider a scenario where you drive up and park in your driveway, go inside, then come back out 4 hours later.
|
||||
|
||||
- With the `all` option all segments for the duration of the event would be saved for the event. This event would have 4 hours of footage.
|
||||
- With the `motion` option all segments for the duration of the event with motion would be saved. This means any segment where a car drove by in the street, person walked by, lighting changed, etc. would be saved.
|
||||
- With the `active_objects` it would only keep segments where the object was active. In this case the only segments that would be saved would be the ones where the car was driving up, you going inside, you coming outside, and the car driving away. Essentially reducing the 4 hours to a minute or two of event footage.
|
||||
The same options are available with alerts and detections, except it will only save the recordings when it overlaps with a review item of that type.
|
||||
|
||||
A configuration example of the above retain modes where all `motion` segments are stored for 7 days and `active objects` are stored for 14 days would be as follows:
|
||||
|
||||
@ -126,33 +132,18 @@ record:
|
||||
retain:
|
||||
days: 7
|
||||
mode: motion
|
||||
events:
|
||||
alerts:
|
||||
retain:
|
||||
default: 14
|
||||
days: 14
|
||||
mode: active_objects
|
||||
detections:
|
||||
retain:
|
||||
days: 14
|
||||
mode: active_objects
|
||||
```
|
||||
|
||||
The above configuration example can be added globally or on a per camera basis.
|
||||
|
||||
### Object Specific Retention
|
||||
|
||||
You can also set specific retention length for an object type. The below configuration example builds on from above but also specifies that recordings of dogs only need to be kept for 2 days and recordings of cars should be kept for 7 days.
|
||||
|
||||
```yaml
|
||||
record:
|
||||
enabled: True
|
||||
retain:
|
||||
days: 7
|
||||
mode: motion
|
||||
events:
|
||||
retain:
|
||||
default: 14
|
||||
mode: active_objects
|
||||
objects:
|
||||
dog: 2
|
||||
car: 7
|
||||
```
|
||||
|
||||
## Can I have "continuous" recordings, but only at certain times?
|
||||
|
||||
Using Frigate UI, HomeAssistant, or MQTT, cameras can be automated to only record in certain situations or at certain times.
|
||||
@ -163,7 +154,7 @@ Footage can be exported from Frigate by right-clicking (desktop) or long pressin
|
||||
|
||||
### Time-lapse export
|
||||
|
||||
Time lapse exporting is available only via the [HTTP API](../integrations/api.md#post-apiexportcamerastartstart-timestampendend-timestamp).
|
||||
Time lapse exporting is available only via the [HTTP API](../integrations/api/export-recording-export-camera-name-start-start-time-end-end-time-post.api.mdx).
|
||||
|
||||
When exporting a time-lapse the default speed-up is 25x with 30 FPS. This means that every 25 seconds of (real-time) recording is condensed into 1 second of time-lapse video (always without audio) with a smoothness of 30 FPS.
|
||||
|
||||
|
@ -46,13 +46,18 @@ mqtt:
|
||||
tls_insecure: false
|
||||
# Optional: interval in seconds for publishing stats (default: shown below)
|
||||
stats_interval: 60
|
||||
# Optional: QoS level for subscriptions and publishing (default: shown below)
|
||||
# 0 = at most once
|
||||
# 1 = at least once
|
||||
# 2 = exactly once
|
||||
qos: 0
|
||||
|
||||
# Optional: Detectors configuration. Defaults to a single CPU detector
|
||||
detectors:
|
||||
# Required: name of the detector
|
||||
detector_name:
|
||||
# Required: type of the detector
|
||||
# Frigate provided types include 'cpu', 'edgetpu', 'openvino' and 'tensorrt' (default: shown below)
|
||||
# Frigate provides many types, see https://docs.frigate.video/configuration/object_detectors for more details (default: shown below)
|
||||
# Additional detector types can also be plugged in.
|
||||
# Detectors may require additional configuration.
|
||||
# Refer to the Detectors configuration page for more information.
|
||||
@ -117,27 +122,39 @@ auth:
|
||||
hash_iterations: 600000
|
||||
|
||||
# Optional: model modifications
|
||||
# NOTE: The default values are for the EdgeTPU detector.
|
||||
# Other detectors will require the model config to be set.
|
||||
model:
|
||||
# Optional: path to the model (default: automatic based on detector)
|
||||
# Required: path to the model (default: automatic based on detector)
|
||||
path: /edgetpu_model.tflite
|
||||
# Optional: path to the labelmap (default: shown below)
|
||||
# Required: path to the labelmap (default: shown below)
|
||||
labelmap_path: /labelmap.txt
|
||||
# Required: Object detection model input width (default: shown below)
|
||||
width: 320
|
||||
# Required: Object detection model input height (default: shown below)
|
||||
height: 320
|
||||
# Optional: Object detection model input colorspace
|
||||
# Required: Object detection model input colorspace
|
||||
# Valid values are rgb, bgr, or yuv. (default: shown below)
|
||||
input_pixel_format: rgb
|
||||
# Optional: Object detection model input tensor format
|
||||
# Required: Object detection model input tensor format
|
||||
# Valid values are nhwc or nchw (default: shown below)
|
||||
input_tensor: nhwc
|
||||
# Optional: Object detection model type, currently only used with the OpenVINO detector
|
||||
# Required: Object detection model type, currently only used with the OpenVINO detector
|
||||
# Valid values are ssd, yolox, yolonas (default: shown below)
|
||||
model_type: ssd
|
||||
# Optional: Label name modifications. These are merged into the standard labelmap.
|
||||
# Required: Label name modifications. These are merged into the standard labelmap.
|
||||
labelmap:
|
||||
2: vehicle
|
||||
# Optional: Map of object labels to their attribute labels (default: depends on model)
|
||||
attributes_map:
|
||||
person:
|
||||
- amazon
|
||||
- face
|
||||
car:
|
||||
- amazon
|
||||
- fedex
|
||||
- license_plate
|
||||
- ups
|
||||
|
||||
# Optional: Audio Events Configuration
|
||||
# NOTE: Can be overridden at the camera level
|
||||
@ -210,6 +227,10 @@ birdseye:
|
||||
# Optional: ffmpeg configuration
|
||||
# More information about presets at https://docs.frigate.video/configuration/ffmpeg_presets
|
||||
ffmpeg:
|
||||
# Optional: ffmpeg binry path (default: shown below)
|
||||
# can also be set to `7.0` or `5.0` to specify one of the included versions
|
||||
# or can be set to any path that holds `bin/ffmpeg` & `bin/ffprobe`
|
||||
path: "default"
|
||||
# Optional: global ffmpeg args (default: shown below)
|
||||
global_args: -hide_banner -loglevel warning -threads 2
|
||||
# Optional: global hwaccel args (default: auto detect)
|
||||
@ -228,6 +249,8 @@ ffmpeg:
|
||||
# If set too high, then if a ffmpeg crash or camera stream timeout occurs, you could potentially lose up to a maximum of retry_interval second(s) of footage
|
||||
# NOTE: this can be a useful setting for Wireless / Battery cameras to reduce how much footage is potentially lost during a connection timeout.
|
||||
retry_interval: 10
|
||||
# Optional: Set tag on HEVC (H.265) recording stream to improve compatibility with Apple players. (default: shown below)
|
||||
apple_compatibility: false
|
||||
|
||||
# Optional: Detect configuration
|
||||
# NOTE: Can be overridden at the camera level
|
||||
@ -271,13 +294,13 @@ detect:
|
||||
# especially when using separate streams for detect and record.
|
||||
# Use this setting to make the timeline bounding boxes more closely align
|
||||
# with the recording. The value can be positive or negative.
|
||||
# TIP: Imagine there is an event clip with a person walking from left to right.
|
||||
# If the event timeline bounding box is consistently to the left of the person
|
||||
# TIP: Imagine there is an tracked object clip with a person walking from left to right.
|
||||
# If the tracked object lifecycle bounding box is consistently to the left of the person
|
||||
# then the value should be decreased. Similarly, if a person is walking from
|
||||
# left to right and the bounding box is consistently ahead of the person
|
||||
# then the value should be increased.
|
||||
# TIP: This offset is dynamic so you can change the value and it will update existing
|
||||
# events, this makes it easy to tune.
|
||||
# tracked objects, this makes it easy to tune.
|
||||
# WARNING: Fast moving objects will likely not have the bounding box align.
|
||||
annotation_offset: 0
|
||||
|
||||
@ -294,9 +317,11 @@ objects:
|
||||
# Optional: filters to reduce false positives for specific object types
|
||||
filters:
|
||||
person:
|
||||
# Optional: minimum width*height of the bounding box for the detected object (default: 0)
|
||||
# Optional: minimum size of the bounding box for the detected object (default: 0).
|
||||
# Can be specified as an integer for width*height in pixels or as a decimal representing the percentage of the frame (0.000001 to 0.99).
|
||||
min_area: 5000
|
||||
# Optional: maximum width*height of the bounding box for the detected object (default: 24000000)
|
||||
# Optional: maximum size of the bounding box for the detected object (default: 24000000).
|
||||
# Can be specified as an integer for width*height in pixels or as a decimal representing the percentage of the frame (0.000001 to 0.99).
|
||||
max_area: 100000
|
||||
# Optional: minimum width/height of the bounding box for the detected object (default: 0)
|
||||
min_ratio: 0.5
|
||||
@ -315,26 +340,41 @@ objects:
|
||||
review:
|
||||
# Optional: alerts configuration
|
||||
alerts:
|
||||
# Optional: enables alerts for the camera (default: shown below)
|
||||
enabled: True
|
||||
# Optional: labels that qualify as an alert (default: shown below)
|
||||
labels:
|
||||
- car
|
||||
- person
|
||||
# Optional: required zones for an object to be marked as an alert (default: none)
|
||||
# NOTE: when settings required zones globally, this zone must exist on all cameras
|
||||
# or the config will be considered invalid. In that case the required_zones
|
||||
# should be configured at the camera level.
|
||||
required_zones:
|
||||
- driveway
|
||||
# Optional: detections configuration
|
||||
detections:
|
||||
# Optional: enables detections for the camera (default: shown below)
|
||||
enabled: True
|
||||
# Optional: labels that qualify as a detection (default: all labels that are tracked / listened to)
|
||||
labels:
|
||||
- car
|
||||
- person
|
||||
# Optional: required zones for an object to be marked as a detection (default: none)
|
||||
# NOTE: when settings required zones globally, this zone must exist on all cameras
|
||||
# or the config will be considered invalid. In that case the required_zones
|
||||
# should be configured at the camera level.
|
||||
required_zones:
|
||||
- driveway
|
||||
|
||||
# Optional: Motion configuration
|
||||
# NOTE: Can be overridden at the camera level
|
||||
motion:
|
||||
# Optional: enables detection for the camera (default: True)
|
||||
# NOTE: Motion detection is required for object detection,
|
||||
# setting this to False and leaving detect enabled
|
||||
# will result in an error on startup.
|
||||
enabled: False
|
||||
# Optional: The threshold passed to cv2.threshold to determine if a pixel is different enough to be counted as motion. (default: shown below)
|
||||
# Increasing this value will make motion detection less sensitive and decreasing it will make motion detection more sensitive.
|
||||
# The value should be between 1 and 255.
|
||||
@ -372,6 +412,15 @@ motion:
|
||||
# Optional: Delay when updating camera motion through MQTT from ON -> OFF (default: shown below).
|
||||
mqtt_off_delay: 30
|
||||
|
||||
# Optional: Notification Configuration
|
||||
# NOTE: Can be overridden at the camera level (except email)
|
||||
notifications:
|
||||
# Optional: Enable notification service (default: shown below)
|
||||
enabled: False
|
||||
# Optional: Email for push service to reach out to
|
||||
# NOTE: This is required to use notifications
|
||||
email: "admin@example.com"
|
||||
|
||||
# Optional: Record configuration
|
||||
# NOTE: Can be overridden at the camera level
|
||||
record:
|
||||
@ -386,9 +435,9 @@ record:
|
||||
sync_recordings: False
|
||||
# Optional: Retention settings for recording
|
||||
retain:
|
||||
# Optional: Number of days to retain recordings regardless of events (default: shown below)
|
||||
# NOTE: This should be set to 0 and retention should be defined in events section below
|
||||
# if you only want to retain recordings of events.
|
||||
# Optional: Number of days to retain recordings regardless of tracked objects (default: shown below)
|
||||
# NOTE: This should be set to 0 and retention should be defined in alerts and detections section below
|
||||
# if you only want to retain recordings of alerts and detections.
|
||||
days: 0
|
||||
# Optional: Mode for retention. Available options are: all, motion, and active_objects
|
||||
# all - save all recording segments regardless of activity
|
||||
@ -411,34 +460,48 @@ record:
|
||||
# Optional: Quality of recording preview (default: shown below).
|
||||
# Options are: very_low, low, medium, high, very_high
|
||||
quality: medium
|
||||
# Optional: Event recording settings
|
||||
events:
|
||||
# Optional: Number of seconds before the event to include (default: shown below)
|
||||
# Optional: alert recording settings
|
||||
alerts:
|
||||
# Optional: Number of seconds before the alert to include (default: shown below)
|
||||
pre_capture: 5
|
||||
# Optional: Number of seconds after the event to include (default: shown below)
|
||||
# Optional: Number of seconds after the alert to include (default: shown below)
|
||||
post_capture: 5
|
||||
# Optional: Objects to save recordings for. (default: all tracked objects)
|
||||
objects:
|
||||
- person
|
||||
# Optional: Retention settings for recordings of events
|
||||
# Optional: Retention settings for recordings of alerts
|
||||
retain:
|
||||
# Required: Default retention days (default: shown below)
|
||||
default: 10
|
||||
# Required: Retention days (default: shown below)
|
||||
days: 14
|
||||
# Optional: Mode for retention. (default: shown below)
|
||||
# all - save all recording segments for events regardless of activity
|
||||
# motion - save all recordings segments for events with any detected motion
|
||||
# active_objects - save all recording segments for event with active/moving objects
|
||||
# all - save all recording segments for alerts regardless of activity
|
||||
# motion - save all recordings segments for alerts with any detected motion
|
||||
# active_objects - save all recording segments for alerts with active/moving objects
|
||||
#
|
||||
# NOTE: If the retain mode for the camera is more restrictive than the mode configured
|
||||
# here, the segments will already be gone by the time this mode is applied.
|
||||
# For example, if the camera retain mode is "motion", the segments without motion are
|
||||
# never stored, so setting the mode to "all" here won't bring them back.
|
||||
mode: motion
|
||||
# Optional: detection recording settings
|
||||
detections:
|
||||
# Optional: Number of seconds before the detection to include (default: shown below)
|
||||
pre_capture: 5
|
||||
# Optional: Number of seconds after the detection to include (default: shown below)
|
||||
post_capture: 5
|
||||
# Optional: Retention settings for recordings of detections
|
||||
retain:
|
||||
# Required: Retention days (default: shown below)
|
||||
days: 14
|
||||
# Optional: Mode for retention. (default: shown below)
|
||||
# all - save all recording segments for detections regardless of activity
|
||||
# motion - save all recordings segments for detections with any detected motion
|
||||
# active_objects - save all recording segments for detections with active/moving objects
|
||||
#
|
||||
# NOTE: If the retain mode for the camera is more restrictive than the mode configured
|
||||
# here, the segments will already be gone by the time this mode is applied.
|
||||
# For example, if the camera retain mode is "motion", the segments without motion are
|
||||
# never stored, so setting the mode to "all" here won't bring them back.
|
||||
mode: motion
|
||||
# Optional: Per object retention days
|
||||
objects:
|
||||
person: 15
|
||||
|
||||
# Optional: Configuration for the jpg snapshots written to the clips directory for each event
|
||||
# Optional: Configuration for the jpg snapshots written to the clips directory for each tracked object
|
||||
# NOTE: Can be overridden at the camera level
|
||||
snapshots:
|
||||
# Optional: Enable writing jpg snapshot to /media/frigate/clips (default: shown below)
|
||||
@ -465,15 +528,80 @@ snapshots:
|
||||
# Optional: quality of the encoded jpeg, 0-100 (default: shown below)
|
||||
quality: 70
|
||||
|
||||
# Optional: Configuration for semantic search capability
|
||||
semantic_search:
|
||||
# Optional: Enable semantic search (default: shown below)
|
||||
enabled: False
|
||||
# Optional: Re-index embeddings database from historical tracked objects (default: shown below)
|
||||
reindex: False
|
||||
# Optional: Set the model size used for embeddings. (default: shown below)
|
||||
# NOTE: small model runs on CPU and large model runs on GPU
|
||||
model_size: "small"
|
||||
|
||||
# Optional: Configuration for face recognition capability
|
||||
face_recognition:
|
||||
# Optional: Enable semantic search (default: shown below)
|
||||
enabled: False
|
||||
# Optional: Set the model size used for embeddings. (default: shown below)
|
||||
# NOTE: small model runs on CPU and large model runs on GPU
|
||||
model_size: "small"
|
||||
|
||||
# Optional: Configuration for license plate recognition capability
|
||||
lpr:
|
||||
# Optional: Enable license plate recognition (default: shown below)
|
||||
enabled: False
|
||||
# Optional: License plate object confidence score required to begin running recognition (default: shown below)
|
||||
detection_threshold: 0.7
|
||||
# Optional: Minimum area of license plate to begin running recognition (default: shown below)
|
||||
min_area: 1000
|
||||
# Optional: Recognition confidence score required to add the plate to the object as a sub label (default: shown below)
|
||||
recognition_threshold: 0.9
|
||||
# Optional: Minimum number of characters a license plate must have to be added to the object as a sub label (default: shown below)
|
||||
min_plate_length: 4
|
||||
# Optional: Regular expression for the expected format of a license plate (default: shown below)
|
||||
format: None
|
||||
# Optional: Allow this number of missing/incorrect characters to still cause a detected plate to match a known plate
|
||||
match_distance: 1
|
||||
# Optional: Known plates to track (strings or regular expressions) (default: shown below)
|
||||
known_plates: {}
|
||||
|
||||
# Optional: Configuration for AI generated tracked object descriptions
|
||||
# NOTE: Semantic Search must be enabled for this to do anything.
|
||||
# WARNING: Depending on the provider, this will send thumbnails over the internet
|
||||
# to Google or OpenAI's LLMs to generate descriptions. It can be overridden at
|
||||
# the camera level (enabled: False) to enhance privacy for indoor cameras.
|
||||
genai:
|
||||
# Optional: Enable AI description generation (default: shown below)
|
||||
enabled: False
|
||||
# Required if enabled: Provider must be one of ollama, gemini, or openai
|
||||
provider: ollama
|
||||
# Required if provider is ollama. May also be used for an OpenAI API compatible backend with the openai provider.
|
||||
base_url: http://localhost::11434
|
||||
# Required if gemini or openai
|
||||
api_key: "{FRIGATE_GENAI_API_KEY}"
|
||||
# Optional: The default prompt for generating descriptions. Can use replacement
|
||||
# variables like "label", "sub_label", "camera" to make more dynamic. (default: shown below)
|
||||
prompt: "Describe the {label} in the sequence of images with as much detail as possible. Do not describe the background."
|
||||
# Optional: Object specific prompts to customize description results
|
||||
# Format: {label}: {prompt}
|
||||
object_prompts:
|
||||
person: "My special person prompt."
|
||||
|
||||
# Optional: Restream configuration
|
||||
# Uses https://github.com/AlexxIT/go2rtc (v1.9.2)
|
||||
# NOTE: The default go2rtc API port (1984) must be used,
|
||||
# changing this port for the integrated go2rtc instance is not supported.
|
||||
go2rtc:
|
||||
|
||||
# Optional: jsmpeg stream configuration for WebUI
|
||||
# Optional: Live stream configuration for WebUI.
|
||||
# NOTE: Can be overridden at the camera level
|
||||
live:
|
||||
# Optional: Set the name of the stream that should be used for live view
|
||||
# in frigate WebUI. (default: name of camera)
|
||||
stream_name: camera_name
|
||||
# Optional: Set the streams configured in go2rtc
|
||||
# that should be used for live view in frigate WebUI. (default: name of camera)
|
||||
# NOTE: In most cases this should be set at the camera level only.
|
||||
streams:
|
||||
main_stream: main_stream_name
|
||||
sub_stream: sub_stream_name
|
||||
# Optional: Set the height of the jsmpeg stream. (default: 720)
|
||||
# This must be less than or equal to the height of the detect stream. Lower resolutions
|
||||
# reduce bandwidth required for viewing the jsmpeg stream. Width is computed to match known aspect ratio.
|
||||
@ -558,7 +686,10 @@ cameras:
|
||||
front_steps:
|
||||
# Required: List of x,y coordinates to define the polygon of the zone.
|
||||
# NOTE: Presence in a zone is evaluated only based on the bottom center of the objects bounding box.
|
||||
coordinates: 0.284,0.997,0.389,0.869,0.410,0.745
|
||||
coordinates: 0.033,0.306,0.324,0.138,0.439,0.185,0.042,0.428
|
||||
# Optional: The real-world distances of a 4-sided zone used for zones with speed estimation enabled (default: none)
|
||||
# List distances in order of the zone points coordinates and use the unit system defined in the ui config
|
||||
distances: 10,15,12,11
|
||||
# Optional: Number of consecutive frames required for object to be considered present in the zone (default: shown below).
|
||||
inertia: 3
|
||||
# Optional: Number of seconds that an object must loiter to be considered in the zone (default: shown below)
|
||||
@ -605,6 +736,7 @@ cameras:
|
||||
# to enable PTZ controls.
|
||||
onvif:
|
||||
# Required: host of the camera being connected to.
|
||||
# NOTE: HTTP is assumed by default; HTTPS is supported if you specify the scheme, ex: "https://0.0.0.0".
|
||||
host: 0.0.0.0
|
||||
# Optional: ONVIF port for device (default: shown below).
|
||||
port: 8000
|
||||
@ -613,8 +745,10 @@ cameras:
|
||||
user: admin
|
||||
# Optional: password for login.
|
||||
password: admin
|
||||
# Optional: Ignores time synchronization mismatches between the camera and the server during authentication.
|
||||
# Using NTP on both ends is recommended and this should only be set to True in a "safe" environment due to the security risk it represents.
|
||||
# Optional: Skip TLS verification from the ONVIF server (default: shown below)
|
||||
tls_insecure: False
|
||||
# Optional: Ignores time synchronization mismatches between the camera and the server during authentication.
|
||||
# Using NTP on both ends is recommended and this should only be set to True in a "safe" environment due to the security risk it represents.
|
||||
ignore_time_mismatch: False
|
||||
# Optional: PTZ camera object autotracking. Keeps a moving object in
|
||||
# the center of the frame by automatically moving the PTZ camera.
|
||||
@ -657,6 +791,28 @@ cameras:
|
||||
# By default the cameras are sorted alphabetically.
|
||||
order: 0
|
||||
|
||||
# Optional: Configuration for AI generated tracked object descriptions
|
||||
genai:
|
||||
# Optional: Enable AI description generation (default: shown below)
|
||||
enabled: False
|
||||
# Optional: Use the object snapshot instead of thumbnails for description generation (default: shown below)
|
||||
use_snapshot: False
|
||||
# Optional: The default prompt for generating descriptions. Can use replacement
|
||||
# variables like "label", "sub_label", "camera" to make more dynamic. (default: shown below)
|
||||
prompt: "Describe the {label} in the sequence of images with as much detail as possible. Do not describe the background."
|
||||
# Optional: Object specific prompts to customize description results
|
||||
# Format: {label}: {prompt}
|
||||
object_prompts:
|
||||
person: "My special person prompt."
|
||||
# Optional: objects to generate descriptions for (default: all objects that are tracked)
|
||||
objects:
|
||||
- person
|
||||
- cat
|
||||
# Optional: Restrict generation to objects that entered any of the listed zones (default: none, all zones qualify)
|
||||
required_zones: []
|
||||
# Optional: Save thumbnails sent to generative AI for review/debugging purposes (default: shown below)
|
||||
debug_save_thumbnails: False
|
||||
|
||||
# Optional
|
||||
ui:
|
||||
# Optional: Set a timezone to use in the UI (default: use browser local time)
|
||||
@ -684,6 +840,9 @@ ui:
|
||||
# https://www.gnu.org/software/libc/manual/html_node/Formatting-Calendar-Time.html
|
||||
# possible values are shown above (default: not set)
|
||||
strftime_fmt: "%Y/%m/%d %H:%M"
|
||||
# Optional: Set the unit system to either "imperial" or "metric" (default: metric)
|
||||
# Used in the UI and in MQTT topics
|
||||
unit_system: metric
|
||||
|
||||
# Optional: Telemetry configuration
|
||||
telemetry:
|
||||
@ -697,11 +856,13 @@ telemetry:
|
||||
- lo
|
||||
# Optional: Configure system stats
|
||||
stats:
|
||||
# Enable AMD GPU stats (default: shown below)
|
||||
# Optional: Enable AMD GPU stats (default: shown below)
|
||||
amd_gpu_stats: True
|
||||
# Enable Intel GPU stats (default: shown below)
|
||||
# Optional: Enable Intel GPU stats (default: shown below)
|
||||
intel_gpu_stats: True
|
||||
# Enable network bandwidth stats monitoring for camera ffmpeg processes, go2rtc, and object detectors. (default: shown below)
|
||||
# Optional: Treat GPU as SR-IOV to fix GPU stats (default: shown below)
|
||||
sriov: False
|
||||
# Optional: Enable network bandwidth stats monitoring for camera ffmpeg processes, go2rtc, and object detectors. (default: shown below)
|
||||
# NOTE: The container must either be privileged or have cap_net_admin, cap_net_raw capabilities enabled.
|
||||
network_bandwidth: False
|
||||
# Optional: Enable the latest version outbound check (default: shown below)
|
||||
@ -719,7 +880,7 @@ camera_groups:
|
||||
- side_cam
|
||||
- front_doorbell_cam
|
||||
# Required: icon used for group
|
||||
icon: car
|
||||
icon: LuCar
|
||||
# Required: index of this group
|
||||
order: 0
|
||||
```
|
||||
|