mirror of
https://github.com/blakeblackshear/frigate.git
synced 2024-11-23 09:26:32 -06:00
548 lines
22 KiB
Python
548 lines
22 KiB
Python
import os
|
|
import cv2
|
|
import imutils
|
|
import time
|
|
import datetime
|
|
import ctypes
|
|
import logging
|
|
import multiprocessing as mp
|
|
import threading
|
|
import json
|
|
from contextlib import closing
|
|
import numpy as np
|
|
import tensorflow as tf
|
|
from object_detection.utils import label_map_util
|
|
from object_detection.utils import visualization_utils as vis_util
|
|
from flask import Flask, Response, make_response
|
|
import paho.mqtt.client as mqtt
|
|
|
|
RTSP_URL = os.getenv('RTSP_URL')
|
|
|
|
# Path to frozen detection graph. This is the actual model that is used for the object detection.
|
|
PATH_TO_CKPT = '/frozen_inference_graph.pb'
|
|
|
|
# List of the strings that is used to add correct label for each box.
|
|
PATH_TO_LABELS = '/label_map.pbtext'
|
|
|
|
MQTT_HOST = os.getenv('MQTT_HOST')
|
|
MQTT_TOPIC_PREFIX = os.getenv('MQTT_TOPIC_PREFIX')
|
|
MQTT_OBJECT_CLASSES = os.getenv('MQTT_OBJECT_CLASSES')
|
|
|
|
# TODO: make dynamic?
|
|
NUM_CLASSES = 90
|
|
|
|
# REGIONS = "350,0,300,50:400,350,250,50:400,750,250,50"
|
|
# REGIONS = "400,350,250,50"
|
|
REGIONS = os.getenv('REGIONS')
|
|
|
|
DETECTED_OBJECTS = []
|
|
|
|
# Loading label map
|
|
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
|
|
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES,
|
|
use_display_name=True)
|
|
category_index = label_map_util.create_category_index(categories)
|
|
|
|
def detect_objects(cropped_frame, sess, detection_graph, region_size, region_x_offset, region_y_offset, debug):
|
|
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
|
|
image_np_expanded = np.expand_dims(cropped_frame, axis=0)
|
|
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
|
|
|
|
# Each box represents a part of the image where a particular object was detected.
|
|
boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
|
|
|
|
# Each score represent how level of confidence for each of the objects.
|
|
# Score is shown on the result image, together with the class label.
|
|
scores = detection_graph.get_tensor_by_name('detection_scores:0')
|
|
classes = detection_graph.get_tensor_by_name('detection_classes:0')
|
|
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
|
|
|
|
# Actual detection.
|
|
(boxes, scores, classes, num_detections) = sess.run(
|
|
[boxes, scores, classes, num_detections],
|
|
feed_dict={image_tensor: image_np_expanded})
|
|
|
|
if debug:
|
|
if len([value for index,value in enumerate(classes[0]) if str(category_index.get(value).get('name')) == 'person' and scores[0,index] > 0.5]) > 0:
|
|
vis_util.visualize_boxes_and_labels_on_image_array(
|
|
cropped_frame,
|
|
np.squeeze(boxes),
|
|
np.squeeze(classes).astype(np.int32),
|
|
np.squeeze(scores),
|
|
category_index,
|
|
use_normalized_coordinates=True,
|
|
line_thickness=4)
|
|
cv2.imwrite("/lab/debug/obj-{}-{}-{}.jpg".format(region_x_offset, region_y_offset, datetime.datetime.now().timestamp()), cropped_frame)
|
|
|
|
|
|
# build an array of detected objects
|
|
objects = []
|
|
for index, value in enumerate(classes[0]):
|
|
score = scores[0, index]
|
|
if score > 0.5:
|
|
box = boxes[0, index].tolist()
|
|
box[0] = (box[0] * region_size) + region_y_offset
|
|
box[1] = (box[1] * region_size) + region_x_offset
|
|
box[2] = (box[2] * region_size) + region_y_offset
|
|
box[3] = (box[3] * region_size) + region_x_offset
|
|
objects += [value, scores[0, index]] + box
|
|
# only get the first 10 objects
|
|
if len(objects) == 60:
|
|
break
|
|
|
|
return objects
|
|
|
|
class ObjectParser(threading.Thread):
|
|
def __init__(self, objects_changed, objects_parsed, object_arrays):
|
|
threading.Thread.__init__(self)
|
|
self._objects_changed = objects_changed
|
|
self._objects_parsed = objects_parsed
|
|
self._object_arrays = object_arrays
|
|
|
|
def run(self):
|
|
global DETECTED_OBJECTS
|
|
while True:
|
|
detected_objects = []
|
|
# wait until object detection has run
|
|
# TODO: what if something else changed while I was processing???
|
|
with self._objects_changed:
|
|
self._objects_changed.wait()
|
|
|
|
for object_array in self._object_arrays:
|
|
object_index = 0
|
|
while(object_index < 60 and object_array[object_index] > 0):
|
|
object_class = object_array[object_index]
|
|
detected_objects.append({
|
|
'name': str(category_index.get(object_class).get('name')),
|
|
'score': object_array[object_index+1],
|
|
'ymin': int(object_array[object_index+2]),
|
|
'xmin': int(object_array[object_index+3]),
|
|
'ymax': int(object_array[object_index+4]),
|
|
'xmax': int(object_array[object_index+5])
|
|
})
|
|
object_index += 6
|
|
DETECTED_OBJECTS = detected_objects
|
|
# notify that objects were parsed
|
|
with self._objects_parsed:
|
|
self._objects_parsed.notify_all()
|
|
|
|
class MqttMotionPublisher(threading.Thread):
|
|
def __init__(self, client, topic_prefix, motion_changed, motion_flags):
|
|
threading.Thread.__init__(self)
|
|
self.client = client
|
|
self.topic_prefix = topic_prefix
|
|
self.motion_changed = motion_changed
|
|
self.motion_flags = motion_flags
|
|
|
|
def run(self):
|
|
last_sent_motion = ""
|
|
while True:
|
|
with self.motion_changed:
|
|
self.motion_changed.wait()
|
|
|
|
# send message for motion
|
|
motion_status = 'OFF'
|
|
if any(obj.is_set() for obj in self.motion_flags):
|
|
motion_status = 'ON'
|
|
|
|
if last_sent_motion != motion_status:
|
|
last_sent_motion = motion_status
|
|
self.client.publish(self.topic_prefix+'/motion', motion_status, retain=False)
|
|
|
|
class MqttObjectPublisher(threading.Thread):
|
|
def __init__(self, client, topic_prefix, objects_parsed, object_classes):
|
|
threading.Thread.__init__(self)
|
|
self.client = client
|
|
self.topic_prefix = topic_prefix
|
|
self.objects_parsed = objects_parsed
|
|
self.object_classes = object_classes
|
|
|
|
def run(self):
|
|
global DETECTED_OBJECTS
|
|
|
|
last_sent_payload = ""
|
|
while True:
|
|
|
|
# initialize the payload
|
|
payload = {}
|
|
for obj in self.object_classes:
|
|
payload[obj] = []
|
|
|
|
# wait until objects have been parsed
|
|
with self.objects_parsed:
|
|
self.objects_parsed.wait()
|
|
|
|
# loop over detected objects and populate
|
|
# the payload
|
|
detected_objects = DETECTED_OBJECTS.copy()
|
|
for obj in detected_objects:
|
|
if obj['name'] in self.object_classes:
|
|
payload[obj['name']].append(obj)
|
|
|
|
# send message for objects if different
|
|
new_payload = json.dumps(payload, sort_keys=True)
|
|
if new_payload != last_sent_payload:
|
|
last_sent_payload = new_payload
|
|
self.client.publish(self.topic_prefix+'/objects', new_payload, retain=False)
|
|
|
|
def main():
|
|
# Parse selected regions
|
|
regions = []
|
|
for region_string in REGIONS.split(':'):
|
|
region_parts = region_string.split(',')
|
|
region_mask_image = cv2.imread("/config/{}".format(region_parts[4]), cv2.IMREAD_GRAYSCALE)
|
|
region_mask = np.where(region_mask_image==[0])
|
|
regions.append({
|
|
'size': int(region_parts[0]),
|
|
'x_offset': int(region_parts[1]),
|
|
'y_offset': int(region_parts[2]),
|
|
'min_object_size': int(region_parts[3]),
|
|
'mask': region_mask,
|
|
# Event for motion detection signaling
|
|
'motion_detected': mp.Event(),
|
|
# create shared array for storing 10 detected objects
|
|
# note: this must be a double even though the value you are storing
|
|
# is a float. otherwise it stops updating the value in shared
|
|
# memory. probably something to do with the size of the memory block
|
|
'output_array': mp.Array(ctypes.c_double, 6*10)
|
|
})
|
|
# capture a single frame and check the frame shape so the correct array
|
|
# size can be allocated in memory
|
|
video = cv2.VideoCapture(RTSP_URL)
|
|
ret, frame = video.read()
|
|
if ret:
|
|
frame_shape = frame.shape
|
|
else:
|
|
print("Unable to capture video stream")
|
|
exit(1)
|
|
video.release()
|
|
|
|
# compute the flattened array length from the array shape
|
|
flat_array_length = frame_shape[0] * frame_shape[1] * frame_shape[2]
|
|
# create shared array for storing the full frame image data
|
|
shared_arr = mp.Array(ctypes.c_uint16, flat_array_length)
|
|
# create shared value for storing the frame_time
|
|
shared_frame_time = mp.Value('d', 0.0)
|
|
# Lock to control access to the frame while writing
|
|
frame_lock = mp.Lock()
|
|
# Condition for notifying that a new frame is ready
|
|
frame_ready = mp.Condition()
|
|
# Condition for notifying that motion status changed globally
|
|
motion_changed = mp.Condition()
|
|
# Condition for notifying that object detection ran
|
|
objects_changed = mp.Condition()
|
|
# Condition for notifying that objects were parsed
|
|
objects_parsed = mp.Condition()
|
|
# shape current frame so it can be treated as an image
|
|
frame_arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
|
|
|
capture_process = mp.Process(target=fetch_frames, args=(shared_arr,
|
|
shared_frame_time, frame_lock, frame_ready, frame_shape))
|
|
capture_process.daemon = True
|
|
|
|
detection_processes = []
|
|
motion_processes = []
|
|
for region in regions:
|
|
detection_process = mp.Process(target=process_frames, args=(shared_arr,
|
|
region['output_array'],
|
|
shared_frame_time,
|
|
frame_lock, frame_ready,
|
|
region['motion_detected'],
|
|
objects_changed,
|
|
frame_shape,
|
|
region['size'], region['x_offset'], region['y_offset'],
|
|
False))
|
|
detection_process.daemon = True
|
|
detection_processes.append(detection_process)
|
|
|
|
motion_process = mp.Process(target=detect_motion, args=(shared_arr,
|
|
shared_frame_time,
|
|
frame_lock, frame_ready,
|
|
region['motion_detected'],
|
|
motion_changed,
|
|
frame_shape,
|
|
region['size'], region['x_offset'], region['y_offset'],
|
|
region['min_object_size'], region['mask'],
|
|
True))
|
|
motion_process.daemon = True
|
|
motion_processes.append(motion_process)
|
|
|
|
object_parser = ObjectParser(objects_changed, objects_parsed, [region['output_array'] for region in regions])
|
|
object_parser.start()
|
|
|
|
client = mqtt.Client()
|
|
client.will_set(MQTT_TOPIC_PREFIX+'/available', payload='offline', qos=1, retain=True)
|
|
client.connect(MQTT_HOST, 1883, 60)
|
|
client.loop_start()
|
|
client.publish(MQTT_TOPIC_PREFIX+'/available', 'online', retain=True)
|
|
|
|
mqtt_publisher = MqttObjectPublisher(client, MQTT_TOPIC_PREFIX, objects_parsed,
|
|
MQTT_OBJECT_CLASSES.split(','))
|
|
mqtt_publisher.start()
|
|
|
|
mqtt_motion_publisher = MqttMotionPublisher(client, MQTT_TOPIC_PREFIX, motion_changed,
|
|
[region['motion_detected'] for region in regions])
|
|
mqtt_motion_publisher.start()
|
|
|
|
capture_process.start()
|
|
print("capture_process pid ", capture_process.pid)
|
|
for detection_process in detection_processes:
|
|
detection_process.start()
|
|
print("detection_process pid ", detection_process.pid)
|
|
for motion_process in motion_processes:
|
|
motion_process.start()
|
|
print("motion_process pid ", motion_process.pid)
|
|
|
|
app = Flask(__name__)
|
|
|
|
@app.route('/')
|
|
def index():
|
|
# return a multipart response
|
|
return Response(imagestream(),
|
|
mimetype='multipart/x-mixed-replace; boundary=frame')
|
|
def imagestream():
|
|
global DETECTED_OBJECTS
|
|
while True:
|
|
# max out at 5 FPS
|
|
time.sleep(0.2)
|
|
# make a copy of the current detected objects
|
|
detected_objects = DETECTED_OBJECTS.copy()
|
|
# lock and make a copy of the current frame
|
|
with frame_lock:
|
|
frame = frame_arr.copy()
|
|
# convert to RGB for drawing
|
|
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
|
# draw the bounding boxes on the screen
|
|
for obj in detected_objects:
|
|
vis_util.draw_bounding_box_on_image_array(frame,
|
|
obj['ymin'],
|
|
obj['xmin'],
|
|
obj['ymax'],
|
|
obj['xmax'],
|
|
color='red',
|
|
thickness=2,
|
|
display_str_list=["{}: {}%".format(obj['name'],int(obj['score']*100))],
|
|
use_normalized_coordinates=False)
|
|
|
|
for region in regions:
|
|
color = (255,255,255)
|
|
if region['motion_detected'].is_set():
|
|
color = (0,255,0)
|
|
cv2.rectangle(frame, (region['x_offset'], region['y_offset']),
|
|
(region['x_offset']+region['size'], region['y_offset']+region['size']),
|
|
color, 2)
|
|
|
|
# convert back to BGR
|
|
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
|
|
# encode the image into a jpg
|
|
ret, jpg = cv2.imencode('.jpg', frame)
|
|
yield (b'--frame\r\n'
|
|
b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n')
|
|
|
|
app.run(host='0.0.0.0', debug=False)
|
|
|
|
capture_process.join()
|
|
for detection_process in detection_processes:
|
|
detection_process.join()
|
|
for motion_process in motion_processes:
|
|
motion_process.join()
|
|
object_parser.join()
|
|
mqtt_publisher.join()
|
|
|
|
# convert shared memory array into numpy array
|
|
def tonumpyarray(mp_arr):
|
|
return np.frombuffer(mp_arr.get_obj(), dtype=np.uint16)
|
|
|
|
# fetch the frames as fast a possible, only decoding the frames when the
|
|
# detection_process has consumed the current frame
|
|
def fetch_frames(shared_arr, shared_frame_time, frame_lock, frame_ready, frame_shape):
|
|
# convert shared memory array into numpy and shape into image array
|
|
arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
|
|
|
# start the video capture
|
|
video = cv2.VideoCapture()
|
|
video.open(RTSP_URL)
|
|
# keep the buffer small so we minimize old data
|
|
video.set(cv2.CAP_PROP_BUFFERSIZE,1)
|
|
|
|
while True:
|
|
# check if the video stream is still open, and reopen if needed
|
|
if not video.isOpened():
|
|
success = video.open(RTSP_URL)
|
|
if not success:
|
|
time.sleep(1)
|
|
continue
|
|
# grab the frame, but dont decode it yet
|
|
ret = video.grab()
|
|
# snapshot the time the frame was grabbed
|
|
frame_time = datetime.datetime.now()
|
|
if ret:
|
|
# go ahead and decode the current frame
|
|
ret, frame = video.retrieve()
|
|
if ret:
|
|
# Lock access and update frame
|
|
with frame_lock:
|
|
arr[:] = frame
|
|
shared_frame_time.value = frame_time.timestamp()
|
|
# Notify with the condition that a new frame is ready
|
|
with frame_ready:
|
|
frame_ready.notify_all()
|
|
|
|
video.release()
|
|
|
|
# do the actual object detection
|
|
def process_frames(shared_arr, shared_output_arr, shared_frame_time, frame_lock, frame_ready,
|
|
motion_detected, objects_changed, frame_shape, region_size, region_x_offset, region_y_offset,
|
|
debug):
|
|
debug = True
|
|
# shape shared input array into frame for processing
|
|
arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
|
|
|
# Load a (frozen) Tensorflow model into memory before the processing loop
|
|
detection_graph = tf.Graph()
|
|
with detection_graph.as_default():
|
|
od_graph_def = tf.GraphDef()
|
|
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
|
|
serialized_graph = fid.read()
|
|
od_graph_def.ParseFromString(serialized_graph)
|
|
tf.import_graph_def(od_graph_def, name='')
|
|
sess = tf.Session(graph=detection_graph)
|
|
|
|
frame_time = 0.0
|
|
while True:
|
|
now = datetime.datetime.now().timestamp()
|
|
|
|
# wait until motion is detected
|
|
motion_detected.wait()
|
|
|
|
with frame_ready:
|
|
# if there isnt a frame ready for processing or it is old, wait for a signal
|
|
if shared_frame_time.value == frame_time or (now - shared_frame_time.value) > 0.5:
|
|
frame_ready.wait()
|
|
|
|
# make a copy of the cropped frame
|
|
with frame_lock:
|
|
cropped_frame = arr[region_y_offset:region_y_offset+region_size, region_x_offset:region_x_offset+region_size].copy()
|
|
frame_time = shared_frame_time.value
|
|
|
|
# convert to RGB
|
|
cropped_frame_rgb = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2RGB)
|
|
# do the object detection
|
|
objects = detect_objects(cropped_frame_rgb, sess, detection_graph, region_size, region_x_offset, region_y_offset, debug)
|
|
# copy the detected objects to the output array, filling the array when needed
|
|
shared_output_arr[:] = objects + [0.0] * (60-len(objects))
|
|
with objects_changed:
|
|
objects_changed.notify_all()
|
|
|
|
# do the actual motion detection
|
|
def detect_motion(shared_arr, shared_frame_time, frame_lock, frame_ready, motion_detected, motion_changed,
|
|
frame_shape, region_size, region_x_offset, region_y_offset, min_motion_area, mask, debug):
|
|
# shape shared input array into frame for processing
|
|
arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
|
|
|
avg_frame = None
|
|
avg_delta = None
|
|
frame_time = 0.0
|
|
motion_frames = 0
|
|
while True:
|
|
now = datetime.datetime.now().timestamp()
|
|
|
|
with frame_ready:
|
|
# if there isnt a frame ready for processing or it is old, wait for a signal
|
|
if shared_frame_time.value == frame_time or (now - shared_frame_time.value) > 0.5:
|
|
frame_ready.wait()
|
|
|
|
# lock and make a copy of the cropped frame
|
|
with frame_lock:
|
|
cropped_frame = arr[region_y_offset:region_y_offset+region_size, region_x_offset:region_x_offset+region_size].copy().astype('uint8')
|
|
frame_time = shared_frame_time.value
|
|
|
|
# convert to grayscale
|
|
gray = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2GRAY)
|
|
|
|
# apply image mask to remove areas from motion detection
|
|
gray[mask] = [255]
|
|
|
|
# apply gaussian blur
|
|
gray = cv2.GaussianBlur(gray, (21, 21), 0)
|
|
|
|
if avg_frame is None:
|
|
avg_frame = gray.copy().astype("float")
|
|
continue
|
|
|
|
# look at the delta from the avg_frame
|
|
frameDelta = cv2.absdiff(gray, cv2.convertScaleAbs(avg_frame))
|
|
|
|
if avg_delta is None:
|
|
avg_delta = frameDelta.copy().astype("float")
|
|
|
|
# compute the average delta over the past few frames
|
|
# the alpha value can be modified to configure how sensitive the motion detection is.
|
|
# higher values mean the current frame impacts the delta a lot, and a single raindrop may
|
|
# register as motion, too low and a fast moving person wont be detected as motion
|
|
# this also assumes that a person is in the same location across more than a single frame
|
|
cv2.accumulateWeighted(frameDelta, avg_delta, 0.2)
|
|
|
|
# compute the threshold image for the current frame
|
|
current_thresh = cv2.threshold(frameDelta, 25, 255, cv2.THRESH_BINARY)[1]
|
|
|
|
# black out everything in the avg_delta where there isnt motion in the current frame
|
|
avg_delta_image = cv2.convertScaleAbs(avg_delta)
|
|
avg_delta_image[np.where(current_thresh==[0])] = [0]
|
|
|
|
# then look for deltas above the threshold, but only in areas where there is a delta
|
|
# in the current frame. this prevents deltas from previous frames from being included
|
|
thresh = cv2.threshold(avg_delta_image, 25, 255, cv2.THRESH_BINARY)[1]
|
|
|
|
# dilate the thresholded image to fill in holes, then find contours
|
|
# on thresholded image
|
|
thresh = cv2.dilate(thresh, None, iterations=2)
|
|
cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
|
cnts = imutils.grab_contours(cnts)
|
|
|
|
# if there are no contours, there is no motion
|
|
if len(cnts) < 1:
|
|
motion_frames = 0
|
|
continue
|
|
|
|
motion_found = False
|
|
|
|
# loop over the contours
|
|
for c in cnts:
|
|
# if the contour is big enough, count it as motion
|
|
contour_area = cv2.contourArea(c)
|
|
if contour_area > min_motion_area:
|
|
motion_found = True
|
|
if debug:
|
|
cv2.drawContours(cropped_frame, [c], -1, (0, 255, 0), 2)
|
|
x, y, w, h = cv2.boundingRect(c)
|
|
cv2.putText(cropped_frame, str(contour_area), (x, y),
|
|
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 100, 0), 2)
|
|
else:
|
|
break
|
|
|
|
if motion_found:
|
|
motion_frames += 1
|
|
# if there have been enough consecutive motion frames, report motion
|
|
if motion_frames >= 3:
|
|
# only average in the current frame if the difference persists for at least 3 frames
|
|
cv2.accumulateWeighted(gray, avg_frame, 0.01)
|
|
motion_detected.set()
|
|
with motion_changed:
|
|
motion_changed.notify_all()
|
|
else:
|
|
# when no motion, just keep averaging the frames together
|
|
cv2.accumulateWeighted(gray, avg_frame, 0.01)
|
|
motion_frames = 0
|
|
if motion_detected.is_set():
|
|
motion_detected.clear()
|
|
with motion_changed:
|
|
motion_changed.notify_all()
|
|
|
|
if debug and motion_frames == 3:
|
|
cv2.imwrite("/lab/debug/motion-{}-{}-{}.jpg".format(region_x_offset, region_y_offset, datetime.datetime.now().timestamp()), cropped_frame)
|
|
cv2.imwrite("/lab/debug/avg_delta-{}-{}-{}.jpg".format(region_x_offset, region_y_offset, datetime.datetime.now().timestamp()), avg_delta_image)
|
|
|
|
if __name__ == '__main__':
|
|
mp.freeze_support()
|
|
main() |