frigate/detect_objects.py
2019-02-01 06:35:10 -06:00

229 lines
9.1 KiB
Python

import os
import cv2
import time
import datetime
import ctypes
import logging
import multiprocessing as mp
from contextlib import closing
import numpy as np
import tensorflow as tf
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as vis_util
from flask import Flask, Response, make_response
RTSP_URL = os.getenv('RTSP_URL')
# Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_CKPT = '/frozen_inference_graph.pb'
# List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = '/label_map.pbtext'
# TODO: make dynamic?
NUM_CLASSES = 90
# Loading label map
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES,
use_display_name=True)
category_index = label_map_util.create_category_index(categories)
def detect_objects(image_np, sess, detection_graph):
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
image_np_expanded = np.expand_dims(image_np, axis=0)
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
# Each box represents a part of the image where a particular object was detected.
boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
# Each score represent how level of confidence for each of the objects.
# Score is shown on the result image, together with the class label.
scores = detection_graph.get_tensor_by_name('detection_scores:0')
classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
# Actual detection.
(boxes, scores, classes, num_detections) = sess.run(
[boxes, scores, classes, num_detections],
feed_dict={image_tensor: image_np_expanded})
# build an array of detected objects
objects = []
for index, value in enumerate(classes[0]):
object_dict = {}
if scores[0, index] > 0.5:
object_dict[(category_index.get(value)).get('name').encode('utf8')] = \
scores[0, index]
objects.append(object_dict)
# draw boxes for detected objects on image
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=4)
return objects, image_np
def main():
# capture a single frame and check the frame shape so the correct array
# size can be allocated in memory
video = cv2.VideoCapture(RTSP_URL)
ret, frame = video.read()
if ret:
frame_shape = frame.shape
else:
print("Unable to capture video stream")
exit(1)
video.release()
# create shared value for storing the time the frame was captured
# note: this must be a double even though the value you are storing
# is a float. otherwise it stops updating the value in shared
# memory. probably something to do with the size of the memory block
shared_frame_time = mp.Value('d', 0.0)
# compute the flattened array length from the array shape
flat_array_length = frame_shape[0] * frame_shape[1] * frame_shape[2]
# create shared array for passing the image data from capture to detect_objects
shared_arr = mp.Array(ctypes.c_uint16, flat_array_length)
# create shared array for passing the image data from detect_objects to flask
shared_output_arr = mp.Array(ctypes.c_uint16, flat_array_length)
# create a numpy array with the image shape from the shared memory array
# this is used by flask to output an mjpeg stream
frame_output_arr = tonumpyarray(shared_output_arr).reshape(frame_shape)
capture_process = mp.Process(target=fetch_frames, args=(shared_arr, shared_frame_time, frame_shape))
capture_process.daemon = True
detection_process = mp.Process(target=process_frames, args=(shared_arr, shared_output_arr, shared_frame_time, frame_shape))
detection_process.daemon = True
capture_process.start()
print("capture_process pid ", capture_process.pid)
detection_process.start()
print("detection_process pid ", detection_process.pid)
app = Flask(__name__)
@app.route('/')
def index():
# return a multipart response
return Response(imagestream(),
mimetype='multipart/x-mixed-replace; boundary=frame')
def imagestream():
while True:
# max out at 5 FPS
time.sleep(0.2)
# convert back to BGR
frame_bgr = cv2.cvtColor(frame_output_arr, cv2.COLOR_RGB2BGR)
# encode the image into a jpg
ret, jpg = cv2.imencode('.jpg', frame_bgr)
yield (b'--frame\r\n'
b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n')
app.run(host='0.0.0.0', debug=False)
capture_process.join()
detection_process.join()
# convert shared memory array into numpy array
def tonumpyarray(mp_arr):
return np.frombuffer(mp_arr.get_obj(), dtype=np.uint16)
# fetch the frames as fast a possible, only decoding the frames when the
# detection_process has consumed the current frame
def fetch_frames(shared_arr, shared_frame_time, frame_shape):
# convert shared memory array into numpy and shape into image array
arr = tonumpyarray(shared_arr).reshape(frame_shape)
# start the video capture
video = cv2.VideoCapture(RTSP_URL)
# keep the buffer small so we minimize old data
video.set(cv2.CAP_PROP_BUFFERSIZE,1)
while True:
# grab the frame, but dont decode it yet
ret = video.grab()
# snapshot the time the frame was grabbed
frame_time = datetime.datetime.now()
if ret:
# if the detection_process is ready for the next frame decode it
# otherwise skip this frame and move onto the next one
if shared_frame_time.value == 0.0:
# go ahead and decode the current frame
ret, frame = video.retrieve()
if ret:
# copy the frame into the numpy array
arr[:] = frame
# signal to the detection_process by setting the shared_frame_time
shared_frame_time.value = frame_time.timestamp()
video.release()
# do the actual object detection
def process_frames(shared_arr, shared_output_arr, shared_frame_time, frame_shape):
# shape shared input array into frame for processing
arr = tonumpyarray(shared_arr).reshape(frame_shape)
# shape shared output array into frame so it can be copied into
output_arr = tonumpyarray(shared_output_arr).reshape(frame_shape)
# Load a (frozen) Tensorflow model into memory before the processing loop
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
sess = tf.Session(graph=detection_graph)
no_frames_available = -1
while True:
# if there isnt a frame ready for processing
if shared_frame_time.value == 0.0:
# save the first time there were no frames available
if no_frames_available == -1:
no_frames_available = datetime.datetime.now().timestamp()
# if there havent been any frames available in 30 seconds,
# sleep to avoid using so much cpu if the camera feed is down
if no_frames_available > 0 and (datetime.datetime.now().timestamp() - no_frames_available) > 30:
time.sleep(1)
print("sleeping because no frames have been available in a while")
else:
# rest a little bit to avoid maxing out the CPU
time.sleep(0.01)
continue
# we got a valid frame, so reset the timer
no_frames_available = -1
# if the frame is more than 0.5 second old, discard it
if (datetime.datetime.now().timestamp() - shared_frame_time.value) > 0.5:
# signal that we need a new frame
shared_frame_time.value = 0.0
# rest a little bit to avoid maxing out the CPU
time.sleep(0.01)
continue
# make a copy of the frame
frame = arr.copy()
frame_time = shared_frame_time.value
# signal that the frame has been used so a new one will be ready
shared_frame_time.value = 0.0
# convert to RGB
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# do the object detection
objects, frame_overlay = detect_objects(frame_rgb, sess, detection_graph)
# copy the output frame with the bounding boxes to the output array
output_arr[:] = frame_overlay
if(len(objects) > 0):
print(objects)
if __name__ == '__main__':
mp.freeze_support()
main()