frigate/process_clip.py
gtsiam e8763b3697
Removed usage of PyYAML for config parsing. (#13883)
* Ignore entire __pycache__ folder instead of individual *.pyc files

* Ignore .mypy_cache in git

* Rework config YAML parsing to use only ruamel.yaml

PyYAML silently overrides keys when encountering duplicates, but ruamel
raises and exception by default. Since we're already using it elsewhere,
dropping PyYAML is an easy choice to make.

* Added EnvString in config to slim down runtime_config()

* Added gitlens to devcontainer

* Automatically call FrigateConfig.runtime_config()

runtime_config needed to be called manually before. Now, it's been
removed, but the same code is run by a pydantic validator.

* Fix handling of missing -segment_time

* Removed type annotation on FrigateConfig's parse

I'd like to keep them, but then mypy complains about some fundamental
errors with how the pydantic model is structured. I'd like to fix it,
but I'd rather work towards moving some of this config to the database.
2024-09-22 10:56:57 -05:00

322 lines
9.8 KiB
Python

import csv
import json
import logging
import multiprocessing as mp
import os
import subprocess as sp
import sys
import click
import cv2
import numpy as np
sys.path.append("/workspace/frigate")
from frigate.config import FrigateConfig # noqa: E402
from frigate.motion import MotionDetector # noqa: E402
from frigate.object_detection import LocalObjectDetector # noqa: E402
from frigate.object_processing import CameraState # noqa: E402
from frigate.track.centroid_tracker import CentroidTracker # noqa: E402
from frigate.util import ( # noqa: E402
EventsPerSecond,
SharedMemoryFrameManager,
draw_box_with_label,
)
from frigate.video import ( # noqa: E402
capture_frames,
process_frames,
start_or_restart_ffmpeg,
)
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)
def get_frame_shape(source):
ffprobe_cmd = [
"ffprobe",
"-v",
"panic",
"-show_error",
"-show_streams",
"-of",
"json",
source,
]
p = sp.run(ffprobe_cmd, capture_output=True)
info = json.loads(p.stdout)
video_info = [s for s in info["streams"] if s["codec_type"] == "video"][0]
if video_info["height"] != 0 and video_info["width"] != 0:
return (video_info["height"], video_info["width"], 3)
# fallback to using opencv if ffprobe didn't succeed
video = cv2.VideoCapture(source)
ret, frame = video.read()
frame_shape = frame.shape
video.release()
return frame_shape
class ProcessClip:
def __init__(self, clip_path, frame_shape, config: FrigateConfig):
self.clip_path = clip_path
self.camera_name = "camera"
self.config = config
self.camera_config = self.config.cameras["camera"]
self.frame_shape = self.camera_config.frame_shape
self.ffmpeg_cmd = [
c["cmd"] for c in self.camera_config.ffmpeg_cmds if "detect" in c["roles"]
][0]
self.frame_manager = SharedMemoryFrameManager()
self.frame_queue = mp.Queue()
self.detected_objects_queue = mp.Queue()
self.camera_state = CameraState(self.camera_name, config, self.frame_manager)
def load_frames(self):
fps = EventsPerSecond()
skipped_fps = EventsPerSecond()
current_frame = mp.Value("d", 0.0)
frame_size = (
self.camera_config.frame_shape_yuv[0]
* self.camera_config.frame_shape_yuv[1]
)
ffmpeg_process = start_or_restart_ffmpeg(
self.ffmpeg_cmd, logger, sp.DEVNULL, frame_size
)
capture_frames(
ffmpeg_process,
self.camera_name,
self.camera_config.frame_shape_yuv,
self.frame_manager,
self.frame_queue,
fps,
skipped_fps,
current_frame,
)
ffmpeg_process.wait()
ffmpeg_process.communicate()
def process_frames(
self, object_detector, objects_to_track=["person"], object_filters={}
):
mask = np.zeros((self.frame_shape[0], self.frame_shape[1], 1), np.uint8)
mask[:] = 255
motion_detector = MotionDetector(self.frame_shape, self.camera_config.motion)
motion_detector.save_images = False
object_tracker = CentroidTracker(self.camera_config.detect)
process_info = {
"process_fps": mp.Value("d", 0.0),
"detection_fps": mp.Value("d", 0.0),
"detection_frame": mp.Value("d", 0.0),
}
detection_enabled = mp.Value("d", 1)
motion_enabled = mp.Value("d", True)
stop_event = mp.Event()
process_frames(
self.camera_name,
self.frame_queue,
self.frame_shape,
self.config.model,
self.camera_config.detect,
self.frame_manager,
motion_detector,
object_detector,
object_tracker,
self.detected_objects_queue,
process_info,
objects_to_track,
object_filters,
detection_enabled,
motion_enabled,
stop_event,
exit_on_empty=True,
)
def stats(self, debug_path=None):
total_regions = 0
total_motion_boxes = 0
object_ids = set()
total_frames = 0
while not self.detected_objects_queue.empty():
(
camera_name,
frame_time,
current_tracked_objects,
motion_boxes,
regions,
) = self.detected_objects_queue.get()
if debug_path:
self.save_debug_frame(
debug_path, frame_time, current_tracked_objects.values()
)
self.camera_state.update(
frame_time, current_tracked_objects, motion_boxes, regions
)
total_regions += len(regions)
total_motion_boxes += len(motion_boxes)
top_score = 0
for id, obj in self.camera_state.tracked_objects.items():
if not obj.false_positive:
object_ids.add(id)
if obj.top_score > top_score:
top_score = obj.top_score
total_frames += 1
self.frame_manager.delete(self.camera_state.previous_frame_id)
return {
"total_regions": total_regions,
"total_motion_boxes": total_motion_boxes,
"true_positive_objects": len(object_ids),
"total_frames": total_frames,
"top_score": top_score,
}
def save_debug_frame(self, debug_path, frame_time, tracked_objects):
current_frame = cv2.cvtColor(
self.frame_manager.get(
f"{self.camera_name}{frame_time}", self.camera_config.frame_shape_yuv
),
cv2.COLOR_YUV2BGR_I420,
)
# draw the bounding boxes on the frame
for obj in tracked_objects:
thickness = 2
color = (0, 0, 175)
if obj["frame_time"] != frame_time:
thickness = 1
color = (255, 0, 0)
else:
color = (255, 255, 0)
# draw the bounding boxes on the frame
box = obj["box"]
draw_box_with_label(
current_frame,
box[0],
box[1],
box[2],
box[3],
obj["id"],
f"{int(obj['score']*100)}% {int(obj['area'])}",
thickness=thickness,
color=color,
)
# draw the regions on the frame
region = obj["region"]
draw_box_with_label(
current_frame,
region[0],
region[1],
region[2],
region[3],
"region",
"",
thickness=1,
color=(0, 255, 0),
)
cv2.imwrite(
f"{os.path.join(debug_path, os.path.basename(self.clip_path))}.{int(frame_time*1000000)}.jpg",
current_frame,
)
@click.command()
@click.option("-p", "--path", required=True, help="Path to clip or directory to test.")
@click.option("-l", "--label", default="person", help="Label name to detect.")
@click.option("-o", "--output", default=None, help="File to save csv of data")
@click.option("--debug-path", default=None, help="Path to output frames for debugging.")
def process(path, label, output, debug_path):
clips = []
if os.path.isdir(path):
files = os.listdir(path)
files.sort()
clips = [os.path.join(path, file) for file in files]
elif os.path.isfile(path):
clips.append(path)
json_config = {
"mqtt": {"enabled": False},
"detectors": {"coral": {"type": "edgetpu", "device": "usb"}},
"cameras": {
"camera": {
"ffmpeg": {
"inputs": [
{
"path": "path.mp4",
"global_args": "-hide_banner",
"input_args": "-loglevel info",
"roles": ["detect"],
}
]
},
"record": {"enabled": False},
}
},
}
object_detector = LocalObjectDetector(labels="/labelmap.txt")
results = []
for c in clips:
logger.info(c)
frame_shape = get_frame_shape(c)
json_config["cameras"]["camera"]["detect"] = {
"height": frame_shape[0],
"width": frame_shape[1],
}
json_config["cameras"]["camera"]["ffmpeg"]["inputs"][0]["path"] = c
frigate_config = FrigateConfig(**json_config)
process_clip = ProcessClip(c, frame_shape, frigate_config)
process_clip.load_frames()
process_clip.process_frames(object_detector, objects_to_track=[label])
results.append((c, process_clip.stats(debug_path)))
positive_count = sum(
1 for result in results if result[1]["true_positive_objects"] > 0
)
print(
f"Objects were detected in {positive_count}/{len(results)}({positive_count/len(results)*100:.2f}%) clip(s)."
)
if output:
# now we will open a file for writing
data_file = open(output, "w")
# create the csv writer object
csv_writer = csv.writer(data_file)
# Counter variable used for writing
# headers to the CSV file
count = 0
for result in results:
if count == 0:
# Writing headers of CSV file
header = ["file"] + list(result[1].keys())
csv_writer.writerow(header)
count += 1
# Writing data of CSV file
csv_writer.writerow([result[0]] + list(result[1].values()))
data_file.close()
if __name__ == "__main__":
process()