frigate/benchmark.py
gtsiam c0bd3b362c
Custom classes for Process and Metrics (#13950)
* Subclass Process for audio_process

* Introduce custom mp.Process subclass

In preparation to switch the multiprocessing startup method away from
"fork", we cannot rely on os.fork cloning the log state at fork time.
Instead, we have to set up logging before we run the business logic of
each process.

* Make camera_metrics into a class

* Make ptz_metrics into a class

* Fixed PtzMotionEstimator.ptz_metrics type annotation

* Removed pointless variables

* Do not start audio processor when no audio cameras are configured
2024-09-27 07:53:23 -05:00

110 lines
3.1 KiB
Python
Executable File

import datetime
import multiprocessing as mp
from statistics import mean
import numpy as np
import frigate.util as util
from frigate.config import DetectorTypeEnum
from frigate.object_detection import (
ObjectDetectProcess,
RemoteObjectDetector,
load_labels,
)
my_frame = np.expand_dims(np.full((300, 300, 3), 1, np.uint8), axis=0)
labels = load_labels("/labelmap.txt")
######
# Minimal same process runner
######
# object_detector = LocalObjectDetector()
# tensor_input = np.expand_dims(np.full((300,300,3), 0, np.uint8), axis=0)
# start = datetime.datetime.now().timestamp()
# frame_times = []
# for x in range(0, 1000):
# start_frame = datetime.datetime.now().timestamp()
# tensor_input[:] = my_frame
# detections = object_detector.detect_raw(tensor_input)
# parsed_detections = []
# for d in detections:
# if d[1] < 0.4:
# break
# parsed_detections.append((
# labels[int(d[0])],
# float(d[1]),
# (d[2], d[3], d[4], d[5])
# ))
# frame_times.append(datetime.datetime.now().timestamp()-start_frame)
# duration = datetime.datetime.now().timestamp()-start
# print(f"Processed for {duration:.2f} seconds.")
# print(f"Average frame processing time: {mean(frame_times)*1000:.2f}ms")
def start(id, num_detections, detection_queue, event):
object_detector = RemoteObjectDetector(
str(id), "/labelmap.txt", detection_queue, event
)
start = datetime.datetime.now().timestamp()
frame_times = []
for x in range(0, num_detections):
start_frame = datetime.datetime.now().timestamp()
object_detector.detect(my_frame)
frame_times.append(datetime.datetime.now().timestamp() - start_frame)
duration = datetime.datetime.now().timestamp() - start
object_detector.cleanup()
print(f"{id} - Processed for {duration:.2f} seconds.")
print(f"{id} - FPS: {object_detector.fps.eps():.2f}")
print(f"{id} - Average frame processing time: {mean(frame_times)*1000:.2f}ms")
######
# Separate process runner
######
# event = mp.Event()
# detection_queue = mp.Queue()
# edgetpu_process = EdgeTPUProcess(detection_queue, {'1': event}, 'usb:0')
# start(1, 1000, edgetpu_process.detection_queue, event)
# print(f"Average raw inference speed: {edgetpu_process.avg_inference_speed.value*1000:.2f}ms")
####
# Multiple camera processes
####
camera_processes = []
events = {}
for x in range(0, 10):
events[str(x)] = mp.Event()
detection_queue = mp.Queue()
edgetpu_process_1 = ObjectDetectProcess(
detection_queue, events, DetectorTypeEnum.edgetpu, "usb:0"
)
edgetpu_process_2 = ObjectDetectProcess(
detection_queue, events, DetectorTypeEnum.edgetpu, "usb:1"
)
for x in range(0, 10):
camera_process = util.Process(
target=start, args=(x, 300, detection_queue, events[str(x)])
)
camera_process.daemon = True
camera_processes.append(camera_process)
start_time = datetime.datetime.now().timestamp()
for p in camera_processes:
p.start()
for p in camera_processes:
p.join()
duration = datetime.datetime.now().timestamp() - start_time
print(f"Total - Processed for {duration:.2f} seconds.")