2008-09-15 19:51:01 -05:00
|
|
|
# Authors: Rob Crittenden <rcritten@redhat.com>
|
|
|
|
#
|
|
|
|
# Copyright (C) 2008 Red Hat
|
|
|
|
# see file 'COPYING' for use and warranty information
|
|
|
|
#
|
2010-12-09 06:59:11 -06:00
|
|
|
# This program is free software; you can redistribute it and/or modify
|
|
|
|
# it under the terms of the GNU General Public License as published by
|
|
|
|
# the Free Software Foundation, either version 3 of the License, or
|
|
|
|
# (at your option) any later version.
|
2008-09-15 19:51:01 -05:00
|
|
|
#
|
|
|
|
# This program is distributed in the hope that it will be useful,
|
|
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
# GNU General Public License for more details.
|
|
|
|
#
|
|
|
|
# You should have received a copy of the GNU General Public License
|
2010-12-09 06:59:11 -06:00
|
|
|
# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
2008-09-15 19:51:01 -05:00
|
|
|
#
|
|
|
|
|
|
|
|
# Documentation can be found at http://freeipa.org/page/LdapUpdate
|
|
|
|
|
|
|
|
# TODO
|
|
|
|
# save undo files?
|
|
|
|
|
2015-05-05 08:12:12 -05:00
|
|
|
import base64
|
2008-09-15 19:51:01 -05:00
|
|
|
import sys
|
2012-07-24 04:07:23 -05:00
|
|
|
import uuid
|
2008-09-15 19:51:01 -05:00
|
|
|
import platform
|
|
|
|
import time
|
|
|
|
import os
|
2010-05-27 10:58:31 -05:00
|
|
|
import pwd
|
2008-09-15 19:51:01 -05:00
|
|
|
import fnmatch
|
2013-01-10 05:14:15 -06:00
|
|
|
|
|
|
|
import ldap
|
2015-10-14 08:02:51 -05:00
|
|
|
import six
|
2013-01-10 05:14:15 -06:00
|
|
|
|
|
|
|
from ipaserver.install import installutils
|
2013-01-31 05:59:35 -06:00
|
|
|
from ipapython import ipautil, ipaldap
|
2013-01-10 05:14:15 -06:00
|
|
|
from ipalib import errors
|
2015-03-18 09:46:00 -05:00
|
|
|
from ipalib import api, create_api
|
2015-05-14 03:49:55 -05:00
|
|
|
from ipalib import constants
|
2014-05-29 07:47:17 -05:00
|
|
|
from ipaplatform.paths import paths
|
2015-03-23 07:00:49 -05:00
|
|
|
from ipaplatform import services
|
2013-01-10 05:14:15 -06:00
|
|
|
from ipapython.dn import DN
|
2015-12-16 12:04:20 -06:00
|
|
|
from ipapython.ipa_log_manager import log_mgr
|
2008-09-15 19:51:01 -05:00
|
|
|
|
2015-10-14 08:02:51 -05:00
|
|
|
if six.PY3:
|
|
|
|
unicode = str
|
|
|
|
|
2014-05-29 07:47:17 -05:00
|
|
|
UPDATES_DIR=paths.UPDATES_DIR
|
2015-11-18 03:31:05 -06:00
|
|
|
UPDATE_SEARCH_TIME_LIMIT = 30 # seconds
|
2014-05-29 07:47:17 -05:00
|
|
|
|
2013-01-10 08:50:22 -06:00
|
|
|
|
2013-04-25 08:14:34 -05:00
|
|
|
def connect(ldapi=False, realm=None, fqdn=None, dm_password=None, pw_name=None):
|
|
|
|
"""Create a connection for updates"""
|
|
|
|
if ldapi:
|
2013-12-10 04:56:35 -06:00
|
|
|
conn = ipaldap.IPAdmin(ldapi=True, realm=realm, decode_attrs=False)
|
2013-04-25 08:14:34 -05:00
|
|
|
else:
|
2013-12-10 04:56:35 -06:00
|
|
|
conn = ipaldap.IPAdmin(fqdn, ldapi=False, realm=realm, decode_attrs=False)
|
2013-04-25 08:14:34 -05:00
|
|
|
try:
|
|
|
|
if dm_password:
|
|
|
|
conn.do_simple_bind(binddn=DN(('cn', 'directory manager')),
|
|
|
|
bindpw=dm_password)
|
|
|
|
elif os.getegid() == 0:
|
|
|
|
try:
|
|
|
|
# autobind
|
|
|
|
conn.do_external_bind(pw_name)
|
|
|
|
except errors.NotFound:
|
|
|
|
# Fall back
|
|
|
|
conn.do_sasl_gssapi_bind()
|
|
|
|
else:
|
|
|
|
conn.do_sasl_gssapi_bind()
|
|
|
|
except (ldap.CONNECT_ERROR, ldap.SERVER_DOWN):
|
|
|
|
raise RuntimeError("Unable to connect to LDAP server %s" % fqdn)
|
|
|
|
except ldap.INVALID_CREDENTIALS:
|
|
|
|
raise RuntimeError(
|
|
|
|
"The password provided is incorrect for LDAP server %s" % fqdn)
|
2015-07-30 09:49:29 -05:00
|
|
|
except ldap.LOCAL_ERROR as e:
|
2013-04-25 08:14:34 -05:00
|
|
|
raise RuntimeError('%s' % e.args[0].get('info', '').strip())
|
|
|
|
return conn
|
|
|
|
|
|
|
|
|
2012-05-31 07:34:09 -05:00
|
|
|
class BadSyntax(installutils.ScriptError):
|
2008-09-15 19:51:01 -05:00
|
|
|
def __init__(self, value):
|
|
|
|
self.value = value
|
2016-09-06 04:46:58 -05:00
|
|
|
super(BadSyntax, self).__init__(
|
|
|
|
msg="LDAPUpdate: syntax error: \n %s" % value, rval=1)
|
2012-05-31 07:34:09 -05:00
|
|
|
|
2008-09-15 19:51:01 -05:00
|
|
|
def __str__(self):
|
|
|
|
return repr(self.value)
|
|
|
|
|
2013-07-12 10:28:43 -05:00
|
|
|
def safe_output(attr, values):
|
|
|
|
"""
|
|
|
|
Sanitizes values we do not want logged, like passwords.
|
|
|
|
|
|
|
|
This should be called in all debug statements that output values.
|
|
|
|
|
|
|
|
This list does not necessarily need to be exhaustive given the limited
|
|
|
|
scope of types of values that the updater manages.
|
|
|
|
|
|
|
|
This only supports lists, tuples and strings. If you pass a dict you may
|
|
|
|
get a string back.
|
|
|
|
"""
|
|
|
|
sensitive_attributes = ['krbmkey', 'userpassword', 'passwordhistory', 'krbprincipalkey', 'sambalmpassword', 'sambantpassword', 'ipanthash']
|
|
|
|
|
|
|
|
if attr.lower() in sensitive_attributes:
|
|
|
|
if type(values) in (tuple, list):
|
|
|
|
# try to still look a little like what is in LDAP
|
|
|
|
return ['XXXXXXX'] * len(values)
|
|
|
|
else:
|
|
|
|
return 'XXXXXXXX'
|
2015-05-05 08:12:12 -05:00
|
|
|
|
|
|
|
if values is None:
|
|
|
|
return
|
|
|
|
|
|
|
|
is_list = type(values) in (tuple, list)
|
|
|
|
|
|
|
|
if is_list and None in values:
|
2013-07-12 10:28:43 -05:00
|
|
|
return values
|
|
|
|
|
2015-05-05 08:12:12 -05:00
|
|
|
if not is_list:
|
|
|
|
values = [values]
|
|
|
|
|
|
|
|
try:
|
|
|
|
all(v.decode('ascii') for v in values)
|
|
|
|
except UnicodeDecodeError:
|
|
|
|
try:
|
|
|
|
values = [base64.b64encode(v) for v in values]
|
|
|
|
except TypeError:
|
|
|
|
pass
|
|
|
|
|
|
|
|
if not is_list:
|
|
|
|
values = values[0]
|
|
|
|
return values
|
|
|
|
|
|
|
|
|
2016-06-03 05:45:01 -05:00
|
|
|
class LDAPUpdate(object):
|
2012-11-15 20:38:26 -06:00
|
|
|
action_keywords = ["default", "add", "remove", "only", "onlyifexist", "deleteentry", "replace", "addifnew", "addifexist"]
|
Use DN objects instead of strings
* Convert every string specifying a DN into a DN object
* Every place a dn was manipulated in some fashion it was replaced by
the use of DN operators
* Add new DNParam parameter type for parameters which are DN's
* DN objects are used 100% of the time throughout the entire data
pipeline whenever something is logically a dn.
* Many classes now enforce DN usage for their attributes which are
dn's. This is implmented via ipautil.dn_attribute_property(). The
only permitted types for a class attribute specified to be a DN are
either None or a DN object.
* Require that every place a dn is used it must be a DN object.
This translates into lot of::
assert isinstance(dn, DN)
sprinkled through out the code. Maintaining these asserts is
valuable to preserve DN type enforcement. The asserts can be
disabled in production.
The goal of 100% DN usage 100% of the time has been realized, these
asserts are meant to preserve that.
The asserts also proved valuable in detecting functions which did
not obey their function signatures, such as the baseldap pre and
post callbacks.
* Moved ipalib.dn to ipapython.dn because DN class is shared with all
components, not just the server which uses ipalib.
* All API's now accept DN's natively, no need to convert to str (or
unicode).
* Removed ipalib.encoder and encode/decode decorators. Type conversion
is now explicitly performed in each IPASimpleLDAPObject method which
emulates a ldap.SimpleLDAPObject method.
* Entity & Entry classes now utilize DN's
* Removed __getattr__ in Entity & Entity clases. There were two
problems with it. It presented synthetic Python object attributes
based on the current LDAP data it contained. There is no way to
validate synthetic attributes using code checkers, you can't search
the code to find LDAP attribute accesses (because synthetic
attriutes look like Python attributes instead of LDAP data) and
error handling is circumscribed. Secondly __getattr__ was hiding
Python internal methods which broke class semantics.
* Replace use of methods inherited from ldap.SimpleLDAPObject via
IPAdmin class with IPAdmin methods. Directly using inherited methods
was causing us to bypass IPA logic. Mostly this meant replacing the
use of search_s() with getEntry() or getList(). Similarly direct
access of the LDAP data in classes using IPAdmin were replaced with
calls to getValue() or getValues().
* Objects returned by ldap2.find_entries() are now compatible with
either the python-ldap access methodology or the Entity/Entry access
methodology.
* All ldap operations now funnel through the common
IPASimpleLDAPObject giving us a single location where we interface
to python-ldap and perform conversions.
* The above 4 modifications means we've greatly reduced the
proliferation of multiple inconsistent ways to perform LDAP
operations. We are well on the way to having a single API in IPA for
doing LDAP (a long range goal).
* All certificate subject bases are now DN's
* DN objects were enhanced thusly:
- find, rfind, index, rindex, replace and insert methods were added
- AVA, RDN and DN classes were refactored in immutable and mutable
variants, the mutable variants are EditableAVA, EditableRDN and
EditableDN. By default we use the immutable variants preserving
important semantics. To edit a DN cast it to an EditableDN and
cast it back to DN when done editing. These issues are fully
described in other documentation.
- first_key_match was removed
- DN equalty comparison permits comparison to a basestring
* Fixed ldapupdate to work with DN's. This work included:
- Enhance test_updates.py to do more checking after applying
update. Add test for update_from_dict(). Convert code to use
unittest classes.
- Consolidated duplicate code.
- Moved code which should have been in the class into the class.
- Fix the handling of the 'deleteentry' update action. It's no longer
necessary to supply fake attributes to make it work. Detect case
where subsequent update applies a change to entry previously marked
for deletetion. General clean-up and simplification of the
'deleteentry' logic.
- Rewrote a couple of functions to be clearer and more Pythonic.
- Added documentation on the data structure being used.
- Simplfy the use of update_from_dict()
* Removed all usage of get_schema() which was being called prior to
accessing the .schema attribute of an object. If a class is using
internal lazy loading as an optimization it's not right to require
users of the interface to be aware of internal
optimization's. schema is now a property and when the schema
property is accessed it calls a private internal method to perform
the lazy loading.
* Added SchemaCache class to cache the schema's from individual
servers. This was done because of the observation we talk to
different LDAP servers, each of which may have it's own
schema. Previously we globally cached the schema from the first
server we connected to and returned that schema in all contexts. The
cache includes controls to invalidate it thus forcing a schema
refresh.
* Schema caching is now senstive to the run time context. During
install and upgrade the schema can change leading to errors due to
out-of-date cached schema. The schema cache is refreshed in these
contexts.
* We are aware of the LDAP syntax of all LDAP attributes. Every
attribute returned from an LDAP operation is passed through a
central table look-up based on it's LDAP syntax. The table key is
the LDAP syntax it's value is a Python callable that returns a
Python object matching the LDAP syntax. There are a handful of LDAP
attributes whose syntax is historically incorrect
(e.g. DistguishedNames that are defined as DirectoryStrings). The
table driven conversion mechanism is augmented with a table of
hard coded exceptions.
Currently only the following conversions occur via the table:
- dn's are converted to DN objects
- binary objects are converted to Python str objects (IPA
convention).
- everything else is converted to unicode using UTF-8 decoding (IPA
convention).
However, now that the table driven conversion mechanism is in place
it would be trivial to do things such as converting attributes
which have LDAP integer syntax into a Python integer, etc.
* Expected values in the unit tests which are a DN no longer need to
use lambda expressions to promote the returned value to a DN for
equality comparison. The return value is automatically promoted to
a DN. The lambda expressions have been removed making the code much
simpler and easier to read.
* Add class level logging to a number of classes which did not support
logging, less need for use of root_logger.
* Remove ipaserver/conn.py, it was unused.
* Consolidated duplicate code wherever it was found.
* Fixed many places that used string concatenation to form a new
string rather than string formatting operators. This is necessary
because string formatting converts it's arguments to a string prior
to building the result string. You can't concatenate a string and a
non-string.
* Simplify logic in rename_managed plugin. Use DN operators to edit
dn's.
* The live version of ipa-ldap-updater did not generate a log file.
The offline version did, now both do.
https://fedorahosted.org/freeipa/ticket/1670
https://fedorahosted.org/freeipa/ticket/1671
https://fedorahosted.org/freeipa/ticket/1672
https://fedorahosted.org/freeipa/ticket/1673
https://fedorahosted.org/freeipa/ticket/1674
https://fedorahosted.org/freeipa/ticket/1392
https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
|
|
|
|
2015-03-17 10:11:48 -05:00
|
|
|
def __init__(self, dm_password=None, sub_dict={},
|
2015-03-18 09:46:00 -05:00
|
|
|
online=True, ldapi=False):
|
Use DN objects instead of strings
* Convert every string specifying a DN into a DN object
* Every place a dn was manipulated in some fashion it was replaced by
the use of DN operators
* Add new DNParam parameter type for parameters which are DN's
* DN objects are used 100% of the time throughout the entire data
pipeline whenever something is logically a dn.
* Many classes now enforce DN usage for their attributes which are
dn's. This is implmented via ipautil.dn_attribute_property(). The
only permitted types for a class attribute specified to be a DN are
either None or a DN object.
* Require that every place a dn is used it must be a DN object.
This translates into lot of::
assert isinstance(dn, DN)
sprinkled through out the code. Maintaining these asserts is
valuable to preserve DN type enforcement. The asserts can be
disabled in production.
The goal of 100% DN usage 100% of the time has been realized, these
asserts are meant to preserve that.
The asserts also proved valuable in detecting functions which did
not obey their function signatures, such as the baseldap pre and
post callbacks.
* Moved ipalib.dn to ipapython.dn because DN class is shared with all
components, not just the server which uses ipalib.
* All API's now accept DN's natively, no need to convert to str (or
unicode).
* Removed ipalib.encoder and encode/decode decorators. Type conversion
is now explicitly performed in each IPASimpleLDAPObject method which
emulates a ldap.SimpleLDAPObject method.
* Entity & Entry classes now utilize DN's
* Removed __getattr__ in Entity & Entity clases. There were two
problems with it. It presented synthetic Python object attributes
based on the current LDAP data it contained. There is no way to
validate synthetic attributes using code checkers, you can't search
the code to find LDAP attribute accesses (because synthetic
attriutes look like Python attributes instead of LDAP data) and
error handling is circumscribed. Secondly __getattr__ was hiding
Python internal methods which broke class semantics.
* Replace use of methods inherited from ldap.SimpleLDAPObject via
IPAdmin class with IPAdmin methods. Directly using inherited methods
was causing us to bypass IPA logic. Mostly this meant replacing the
use of search_s() with getEntry() or getList(). Similarly direct
access of the LDAP data in classes using IPAdmin were replaced with
calls to getValue() or getValues().
* Objects returned by ldap2.find_entries() are now compatible with
either the python-ldap access methodology or the Entity/Entry access
methodology.
* All ldap operations now funnel through the common
IPASimpleLDAPObject giving us a single location where we interface
to python-ldap and perform conversions.
* The above 4 modifications means we've greatly reduced the
proliferation of multiple inconsistent ways to perform LDAP
operations. We are well on the way to having a single API in IPA for
doing LDAP (a long range goal).
* All certificate subject bases are now DN's
* DN objects were enhanced thusly:
- find, rfind, index, rindex, replace and insert methods were added
- AVA, RDN and DN classes were refactored in immutable and mutable
variants, the mutable variants are EditableAVA, EditableRDN and
EditableDN. By default we use the immutable variants preserving
important semantics. To edit a DN cast it to an EditableDN and
cast it back to DN when done editing. These issues are fully
described in other documentation.
- first_key_match was removed
- DN equalty comparison permits comparison to a basestring
* Fixed ldapupdate to work with DN's. This work included:
- Enhance test_updates.py to do more checking after applying
update. Add test for update_from_dict(). Convert code to use
unittest classes.
- Consolidated duplicate code.
- Moved code which should have been in the class into the class.
- Fix the handling of the 'deleteentry' update action. It's no longer
necessary to supply fake attributes to make it work. Detect case
where subsequent update applies a change to entry previously marked
for deletetion. General clean-up and simplification of the
'deleteentry' logic.
- Rewrote a couple of functions to be clearer and more Pythonic.
- Added documentation on the data structure being used.
- Simplfy the use of update_from_dict()
* Removed all usage of get_schema() which was being called prior to
accessing the .schema attribute of an object. If a class is using
internal lazy loading as an optimization it's not right to require
users of the interface to be aware of internal
optimization's. schema is now a property and when the schema
property is accessed it calls a private internal method to perform
the lazy loading.
* Added SchemaCache class to cache the schema's from individual
servers. This was done because of the observation we talk to
different LDAP servers, each of which may have it's own
schema. Previously we globally cached the schema from the first
server we connected to and returned that schema in all contexts. The
cache includes controls to invalidate it thus forcing a schema
refresh.
* Schema caching is now senstive to the run time context. During
install and upgrade the schema can change leading to errors due to
out-of-date cached schema. The schema cache is refreshed in these
contexts.
* We are aware of the LDAP syntax of all LDAP attributes. Every
attribute returned from an LDAP operation is passed through a
central table look-up based on it's LDAP syntax. The table key is
the LDAP syntax it's value is a Python callable that returns a
Python object matching the LDAP syntax. There are a handful of LDAP
attributes whose syntax is historically incorrect
(e.g. DistguishedNames that are defined as DirectoryStrings). The
table driven conversion mechanism is augmented with a table of
hard coded exceptions.
Currently only the following conversions occur via the table:
- dn's are converted to DN objects
- binary objects are converted to Python str objects (IPA
convention).
- everything else is converted to unicode using UTF-8 decoding (IPA
convention).
However, now that the table driven conversion mechanism is in place
it would be trivial to do things such as converting attributes
which have LDAP integer syntax into a Python integer, etc.
* Expected values in the unit tests which are a DN no longer need to
use lambda expressions to promote the returned value to a DN for
equality comparison. The return value is automatically promoted to
a DN. The lambda expressions have been removed making the code much
simpler and easier to read.
* Add class level logging to a number of classes which did not support
logging, less need for use of root_logger.
* Remove ipaserver/conn.py, it was unused.
* Consolidated duplicate code wherever it was found.
* Fixed many places that used string concatenation to form a new
string rather than string formatting operators. This is necessary
because string formatting converts it's arguments to a string prior
to building the result string. You can't concatenate a string and a
non-string.
* Simplify logic in rename_managed plugin. Use DN operators to edit
dn's.
* The live version of ipa-ldap-updater did not generate a log file.
The offline version did, now both do.
https://fedorahosted.org/freeipa/ticket/1670
https://fedorahosted.org/freeipa/ticket/1671
https://fedorahosted.org/freeipa/ticket/1672
https://fedorahosted.org/freeipa/ticket/1673
https://fedorahosted.org/freeipa/ticket/1674
https://fedorahosted.org/freeipa/ticket/1392
https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
|
|
|
'''
|
|
|
|
:parameters:
|
|
|
|
dm_password
|
|
|
|
Directory Manager password
|
|
|
|
sub_dict
|
|
|
|
substitution dictionary
|
|
|
|
online
|
|
|
|
Do an online LDAP update or use an experimental LDIF updater
|
|
|
|
ldapi
|
|
|
|
Bind using ldapi. This assumes autobind is enabled.
|
|
|
|
|
|
|
|
Data Structure Example:
|
|
|
|
-----------------------
|
|
|
|
|
|
|
|
dn_by_rdn_count = {
|
|
|
|
3: 'cn=config,dc=example,dc=com':
|
|
|
|
4: 'cn=bob,ou=people,dc=example,dc=com',
|
|
|
|
}
|
|
|
|
|
2015-03-06 08:14:17 -06:00
|
|
|
all_updates = [
|
Use DN objects instead of strings
* Convert every string specifying a DN into a DN object
* Every place a dn was manipulated in some fashion it was replaced by
the use of DN operators
* Add new DNParam parameter type for parameters which are DN's
* DN objects are used 100% of the time throughout the entire data
pipeline whenever something is logically a dn.
* Many classes now enforce DN usage for their attributes which are
dn's. This is implmented via ipautil.dn_attribute_property(). The
only permitted types for a class attribute specified to be a DN are
either None or a DN object.
* Require that every place a dn is used it must be a DN object.
This translates into lot of::
assert isinstance(dn, DN)
sprinkled through out the code. Maintaining these asserts is
valuable to preserve DN type enforcement. The asserts can be
disabled in production.
The goal of 100% DN usage 100% of the time has been realized, these
asserts are meant to preserve that.
The asserts also proved valuable in detecting functions which did
not obey their function signatures, such as the baseldap pre and
post callbacks.
* Moved ipalib.dn to ipapython.dn because DN class is shared with all
components, not just the server which uses ipalib.
* All API's now accept DN's natively, no need to convert to str (or
unicode).
* Removed ipalib.encoder and encode/decode decorators. Type conversion
is now explicitly performed in each IPASimpleLDAPObject method which
emulates a ldap.SimpleLDAPObject method.
* Entity & Entry classes now utilize DN's
* Removed __getattr__ in Entity & Entity clases. There were two
problems with it. It presented synthetic Python object attributes
based on the current LDAP data it contained. There is no way to
validate synthetic attributes using code checkers, you can't search
the code to find LDAP attribute accesses (because synthetic
attriutes look like Python attributes instead of LDAP data) and
error handling is circumscribed. Secondly __getattr__ was hiding
Python internal methods which broke class semantics.
* Replace use of methods inherited from ldap.SimpleLDAPObject via
IPAdmin class with IPAdmin methods. Directly using inherited methods
was causing us to bypass IPA logic. Mostly this meant replacing the
use of search_s() with getEntry() or getList(). Similarly direct
access of the LDAP data in classes using IPAdmin were replaced with
calls to getValue() or getValues().
* Objects returned by ldap2.find_entries() are now compatible with
either the python-ldap access methodology or the Entity/Entry access
methodology.
* All ldap operations now funnel through the common
IPASimpleLDAPObject giving us a single location where we interface
to python-ldap and perform conversions.
* The above 4 modifications means we've greatly reduced the
proliferation of multiple inconsistent ways to perform LDAP
operations. We are well on the way to having a single API in IPA for
doing LDAP (a long range goal).
* All certificate subject bases are now DN's
* DN objects were enhanced thusly:
- find, rfind, index, rindex, replace and insert methods were added
- AVA, RDN and DN classes were refactored in immutable and mutable
variants, the mutable variants are EditableAVA, EditableRDN and
EditableDN. By default we use the immutable variants preserving
important semantics. To edit a DN cast it to an EditableDN and
cast it back to DN when done editing. These issues are fully
described in other documentation.
- first_key_match was removed
- DN equalty comparison permits comparison to a basestring
* Fixed ldapupdate to work with DN's. This work included:
- Enhance test_updates.py to do more checking after applying
update. Add test for update_from_dict(). Convert code to use
unittest classes.
- Consolidated duplicate code.
- Moved code which should have been in the class into the class.
- Fix the handling of the 'deleteentry' update action. It's no longer
necessary to supply fake attributes to make it work. Detect case
where subsequent update applies a change to entry previously marked
for deletetion. General clean-up and simplification of the
'deleteentry' logic.
- Rewrote a couple of functions to be clearer and more Pythonic.
- Added documentation on the data structure being used.
- Simplfy the use of update_from_dict()
* Removed all usage of get_schema() which was being called prior to
accessing the .schema attribute of an object. If a class is using
internal lazy loading as an optimization it's not right to require
users of the interface to be aware of internal
optimization's. schema is now a property and when the schema
property is accessed it calls a private internal method to perform
the lazy loading.
* Added SchemaCache class to cache the schema's from individual
servers. This was done because of the observation we talk to
different LDAP servers, each of which may have it's own
schema. Previously we globally cached the schema from the first
server we connected to and returned that schema in all contexts. The
cache includes controls to invalidate it thus forcing a schema
refresh.
* Schema caching is now senstive to the run time context. During
install and upgrade the schema can change leading to errors due to
out-of-date cached schema. The schema cache is refreshed in these
contexts.
* We are aware of the LDAP syntax of all LDAP attributes. Every
attribute returned from an LDAP operation is passed through a
central table look-up based on it's LDAP syntax. The table key is
the LDAP syntax it's value is a Python callable that returns a
Python object matching the LDAP syntax. There are a handful of LDAP
attributes whose syntax is historically incorrect
(e.g. DistguishedNames that are defined as DirectoryStrings). The
table driven conversion mechanism is augmented with a table of
hard coded exceptions.
Currently only the following conversions occur via the table:
- dn's are converted to DN objects
- binary objects are converted to Python str objects (IPA
convention).
- everything else is converted to unicode using UTF-8 decoding (IPA
convention).
However, now that the table driven conversion mechanism is in place
it would be trivial to do things such as converting attributes
which have LDAP integer syntax into a Python integer, etc.
* Expected values in the unit tests which are a DN no longer need to
use lambda expressions to promote the returned value to a DN for
equality comparison. The return value is automatically promoted to
a DN. The lambda expressions have been removed making the code much
simpler and easier to read.
* Add class level logging to a number of classes which did not support
logging, less need for use of root_logger.
* Remove ipaserver/conn.py, it was unused.
* Consolidated duplicate code wherever it was found.
* Fixed many places that used string concatenation to form a new
string rather than string formatting operators. This is necessary
because string formatting converts it's arguments to a string prior
to building the result string. You can't concatenate a string and a
non-string.
* Simplify logic in rename_managed plugin. Use DN operators to edit
dn's.
* The live version of ipa-ldap-updater did not generate a log file.
The offline version did, now both do.
https://fedorahosted.org/freeipa/ticket/1670
https://fedorahosted.org/freeipa/ticket/1671
https://fedorahosted.org/freeipa/ticket/1672
https://fedorahosted.org/freeipa/ticket/1673
https://fedorahosted.org/freeipa/ticket/1674
https://fedorahosted.org/freeipa/ticket/1392
https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
|
|
|
{
|
|
|
|
'dn': 'cn=config,dc=example,dc=com',
|
2015-05-05 08:12:12 -05:00
|
|
|
'default': [
|
|
|
|
dict(attr='attr1', value='default1'),
|
|
|
|
],
|
|
|
|
'updates': [
|
|
|
|
dict(action='action', attr='attr1', value='value1'),
|
|
|
|
dict(action='replace', attr='attr2', value=['old', 'new']),
|
|
|
|
]
|
Use DN objects instead of strings
* Convert every string specifying a DN into a DN object
* Every place a dn was manipulated in some fashion it was replaced by
the use of DN operators
* Add new DNParam parameter type for parameters which are DN's
* DN objects are used 100% of the time throughout the entire data
pipeline whenever something is logically a dn.
* Many classes now enforce DN usage for their attributes which are
dn's. This is implmented via ipautil.dn_attribute_property(). The
only permitted types for a class attribute specified to be a DN are
either None or a DN object.
* Require that every place a dn is used it must be a DN object.
This translates into lot of::
assert isinstance(dn, DN)
sprinkled through out the code. Maintaining these asserts is
valuable to preserve DN type enforcement. The asserts can be
disabled in production.
The goal of 100% DN usage 100% of the time has been realized, these
asserts are meant to preserve that.
The asserts also proved valuable in detecting functions which did
not obey their function signatures, such as the baseldap pre and
post callbacks.
* Moved ipalib.dn to ipapython.dn because DN class is shared with all
components, not just the server which uses ipalib.
* All API's now accept DN's natively, no need to convert to str (or
unicode).
* Removed ipalib.encoder and encode/decode decorators. Type conversion
is now explicitly performed in each IPASimpleLDAPObject method which
emulates a ldap.SimpleLDAPObject method.
* Entity & Entry classes now utilize DN's
* Removed __getattr__ in Entity & Entity clases. There were two
problems with it. It presented synthetic Python object attributes
based on the current LDAP data it contained. There is no way to
validate synthetic attributes using code checkers, you can't search
the code to find LDAP attribute accesses (because synthetic
attriutes look like Python attributes instead of LDAP data) and
error handling is circumscribed. Secondly __getattr__ was hiding
Python internal methods which broke class semantics.
* Replace use of methods inherited from ldap.SimpleLDAPObject via
IPAdmin class with IPAdmin methods. Directly using inherited methods
was causing us to bypass IPA logic. Mostly this meant replacing the
use of search_s() with getEntry() or getList(). Similarly direct
access of the LDAP data in classes using IPAdmin were replaced with
calls to getValue() or getValues().
* Objects returned by ldap2.find_entries() are now compatible with
either the python-ldap access methodology or the Entity/Entry access
methodology.
* All ldap operations now funnel through the common
IPASimpleLDAPObject giving us a single location where we interface
to python-ldap and perform conversions.
* The above 4 modifications means we've greatly reduced the
proliferation of multiple inconsistent ways to perform LDAP
operations. We are well on the way to having a single API in IPA for
doing LDAP (a long range goal).
* All certificate subject bases are now DN's
* DN objects were enhanced thusly:
- find, rfind, index, rindex, replace and insert methods were added
- AVA, RDN and DN classes were refactored in immutable and mutable
variants, the mutable variants are EditableAVA, EditableRDN and
EditableDN. By default we use the immutable variants preserving
important semantics. To edit a DN cast it to an EditableDN and
cast it back to DN when done editing. These issues are fully
described in other documentation.
- first_key_match was removed
- DN equalty comparison permits comparison to a basestring
* Fixed ldapupdate to work with DN's. This work included:
- Enhance test_updates.py to do more checking after applying
update. Add test for update_from_dict(). Convert code to use
unittest classes.
- Consolidated duplicate code.
- Moved code which should have been in the class into the class.
- Fix the handling of the 'deleteentry' update action. It's no longer
necessary to supply fake attributes to make it work. Detect case
where subsequent update applies a change to entry previously marked
for deletetion. General clean-up and simplification of the
'deleteentry' logic.
- Rewrote a couple of functions to be clearer and more Pythonic.
- Added documentation on the data structure being used.
- Simplfy the use of update_from_dict()
* Removed all usage of get_schema() which was being called prior to
accessing the .schema attribute of an object. If a class is using
internal lazy loading as an optimization it's not right to require
users of the interface to be aware of internal
optimization's. schema is now a property and when the schema
property is accessed it calls a private internal method to perform
the lazy loading.
* Added SchemaCache class to cache the schema's from individual
servers. This was done because of the observation we talk to
different LDAP servers, each of which may have it's own
schema. Previously we globally cached the schema from the first
server we connected to and returned that schema in all contexts. The
cache includes controls to invalidate it thus forcing a schema
refresh.
* Schema caching is now senstive to the run time context. During
install and upgrade the schema can change leading to errors due to
out-of-date cached schema. The schema cache is refreshed in these
contexts.
* We are aware of the LDAP syntax of all LDAP attributes. Every
attribute returned from an LDAP operation is passed through a
central table look-up based on it's LDAP syntax. The table key is
the LDAP syntax it's value is a Python callable that returns a
Python object matching the LDAP syntax. There are a handful of LDAP
attributes whose syntax is historically incorrect
(e.g. DistguishedNames that are defined as DirectoryStrings). The
table driven conversion mechanism is augmented with a table of
hard coded exceptions.
Currently only the following conversions occur via the table:
- dn's are converted to DN objects
- binary objects are converted to Python str objects (IPA
convention).
- everything else is converted to unicode using UTF-8 decoding (IPA
convention).
However, now that the table driven conversion mechanism is in place
it would be trivial to do things such as converting attributes
which have LDAP integer syntax into a Python integer, etc.
* Expected values in the unit tests which are a DN no longer need to
use lambda expressions to promote the returned value to a DN for
equality comparison. The return value is automatically promoted to
a DN. The lambda expressions have been removed making the code much
simpler and easier to read.
* Add class level logging to a number of classes which did not support
logging, less need for use of root_logger.
* Remove ipaserver/conn.py, it was unused.
* Consolidated duplicate code wherever it was found.
* Fixed many places that used string concatenation to form a new
string rather than string formatting operators. This is necessary
because string formatting converts it's arguments to a string prior
to building the result string. You can't concatenate a string and a
non-string.
* Simplify logic in rename_managed plugin. Use DN operators to edit
dn's.
* The live version of ipa-ldap-updater did not generate a log file.
The offline version did, now both do.
https://fedorahosted.org/freeipa/ticket/1670
https://fedorahosted.org/freeipa/ticket/1671
https://fedorahosted.org/freeipa/ticket/1672
https://fedorahosted.org/freeipa/ticket/1673
https://fedorahosted.org/freeipa/ticket/1674
https://fedorahosted.org/freeipa/ticket/1392
https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
|
|
|
},
|
|
|
|
{
|
|
|
|
'dn': 'cn=bob,ou=people,dc=example,dc=com',
|
2015-05-05 08:12:12 -05:00
|
|
|
'default': [
|
|
|
|
dict(attr='attr3', value='default3'),
|
|
|
|
],
|
|
|
|
'updates': [
|
|
|
|
dict(action='action', attr='attr3', value='value3'),
|
|
|
|
dict(action='action', attr='attr4', value='value4'),
|
|
|
|
}
|
Use DN objects instead of strings
* Convert every string specifying a DN into a DN object
* Every place a dn was manipulated in some fashion it was replaced by
the use of DN operators
* Add new DNParam parameter type for parameters which are DN's
* DN objects are used 100% of the time throughout the entire data
pipeline whenever something is logically a dn.
* Many classes now enforce DN usage for their attributes which are
dn's. This is implmented via ipautil.dn_attribute_property(). The
only permitted types for a class attribute specified to be a DN are
either None or a DN object.
* Require that every place a dn is used it must be a DN object.
This translates into lot of::
assert isinstance(dn, DN)
sprinkled through out the code. Maintaining these asserts is
valuable to preserve DN type enforcement. The asserts can be
disabled in production.
The goal of 100% DN usage 100% of the time has been realized, these
asserts are meant to preserve that.
The asserts also proved valuable in detecting functions which did
not obey their function signatures, such as the baseldap pre and
post callbacks.
* Moved ipalib.dn to ipapython.dn because DN class is shared with all
components, not just the server which uses ipalib.
* All API's now accept DN's natively, no need to convert to str (or
unicode).
* Removed ipalib.encoder and encode/decode decorators. Type conversion
is now explicitly performed in each IPASimpleLDAPObject method which
emulates a ldap.SimpleLDAPObject method.
* Entity & Entry classes now utilize DN's
* Removed __getattr__ in Entity & Entity clases. There were two
problems with it. It presented synthetic Python object attributes
based on the current LDAP data it contained. There is no way to
validate synthetic attributes using code checkers, you can't search
the code to find LDAP attribute accesses (because synthetic
attriutes look like Python attributes instead of LDAP data) and
error handling is circumscribed. Secondly __getattr__ was hiding
Python internal methods which broke class semantics.
* Replace use of methods inherited from ldap.SimpleLDAPObject via
IPAdmin class with IPAdmin methods. Directly using inherited methods
was causing us to bypass IPA logic. Mostly this meant replacing the
use of search_s() with getEntry() or getList(). Similarly direct
access of the LDAP data in classes using IPAdmin were replaced with
calls to getValue() or getValues().
* Objects returned by ldap2.find_entries() are now compatible with
either the python-ldap access methodology or the Entity/Entry access
methodology.
* All ldap operations now funnel through the common
IPASimpleLDAPObject giving us a single location where we interface
to python-ldap and perform conversions.
* The above 4 modifications means we've greatly reduced the
proliferation of multiple inconsistent ways to perform LDAP
operations. We are well on the way to having a single API in IPA for
doing LDAP (a long range goal).
* All certificate subject bases are now DN's
* DN objects were enhanced thusly:
- find, rfind, index, rindex, replace and insert methods were added
- AVA, RDN and DN classes were refactored in immutable and mutable
variants, the mutable variants are EditableAVA, EditableRDN and
EditableDN. By default we use the immutable variants preserving
important semantics. To edit a DN cast it to an EditableDN and
cast it back to DN when done editing. These issues are fully
described in other documentation.
- first_key_match was removed
- DN equalty comparison permits comparison to a basestring
* Fixed ldapupdate to work with DN's. This work included:
- Enhance test_updates.py to do more checking after applying
update. Add test for update_from_dict(). Convert code to use
unittest classes.
- Consolidated duplicate code.
- Moved code which should have been in the class into the class.
- Fix the handling of the 'deleteentry' update action. It's no longer
necessary to supply fake attributes to make it work. Detect case
where subsequent update applies a change to entry previously marked
for deletetion. General clean-up and simplification of the
'deleteentry' logic.
- Rewrote a couple of functions to be clearer and more Pythonic.
- Added documentation on the data structure being used.
- Simplfy the use of update_from_dict()
* Removed all usage of get_schema() which was being called prior to
accessing the .schema attribute of an object. If a class is using
internal lazy loading as an optimization it's not right to require
users of the interface to be aware of internal
optimization's. schema is now a property and when the schema
property is accessed it calls a private internal method to perform
the lazy loading.
* Added SchemaCache class to cache the schema's from individual
servers. This was done because of the observation we talk to
different LDAP servers, each of which may have it's own
schema. Previously we globally cached the schema from the first
server we connected to and returned that schema in all contexts. The
cache includes controls to invalidate it thus forcing a schema
refresh.
* Schema caching is now senstive to the run time context. During
install and upgrade the schema can change leading to errors due to
out-of-date cached schema. The schema cache is refreshed in these
contexts.
* We are aware of the LDAP syntax of all LDAP attributes. Every
attribute returned from an LDAP operation is passed through a
central table look-up based on it's LDAP syntax. The table key is
the LDAP syntax it's value is a Python callable that returns a
Python object matching the LDAP syntax. There are a handful of LDAP
attributes whose syntax is historically incorrect
(e.g. DistguishedNames that are defined as DirectoryStrings). The
table driven conversion mechanism is augmented with a table of
hard coded exceptions.
Currently only the following conversions occur via the table:
- dn's are converted to DN objects
- binary objects are converted to Python str objects (IPA
convention).
- everything else is converted to unicode using UTF-8 decoding (IPA
convention).
However, now that the table driven conversion mechanism is in place
it would be trivial to do things such as converting attributes
which have LDAP integer syntax into a Python integer, etc.
* Expected values in the unit tests which are a DN no longer need to
use lambda expressions to promote the returned value to a DN for
equality comparison. The return value is automatically promoted to
a DN. The lambda expressions have been removed making the code much
simpler and easier to read.
* Add class level logging to a number of classes which did not support
logging, less need for use of root_logger.
* Remove ipaserver/conn.py, it was unused.
* Consolidated duplicate code wherever it was found.
* Fixed many places that used string concatenation to form a new
string rather than string formatting operators. This is necessary
because string formatting converts it's arguments to a string prior
to building the result string. You can't concatenate a string and a
non-string.
* Simplify logic in rename_managed plugin. Use DN operators to edit
dn's.
* The live version of ipa-ldap-updater did not generate a log file.
The offline version did, now both do.
https://fedorahosted.org/freeipa/ticket/1670
https://fedorahosted.org/freeipa/ticket/1671
https://fedorahosted.org/freeipa/ticket/1672
https://fedorahosted.org/freeipa/ticket/1673
https://fedorahosted.org/freeipa/ticket/1674
https://fedorahosted.org/freeipa/ticket/1392
https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
|
|
|
}
|
2015-03-06 08:14:17 -06:00
|
|
|
]
|
Use DN objects instead of strings
* Convert every string specifying a DN into a DN object
* Every place a dn was manipulated in some fashion it was replaced by
the use of DN operators
* Add new DNParam parameter type for parameters which are DN's
* DN objects are used 100% of the time throughout the entire data
pipeline whenever something is logically a dn.
* Many classes now enforce DN usage for their attributes which are
dn's. This is implmented via ipautil.dn_attribute_property(). The
only permitted types for a class attribute specified to be a DN are
either None or a DN object.
* Require that every place a dn is used it must be a DN object.
This translates into lot of::
assert isinstance(dn, DN)
sprinkled through out the code. Maintaining these asserts is
valuable to preserve DN type enforcement. The asserts can be
disabled in production.
The goal of 100% DN usage 100% of the time has been realized, these
asserts are meant to preserve that.
The asserts also proved valuable in detecting functions which did
not obey their function signatures, such as the baseldap pre and
post callbacks.
* Moved ipalib.dn to ipapython.dn because DN class is shared with all
components, not just the server which uses ipalib.
* All API's now accept DN's natively, no need to convert to str (or
unicode).
* Removed ipalib.encoder and encode/decode decorators. Type conversion
is now explicitly performed in each IPASimpleLDAPObject method which
emulates a ldap.SimpleLDAPObject method.
* Entity & Entry classes now utilize DN's
* Removed __getattr__ in Entity & Entity clases. There were two
problems with it. It presented synthetic Python object attributes
based on the current LDAP data it contained. There is no way to
validate synthetic attributes using code checkers, you can't search
the code to find LDAP attribute accesses (because synthetic
attriutes look like Python attributes instead of LDAP data) and
error handling is circumscribed. Secondly __getattr__ was hiding
Python internal methods which broke class semantics.
* Replace use of methods inherited from ldap.SimpleLDAPObject via
IPAdmin class with IPAdmin methods. Directly using inherited methods
was causing us to bypass IPA logic. Mostly this meant replacing the
use of search_s() with getEntry() or getList(). Similarly direct
access of the LDAP data in classes using IPAdmin were replaced with
calls to getValue() or getValues().
* Objects returned by ldap2.find_entries() are now compatible with
either the python-ldap access methodology or the Entity/Entry access
methodology.
* All ldap operations now funnel through the common
IPASimpleLDAPObject giving us a single location where we interface
to python-ldap and perform conversions.
* The above 4 modifications means we've greatly reduced the
proliferation of multiple inconsistent ways to perform LDAP
operations. We are well on the way to having a single API in IPA for
doing LDAP (a long range goal).
* All certificate subject bases are now DN's
* DN objects were enhanced thusly:
- find, rfind, index, rindex, replace and insert methods were added
- AVA, RDN and DN classes were refactored in immutable and mutable
variants, the mutable variants are EditableAVA, EditableRDN and
EditableDN. By default we use the immutable variants preserving
important semantics. To edit a DN cast it to an EditableDN and
cast it back to DN when done editing. These issues are fully
described in other documentation.
- first_key_match was removed
- DN equalty comparison permits comparison to a basestring
* Fixed ldapupdate to work with DN's. This work included:
- Enhance test_updates.py to do more checking after applying
update. Add test for update_from_dict(). Convert code to use
unittest classes.
- Consolidated duplicate code.
- Moved code which should have been in the class into the class.
- Fix the handling of the 'deleteentry' update action. It's no longer
necessary to supply fake attributes to make it work. Detect case
where subsequent update applies a change to entry previously marked
for deletetion. General clean-up and simplification of the
'deleteentry' logic.
- Rewrote a couple of functions to be clearer and more Pythonic.
- Added documentation on the data structure being used.
- Simplfy the use of update_from_dict()
* Removed all usage of get_schema() which was being called prior to
accessing the .schema attribute of an object. If a class is using
internal lazy loading as an optimization it's not right to require
users of the interface to be aware of internal
optimization's. schema is now a property and when the schema
property is accessed it calls a private internal method to perform
the lazy loading.
* Added SchemaCache class to cache the schema's from individual
servers. This was done because of the observation we talk to
different LDAP servers, each of which may have it's own
schema. Previously we globally cached the schema from the first
server we connected to and returned that schema in all contexts. The
cache includes controls to invalidate it thus forcing a schema
refresh.
* Schema caching is now senstive to the run time context. During
install and upgrade the schema can change leading to errors due to
out-of-date cached schema. The schema cache is refreshed in these
contexts.
* We are aware of the LDAP syntax of all LDAP attributes. Every
attribute returned from an LDAP operation is passed through a
central table look-up based on it's LDAP syntax. The table key is
the LDAP syntax it's value is a Python callable that returns a
Python object matching the LDAP syntax. There are a handful of LDAP
attributes whose syntax is historically incorrect
(e.g. DistguishedNames that are defined as DirectoryStrings). The
table driven conversion mechanism is augmented with a table of
hard coded exceptions.
Currently only the following conversions occur via the table:
- dn's are converted to DN objects
- binary objects are converted to Python str objects (IPA
convention).
- everything else is converted to unicode using UTF-8 decoding (IPA
convention).
However, now that the table driven conversion mechanism is in place
it would be trivial to do things such as converting attributes
which have LDAP integer syntax into a Python integer, etc.
* Expected values in the unit tests which are a DN no longer need to
use lambda expressions to promote the returned value to a DN for
equality comparison. The return value is automatically promoted to
a DN. The lambda expressions have been removed making the code much
simpler and easier to read.
* Add class level logging to a number of classes which did not support
logging, less need for use of root_logger.
* Remove ipaserver/conn.py, it was unused.
* Consolidated duplicate code wherever it was found.
* Fixed many places that used string concatenation to form a new
string rather than string formatting operators. This is necessary
because string formatting converts it's arguments to a string prior
to building the result string. You can't concatenate a string and a
non-string.
* Simplify logic in rename_managed plugin. Use DN operators to edit
dn's.
* The live version of ipa-ldap-updater did not generate a log file.
The offline version did, now both do.
https://fedorahosted.org/freeipa/ticket/1670
https://fedorahosted.org/freeipa/ticket/1671
https://fedorahosted.org/freeipa/ticket/1672
https://fedorahosted.org/freeipa/ticket/1673
https://fedorahosted.org/freeipa/ticket/1674
https://fedorahosted.org/freeipa/ticket/1392
https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
|
|
|
|
2015-05-05 08:12:12 -05:00
|
|
|
Please notice the replace action requires two values in list
|
|
|
|
|
Use DN objects instead of strings
* Convert every string specifying a DN into a DN object
* Every place a dn was manipulated in some fashion it was replaced by
the use of DN operators
* Add new DNParam parameter type for parameters which are DN's
* DN objects are used 100% of the time throughout the entire data
pipeline whenever something is logically a dn.
* Many classes now enforce DN usage for their attributes which are
dn's. This is implmented via ipautil.dn_attribute_property(). The
only permitted types for a class attribute specified to be a DN are
either None or a DN object.
* Require that every place a dn is used it must be a DN object.
This translates into lot of::
assert isinstance(dn, DN)
sprinkled through out the code. Maintaining these asserts is
valuable to preserve DN type enforcement. The asserts can be
disabled in production.
The goal of 100% DN usage 100% of the time has been realized, these
asserts are meant to preserve that.
The asserts also proved valuable in detecting functions which did
not obey their function signatures, such as the baseldap pre and
post callbacks.
* Moved ipalib.dn to ipapython.dn because DN class is shared with all
components, not just the server which uses ipalib.
* All API's now accept DN's natively, no need to convert to str (or
unicode).
* Removed ipalib.encoder and encode/decode decorators. Type conversion
is now explicitly performed in each IPASimpleLDAPObject method which
emulates a ldap.SimpleLDAPObject method.
* Entity & Entry classes now utilize DN's
* Removed __getattr__ in Entity & Entity clases. There were two
problems with it. It presented synthetic Python object attributes
based on the current LDAP data it contained. There is no way to
validate synthetic attributes using code checkers, you can't search
the code to find LDAP attribute accesses (because synthetic
attriutes look like Python attributes instead of LDAP data) and
error handling is circumscribed. Secondly __getattr__ was hiding
Python internal methods which broke class semantics.
* Replace use of methods inherited from ldap.SimpleLDAPObject via
IPAdmin class with IPAdmin methods. Directly using inherited methods
was causing us to bypass IPA logic. Mostly this meant replacing the
use of search_s() with getEntry() or getList(). Similarly direct
access of the LDAP data in classes using IPAdmin were replaced with
calls to getValue() or getValues().
* Objects returned by ldap2.find_entries() are now compatible with
either the python-ldap access methodology or the Entity/Entry access
methodology.
* All ldap operations now funnel through the common
IPASimpleLDAPObject giving us a single location where we interface
to python-ldap and perform conversions.
* The above 4 modifications means we've greatly reduced the
proliferation of multiple inconsistent ways to perform LDAP
operations. We are well on the way to having a single API in IPA for
doing LDAP (a long range goal).
* All certificate subject bases are now DN's
* DN objects were enhanced thusly:
- find, rfind, index, rindex, replace and insert methods were added
- AVA, RDN and DN classes were refactored in immutable and mutable
variants, the mutable variants are EditableAVA, EditableRDN and
EditableDN. By default we use the immutable variants preserving
important semantics. To edit a DN cast it to an EditableDN and
cast it back to DN when done editing. These issues are fully
described in other documentation.
- first_key_match was removed
- DN equalty comparison permits comparison to a basestring
* Fixed ldapupdate to work with DN's. This work included:
- Enhance test_updates.py to do more checking after applying
update. Add test for update_from_dict(). Convert code to use
unittest classes.
- Consolidated duplicate code.
- Moved code which should have been in the class into the class.
- Fix the handling of the 'deleteentry' update action. It's no longer
necessary to supply fake attributes to make it work. Detect case
where subsequent update applies a change to entry previously marked
for deletetion. General clean-up and simplification of the
'deleteentry' logic.
- Rewrote a couple of functions to be clearer and more Pythonic.
- Added documentation on the data structure being used.
- Simplfy the use of update_from_dict()
* Removed all usage of get_schema() which was being called prior to
accessing the .schema attribute of an object. If a class is using
internal lazy loading as an optimization it's not right to require
users of the interface to be aware of internal
optimization's. schema is now a property and when the schema
property is accessed it calls a private internal method to perform
the lazy loading.
* Added SchemaCache class to cache the schema's from individual
servers. This was done because of the observation we talk to
different LDAP servers, each of which may have it's own
schema. Previously we globally cached the schema from the first
server we connected to and returned that schema in all contexts. The
cache includes controls to invalidate it thus forcing a schema
refresh.
* Schema caching is now senstive to the run time context. During
install and upgrade the schema can change leading to errors due to
out-of-date cached schema. The schema cache is refreshed in these
contexts.
* We are aware of the LDAP syntax of all LDAP attributes. Every
attribute returned from an LDAP operation is passed through a
central table look-up based on it's LDAP syntax. The table key is
the LDAP syntax it's value is a Python callable that returns a
Python object matching the LDAP syntax. There are a handful of LDAP
attributes whose syntax is historically incorrect
(e.g. DistguishedNames that are defined as DirectoryStrings). The
table driven conversion mechanism is augmented with a table of
hard coded exceptions.
Currently only the following conversions occur via the table:
- dn's are converted to DN objects
- binary objects are converted to Python str objects (IPA
convention).
- everything else is converted to unicode using UTF-8 decoding (IPA
convention).
However, now that the table driven conversion mechanism is in place
it would be trivial to do things such as converting attributes
which have LDAP integer syntax into a Python integer, etc.
* Expected values in the unit tests which are a DN no longer need to
use lambda expressions to promote the returned value to a DN for
equality comparison. The return value is automatically promoted to
a DN. The lambda expressions have been removed making the code much
simpler and easier to read.
* Add class level logging to a number of classes which did not support
logging, less need for use of root_logger.
* Remove ipaserver/conn.py, it was unused.
* Consolidated duplicate code wherever it was found.
* Fixed many places that used string concatenation to form a new
string rather than string formatting operators. This is necessary
because string formatting converts it's arguments to a string prior
to building the result string. You can't concatenate a string and a
non-string.
* Simplify logic in rename_managed plugin. Use DN operators to edit
dn's.
* The live version of ipa-ldap-updater did not generate a log file.
The offline version did, now both do.
https://fedorahosted.org/freeipa/ticket/1670
https://fedorahosted.org/freeipa/ticket/1671
https://fedorahosted.org/freeipa/ticket/1672
https://fedorahosted.org/freeipa/ticket/1673
https://fedorahosted.org/freeipa/ticket/1674
https://fedorahosted.org/freeipa/ticket/1392
https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
|
|
|
The default and update lists are "dispositions"
|
|
|
|
|
2015-03-18 09:46:00 -05:00
|
|
|
Plugins:
|
|
|
|
|
|
|
|
Plugins has to be specified in update file to be executed, using
|
|
|
|
'plugin' directive
|
|
|
|
|
|
|
|
Example:
|
|
|
|
plugin: update_uniqueness_plugins_to_new_syntax
|
|
|
|
|
|
|
|
Each plugin returns two values:
|
|
|
|
|
|
|
|
1. restart: dirsrv will be restarted AFTER this update is
|
|
|
|
applied.
|
|
|
|
2. updates: A list of updates to be applied.
|
|
|
|
|
|
|
|
The value of an update is a dictionary with the following possible
|
|
|
|
values:
|
|
|
|
- dn: DN, equal to the dn attribute
|
|
|
|
- updates: list of updates against the dn
|
|
|
|
- default: list of the default entry to be added if it doesn't
|
|
|
|
exist
|
|
|
|
- deleteentry: list of dn's to be deleted (typically single dn)
|
|
|
|
|
|
|
|
For example, this update file:
|
|
|
|
|
|
|
|
dn: cn=global_policy,cn=$REALM,cn=kerberos,$SUFFIX
|
|
|
|
replace:krbPwdLockoutDuration:10::600
|
|
|
|
replace: krbPwdMaxFailure:3::6
|
|
|
|
|
|
|
|
Generates this list which contain the update dictionary:
|
|
|
|
|
|
|
|
[
|
2015-05-05 08:12:12 -05:00
|
|
|
{
|
2015-03-18 09:46:00 -05:00
|
|
|
'dn': 'cn=global_policy,cn=EXAMPLE.COM,cn=kerberos,dc=example,dc=com',
|
2015-05-05 08:12:12 -05:00
|
|
|
'updates': [
|
|
|
|
dict(action='replace', attr='krbPwdLockoutDuration',
|
|
|
|
value=['10','600']),
|
|
|
|
dict(action='replace', attr='krbPwdMaxFailure',
|
|
|
|
value=['3','6']),
|
|
|
|
]
|
|
|
|
}
|
2015-03-18 09:46:00 -05:00
|
|
|
]
|
|
|
|
|
|
|
|
Here is another example showing how a default entry is configured:
|
|
|
|
|
|
|
|
dn: cn=Managed Entries,cn=etc,$SUFFIX
|
|
|
|
default: objectClass: nsContainer
|
|
|
|
default: objectClass: top
|
|
|
|
default: cn: Managed Entries
|
|
|
|
|
|
|
|
This generates:
|
|
|
|
|
|
|
|
[
|
2015-05-05 08:12:12 -05:00
|
|
|
{
|
2015-03-18 09:46:00 -05:00
|
|
|
'dn': 'cn=Managed Entries,cn=etc,dc=example,dc=com',
|
2015-05-05 08:12:12 -05:00
|
|
|
'default': [
|
|
|
|
dict(attr='objectClass', value='nsContainer'),
|
|
|
|
dict(attr='objectClass', value='top'),
|
|
|
|
dict(attr='cn', value='Managed Entries'),
|
|
|
|
]
|
|
|
|
}
|
2015-03-18 09:46:00 -05:00
|
|
|
]
|
|
|
|
|
|
|
|
Note that the variable substitution in both examples has been completed.
|
|
|
|
|
|
|
|
Either may make changes directly in LDAP or can return updates in
|
|
|
|
update format.
|
Use DN objects instead of strings
* Convert every string specifying a DN into a DN object
* Every place a dn was manipulated in some fashion it was replaced by
the use of DN operators
* Add new DNParam parameter type for parameters which are DN's
* DN objects are used 100% of the time throughout the entire data
pipeline whenever something is logically a dn.
* Many classes now enforce DN usage for their attributes which are
dn's. This is implmented via ipautil.dn_attribute_property(). The
only permitted types for a class attribute specified to be a DN are
either None or a DN object.
* Require that every place a dn is used it must be a DN object.
This translates into lot of::
assert isinstance(dn, DN)
sprinkled through out the code. Maintaining these asserts is
valuable to preserve DN type enforcement. The asserts can be
disabled in production.
The goal of 100% DN usage 100% of the time has been realized, these
asserts are meant to preserve that.
The asserts also proved valuable in detecting functions which did
not obey their function signatures, such as the baseldap pre and
post callbacks.
* Moved ipalib.dn to ipapython.dn because DN class is shared with all
components, not just the server which uses ipalib.
* All API's now accept DN's natively, no need to convert to str (or
unicode).
* Removed ipalib.encoder and encode/decode decorators. Type conversion
is now explicitly performed in each IPASimpleLDAPObject method which
emulates a ldap.SimpleLDAPObject method.
* Entity & Entry classes now utilize DN's
* Removed __getattr__ in Entity & Entity clases. There were two
problems with it. It presented synthetic Python object attributes
based on the current LDAP data it contained. There is no way to
validate synthetic attributes using code checkers, you can't search
the code to find LDAP attribute accesses (because synthetic
attriutes look like Python attributes instead of LDAP data) and
error handling is circumscribed. Secondly __getattr__ was hiding
Python internal methods which broke class semantics.
* Replace use of methods inherited from ldap.SimpleLDAPObject via
IPAdmin class with IPAdmin methods. Directly using inherited methods
was causing us to bypass IPA logic. Mostly this meant replacing the
use of search_s() with getEntry() or getList(). Similarly direct
access of the LDAP data in classes using IPAdmin were replaced with
calls to getValue() or getValues().
* Objects returned by ldap2.find_entries() are now compatible with
either the python-ldap access methodology or the Entity/Entry access
methodology.
* All ldap operations now funnel through the common
IPASimpleLDAPObject giving us a single location where we interface
to python-ldap and perform conversions.
* The above 4 modifications means we've greatly reduced the
proliferation of multiple inconsistent ways to perform LDAP
operations. We are well on the way to having a single API in IPA for
doing LDAP (a long range goal).
* All certificate subject bases are now DN's
* DN objects were enhanced thusly:
- find, rfind, index, rindex, replace and insert methods were added
- AVA, RDN and DN classes were refactored in immutable and mutable
variants, the mutable variants are EditableAVA, EditableRDN and
EditableDN. By default we use the immutable variants preserving
important semantics. To edit a DN cast it to an EditableDN and
cast it back to DN when done editing. These issues are fully
described in other documentation.
- first_key_match was removed
- DN equalty comparison permits comparison to a basestring
* Fixed ldapupdate to work with DN's. This work included:
- Enhance test_updates.py to do more checking after applying
update. Add test for update_from_dict(). Convert code to use
unittest classes.
- Consolidated duplicate code.
- Moved code which should have been in the class into the class.
- Fix the handling of the 'deleteentry' update action. It's no longer
necessary to supply fake attributes to make it work. Detect case
where subsequent update applies a change to entry previously marked
for deletetion. General clean-up and simplification of the
'deleteentry' logic.
- Rewrote a couple of functions to be clearer and more Pythonic.
- Added documentation on the data structure being used.
- Simplfy the use of update_from_dict()
* Removed all usage of get_schema() which was being called prior to
accessing the .schema attribute of an object. If a class is using
internal lazy loading as an optimization it's not right to require
users of the interface to be aware of internal
optimization's. schema is now a property and when the schema
property is accessed it calls a private internal method to perform
the lazy loading.
* Added SchemaCache class to cache the schema's from individual
servers. This was done because of the observation we talk to
different LDAP servers, each of which may have it's own
schema. Previously we globally cached the schema from the first
server we connected to and returned that schema in all contexts. The
cache includes controls to invalidate it thus forcing a schema
refresh.
* Schema caching is now senstive to the run time context. During
install and upgrade the schema can change leading to errors due to
out-of-date cached schema. The schema cache is refreshed in these
contexts.
* We are aware of the LDAP syntax of all LDAP attributes. Every
attribute returned from an LDAP operation is passed through a
central table look-up based on it's LDAP syntax. The table key is
the LDAP syntax it's value is a Python callable that returns a
Python object matching the LDAP syntax. There are a handful of LDAP
attributes whose syntax is historically incorrect
(e.g. DistguishedNames that are defined as DirectoryStrings). The
table driven conversion mechanism is augmented with a table of
hard coded exceptions.
Currently only the following conversions occur via the table:
- dn's are converted to DN objects
- binary objects are converted to Python str objects (IPA
convention).
- everything else is converted to unicode using UTF-8 decoding (IPA
convention).
However, now that the table driven conversion mechanism is in place
it would be trivial to do things such as converting attributes
which have LDAP integer syntax into a Python integer, etc.
* Expected values in the unit tests which are a DN no longer need to
use lambda expressions to promote the returned value to a DN for
equality comparison. The return value is automatically promoted to
a DN. The lambda expressions have been removed making the code much
simpler and easier to read.
* Add class level logging to a number of classes which did not support
logging, less need for use of root_logger.
* Remove ipaserver/conn.py, it was unused.
* Consolidated duplicate code wherever it was found.
* Fixed many places that used string concatenation to form a new
string rather than string formatting operators. This is necessary
because string formatting converts it's arguments to a string prior
to building the result string. You can't concatenate a string and a
non-string.
* Simplify logic in rename_managed plugin. Use DN operators to edit
dn's.
* The live version of ipa-ldap-updater did not generate a log file.
The offline version did, now both do.
https://fedorahosted.org/freeipa/ticket/1670
https://fedorahosted.org/freeipa/ticket/1671
https://fedorahosted.org/freeipa/ticket/1672
https://fedorahosted.org/freeipa/ticket/1673
https://fedorahosted.org/freeipa/ticket/1674
https://fedorahosted.org/freeipa/ticket/1392
https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
|
|
|
|
|
|
|
'''
|
|
|
|
log_mgr.get_logger(self, True)
|
2008-09-15 19:51:01 -05:00
|
|
|
self.sub_dict = sub_dict
|
|
|
|
self.dm_password = dm_password
|
|
|
|
self.conn = None
|
2008-09-17 22:18:09 -05:00
|
|
|
self.modified = False
|
2010-05-27 10:58:31 -05:00
|
|
|
self.online = online
|
|
|
|
self.ldapi = ldapi
|
|
|
|
self.pw_name = pwd.getpwuid(os.geteuid()).pw_name
|
Use DN objects instead of strings
* Convert every string specifying a DN into a DN object
* Every place a dn was manipulated in some fashion it was replaced by
the use of DN operators
* Add new DNParam parameter type for parameters which are DN's
* DN objects are used 100% of the time throughout the entire data
pipeline whenever something is logically a dn.
* Many classes now enforce DN usage for their attributes which are
dn's. This is implmented via ipautil.dn_attribute_property(). The
only permitted types for a class attribute specified to be a DN are
either None or a DN object.
* Require that every place a dn is used it must be a DN object.
This translates into lot of::
assert isinstance(dn, DN)
sprinkled through out the code. Maintaining these asserts is
valuable to preserve DN type enforcement. The asserts can be
disabled in production.
The goal of 100% DN usage 100% of the time has been realized, these
asserts are meant to preserve that.
The asserts also proved valuable in detecting functions which did
not obey their function signatures, such as the baseldap pre and
post callbacks.
* Moved ipalib.dn to ipapython.dn because DN class is shared with all
components, not just the server which uses ipalib.
* All API's now accept DN's natively, no need to convert to str (or
unicode).
* Removed ipalib.encoder and encode/decode decorators. Type conversion
is now explicitly performed in each IPASimpleLDAPObject method which
emulates a ldap.SimpleLDAPObject method.
* Entity & Entry classes now utilize DN's
* Removed __getattr__ in Entity & Entity clases. There were two
problems with it. It presented synthetic Python object attributes
based on the current LDAP data it contained. There is no way to
validate synthetic attributes using code checkers, you can't search
the code to find LDAP attribute accesses (because synthetic
attriutes look like Python attributes instead of LDAP data) and
error handling is circumscribed. Secondly __getattr__ was hiding
Python internal methods which broke class semantics.
* Replace use of methods inherited from ldap.SimpleLDAPObject via
IPAdmin class with IPAdmin methods. Directly using inherited methods
was causing us to bypass IPA logic. Mostly this meant replacing the
use of search_s() with getEntry() or getList(). Similarly direct
access of the LDAP data in classes using IPAdmin were replaced with
calls to getValue() or getValues().
* Objects returned by ldap2.find_entries() are now compatible with
either the python-ldap access methodology or the Entity/Entry access
methodology.
* All ldap operations now funnel through the common
IPASimpleLDAPObject giving us a single location where we interface
to python-ldap and perform conversions.
* The above 4 modifications means we've greatly reduced the
proliferation of multiple inconsistent ways to perform LDAP
operations. We are well on the way to having a single API in IPA for
doing LDAP (a long range goal).
* All certificate subject bases are now DN's
* DN objects were enhanced thusly:
- find, rfind, index, rindex, replace and insert methods were added
- AVA, RDN and DN classes were refactored in immutable and mutable
variants, the mutable variants are EditableAVA, EditableRDN and
EditableDN. By default we use the immutable variants preserving
important semantics. To edit a DN cast it to an EditableDN and
cast it back to DN when done editing. These issues are fully
described in other documentation.
- first_key_match was removed
- DN equalty comparison permits comparison to a basestring
* Fixed ldapupdate to work with DN's. This work included:
- Enhance test_updates.py to do more checking after applying
update. Add test for update_from_dict(). Convert code to use
unittest classes.
- Consolidated duplicate code.
- Moved code which should have been in the class into the class.
- Fix the handling of the 'deleteentry' update action. It's no longer
necessary to supply fake attributes to make it work. Detect case
where subsequent update applies a change to entry previously marked
for deletetion. General clean-up and simplification of the
'deleteentry' logic.
- Rewrote a couple of functions to be clearer and more Pythonic.
- Added documentation on the data structure being used.
- Simplfy the use of update_from_dict()
* Removed all usage of get_schema() which was being called prior to
accessing the .schema attribute of an object. If a class is using
internal lazy loading as an optimization it's not right to require
users of the interface to be aware of internal
optimization's. schema is now a property and when the schema
property is accessed it calls a private internal method to perform
the lazy loading.
* Added SchemaCache class to cache the schema's from individual
servers. This was done because of the observation we talk to
different LDAP servers, each of which may have it's own
schema. Previously we globally cached the schema from the first
server we connected to and returned that schema in all contexts. The
cache includes controls to invalidate it thus forcing a schema
refresh.
* Schema caching is now senstive to the run time context. During
install and upgrade the schema can change leading to errors due to
out-of-date cached schema. The schema cache is refreshed in these
contexts.
* We are aware of the LDAP syntax of all LDAP attributes. Every
attribute returned from an LDAP operation is passed through a
central table look-up based on it's LDAP syntax. The table key is
the LDAP syntax it's value is a Python callable that returns a
Python object matching the LDAP syntax. There are a handful of LDAP
attributes whose syntax is historically incorrect
(e.g. DistguishedNames that are defined as DirectoryStrings). The
table driven conversion mechanism is augmented with a table of
hard coded exceptions.
Currently only the following conversions occur via the table:
- dn's are converted to DN objects
- binary objects are converted to Python str objects (IPA
convention).
- everything else is converted to unicode using UTF-8 decoding (IPA
convention).
However, now that the table driven conversion mechanism is in place
it would be trivial to do things such as converting attributes
which have LDAP integer syntax into a Python integer, etc.
* Expected values in the unit tests which are a DN no longer need to
use lambda expressions to promote the returned value to a DN for
equality comparison. The return value is automatically promoted to
a DN. The lambda expressions have been removed making the code much
simpler and easier to read.
* Add class level logging to a number of classes which did not support
logging, less need for use of root_logger.
* Remove ipaserver/conn.py, it was unused.
* Consolidated duplicate code wherever it was found.
* Fixed many places that used string concatenation to form a new
string rather than string formatting operators. This is necessary
because string formatting converts it's arguments to a string prior
to building the result string. You can't concatenate a string and a
non-string.
* Simplify logic in rename_managed plugin. Use DN operators to edit
dn's.
* The live version of ipa-ldap-updater did not generate a log file.
The offline version did, now both do.
https://fedorahosted.org/freeipa/ticket/1670
https://fedorahosted.org/freeipa/ticket/1671
https://fedorahosted.org/freeipa/ticket/1672
https://fedorahosted.org/freeipa/ticket/1673
https://fedorahosted.org/freeipa/ticket/1674
https://fedorahosted.org/freeipa/ticket/1392
https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
|
|
|
self.realm = None
|
2015-03-18 09:46:00 -05:00
|
|
|
self.socket_name = (
|
|
|
|
paths.SLAPD_INSTANCE_SOCKET_TEMPLATE %
|
|
|
|
api.env.realm.replace('.', '-')
|
|
|
|
)
|
|
|
|
self.ldapuri = 'ldapi://%s' % ipautil.format_netloc(
|
|
|
|
self.socket_name
|
|
|
|
)
|
Use DN objects instead of strings
* Convert every string specifying a DN into a DN object
* Every place a dn was manipulated in some fashion it was replaced by
the use of DN operators
* Add new DNParam parameter type for parameters which are DN's
* DN objects are used 100% of the time throughout the entire data
pipeline whenever something is logically a dn.
* Many classes now enforce DN usage for their attributes which are
dn's. This is implmented via ipautil.dn_attribute_property(). The
only permitted types for a class attribute specified to be a DN are
either None or a DN object.
* Require that every place a dn is used it must be a DN object.
This translates into lot of::
assert isinstance(dn, DN)
sprinkled through out the code. Maintaining these asserts is
valuable to preserve DN type enforcement. The asserts can be
disabled in production.
The goal of 100% DN usage 100% of the time has been realized, these
asserts are meant to preserve that.
The asserts also proved valuable in detecting functions which did
not obey their function signatures, such as the baseldap pre and
post callbacks.
* Moved ipalib.dn to ipapython.dn because DN class is shared with all
components, not just the server which uses ipalib.
* All API's now accept DN's natively, no need to convert to str (or
unicode).
* Removed ipalib.encoder and encode/decode decorators. Type conversion
is now explicitly performed in each IPASimpleLDAPObject method which
emulates a ldap.SimpleLDAPObject method.
* Entity & Entry classes now utilize DN's
* Removed __getattr__ in Entity & Entity clases. There were two
problems with it. It presented synthetic Python object attributes
based on the current LDAP data it contained. There is no way to
validate synthetic attributes using code checkers, you can't search
the code to find LDAP attribute accesses (because synthetic
attriutes look like Python attributes instead of LDAP data) and
error handling is circumscribed. Secondly __getattr__ was hiding
Python internal methods which broke class semantics.
* Replace use of methods inherited from ldap.SimpleLDAPObject via
IPAdmin class with IPAdmin methods. Directly using inherited methods
was causing us to bypass IPA logic. Mostly this meant replacing the
use of search_s() with getEntry() or getList(). Similarly direct
access of the LDAP data in classes using IPAdmin were replaced with
calls to getValue() or getValues().
* Objects returned by ldap2.find_entries() are now compatible with
either the python-ldap access methodology or the Entity/Entry access
methodology.
* All ldap operations now funnel through the common
IPASimpleLDAPObject giving us a single location where we interface
to python-ldap and perform conversions.
* The above 4 modifications means we've greatly reduced the
proliferation of multiple inconsistent ways to perform LDAP
operations. We are well on the way to having a single API in IPA for
doing LDAP (a long range goal).
* All certificate subject bases are now DN's
* DN objects were enhanced thusly:
- find, rfind, index, rindex, replace and insert methods were added
- AVA, RDN and DN classes were refactored in immutable and mutable
variants, the mutable variants are EditableAVA, EditableRDN and
EditableDN. By default we use the immutable variants preserving
important semantics. To edit a DN cast it to an EditableDN and
cast it back to DN when done editing. These issues are fully
described in other documentation.
- first_key_match was removed
- DN equalty comparison permits comparison to a basestring
* Fixed ldapupdate to work with DN's. This work included:
- Enhance test_updates.py to do more checking after applying
update. Add test for update_from_dict(). Convert code to use
unittest classes.
- Consolidated duplicate code.
- Moved code which should have been in the class into the class.
- Fix the handling of the 'deleteentry' update action. It's no longer
necessary to supply fake attributes to make it work. Detect case
where subsequent update applies a change to entry previously marked
for deletetion. General clean-up and simplification of the
'deleteentry' logic.
- Rewrote a couple of functions to be clearer and more Pythonic.
- Added documentation on the data structure being used.
- Simplfy the use of update_from_dict()
* Removed all usage of get_schema() which was being called prior to
accessing the .schema attribute of an object. If a class is using
internal lazy loading as an optimization it's not right to require
users of the interface to be aware of internal
optimization's. schema is now a property and when the schema
property is accessed it calls a private internal method to perform
the lazy loading.
* Added SchemaCache class to cache the schema's from individual
servers. This was done because of the observation we talk to
different LDAP servers, each of which may have it's own
schema. Previously we globally cached the schema from the first
server we connected to and returned that schema in all contexts. The
cache includes controls to invalidate it thus forcing a schema
refresh.
* Schema caching is now senstive to the run time context. During
install and upgrade the schema can change leading to errors due to
out-of-date cached schema. The schema cache is refreshed in these
contexts.
* We are aware of the LDAP syntax of all LDAP attributes. Every
attribute returned from an LDAP operation is passed through a
central table look-up based on it's LDAP syntax. The table key is
the LDAP syntax it's value is a Python callable that returns a
Python object matching the LDAP syntax. There are a handful of LDAP
attributes whose syntax is historically incorrect
(e.g. DistguishedNames that are defined as DirectoryStrings). The
table driven conversion mechanism is augmented with a table of
hard coded exceptions.
Currently only the following conversions occur via the table:
- dn's are converted to DN objects
- binary objects are converted to Python str objects (IPA
convention).
- everything else is converted to unicode using UTF-8 decoding (IPA
convention).
However, now that the table driven conversion mechanism is in place
it would be trivial to do things such as converting attributes
which have LDAP integer syntax into a Python integer, etc.
* Expected values in the unit tests which are a DN no longer need to
use lambda expressions to promote the returned value to a DN for
equality comparison. The return value is automatically promoted to
a DN. The lambda expressions have been removed making the code much
simpler and easier to read.
* Add class level logging to a number of classes which did not support
logging, less need for use of root_logger.
* Remove ipaserver/conn.py, it was unused.
* Consolidated duplicate code wherever it was found.
* Fixed many places that used string concatenation to form a new
string rather than string formatting operators. This is necessary
because string formatting converts it's arguments to a string prior
to building the result string. You can't concatenate a string and a
non-string.
* Simplify logic in rename_managed plugin. Use DN operators to edit
dn's.
* The live version of ipa-ldap-updater did not generate a log file.
The offline version did, now both do.
https://fedorahosted.org/freeipa/ticket/1670
https://fedorahosted.org/freeipa/ticket/1671
https://fedorahosted.org/freeipa/ticket/1672
https://fedorahosted.org/freeipa/ticket/1673
https://fedorahosted.org/freeipa/ticket/1674
https://fedorahosted.org/freeipa/ticket/1392
https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
|
|
|
suffix = None
|
2008-09-15 19:51:01 -05:00
|
|
|
|
2011-03-14 14:22:27 -05:00
|
|
|
if sub_dict.get("REALM"):
|
|
|
|
self.realm = sub_dict["REALM"]
|
|
|
|
else:
|
2015-07-20 09:04:07 -05:00
|
|
|
self.realm = api.env.realm
|
|
|
|
suffix = ipautil.realm_to_suffix(self.realm) if self.realm else None
|
2009-02-04 09:53:34 -06:00
|
|
|
|
Use DN objects instead of strings
* Convert every string specifying a DN into a DN object
* Every place a dn was manipulated in some fashion it was replaced by
the use of DN operators
* Add new DNParam parameter type for parameters which are DN's
* DN objects are used 100% of the time throughout the entire data
pipeline whenever something is logically a dn.
* Many classes now enforce DN usage for their attributes which are
dn's. This is implmented via ipautil.dn_attribute_property(). The
only permitted types for a class attribute specified to be a DN are
either None or a DN object.
* Require that every place a dn is used it must be a DN object.
This translates into lot of::
assert isinstance(dn, DN)
sprinkled through out the code. Maintaining these asserts is
valuable to preserve DN type enforcement. The asserts can be
disabled in production.
The goal of 100% DN usage 100% of the time has been realized, these
asserts are meant to preserve that.
The asserts also proved valuable in detecting functions which did
not obey their function signatures, such as the baseldap pre and
post callbacks.
* Moved ipalib.dn to ipapython.dn because DN class is shared with all
components, not just the server which uses ipalib.
* All API's now accept DN's natively, no need to convert to str (or
unicode).
* Removed ipalib.encoder and encode/decode decorators. Type conversion
is now explicitly performed in each IPASimpleLDAPObject method which
emulates a ldap.SimpleLDAPObject method.
* Entity & Entry classes now utilize DN's
* Removed __getattr__ in Entity & Entity clases. There were two
problems with it. It presented synthetic Python object attributes
based on the current LDAP data it contained. There is no way to
validate synthetic attributes using code checkers, you can't search
the code to find LDAP attribute accesses (because synthetic
attriutes look like Python attributes instead of LDAP data) and
error handling is circumscribed. Secondly __getattr__ was hiding
Python internal methods which broke class semantics.
* Replace use of methods inherited from ldap.SimpleLDAPObject via
IPAdmin class with IPAdmin methods. Directly using inherited methods
was causing us to bypass IPA logic. Mostly this meant replacing the
use of search_s() with getEntry() or getList(). Similarly direct
access of the LDAP data in classes using IPAdmin were replaced with
calls to getValue() or getValues().
* Objects returned by ldap2.find_entries() are now compatible with
either the python-ldap access methodology or the Entity/Entry access
methodology.
* All ldap operations now funnel through the common
IPASimpleLDAPObject giving us a single location where we interface
to python-ldap and perform conversions.
* The above 4 modifications means we've greatly reduced the
proliferation of multiple inconsistent ways to perform LDAP
operations. We are well on the way to having a single API in IPA for
doing LDAP (a long range goal).
* All certificate subject bases are now DN's
* DN objects were enhanced thusly:
- find, rfind, index, rindex, replace and insert methods were added
- AVA, RDN and DN classes were refactored in immutable and mutable
variants, the mutable variants are EditableAVA, EditableRDN and
EditableDN. By default we use the immutable variants preserving
important semantics. To edit a DN cast it to an EditableDN and
cast it back to DN when done editing. These issues are fully
described in other documentation.
- first_key_match was removed
- DN equalty comparison permits comparison to a basestring
* Fixed ldapupdate to work with DN's. This work included:
- Enhance test_updates.py to do more checking after applying
update. Add test for update_from_dict(). Convert code to use
unittest classes.
- Consolidated duplicate code.
- Moved code which should have been in the class into the class.
- Fix the handling of the 'deleteentry' update action. It's no longer
necessary to supply fake attributes to make it work. Detect case
where subsequent update applies a change to entry previously marked
for deletetion. General clean-up and simplification of the
'deleteentry' logic.
- Rewrote a couple of functions to be clearer and more Pythonic.
- Added documentation on the data structure being used.
- Simplfy the use of update_from_dict()
* Removed all usage of get_schema() which was being called prior to
accessing the .schema attribute of an object. If a class is using
internal lazy loading as an optimization it's not right to require
users of the interface to be aware of internal
optimization's. schema is now a property and when the schema
property is accessed it calls a private internal method to perform
the lazy loading.
* Added SchemaCache class to cache the schema's from individual
servers. This was done because of the observation we talk to
different LDAP servers, each of which may have it's own
schema. Previously we globally cached the schema from the first
server we connected to and returned that schema in all contexts. The
cache includes controls to invalidate it thus forcing a schema
refresh.
* Schema caching is now senstive to the run time context. During
install and upgrade the schema can change leading to errors due to
out-of-date cached schema. The schema cache is refreshed in these
contexts.
* We are aware of the LDAP syntax of all LDAP attributes. Every
attribute returned from an LDAP operation is passed through a
central table look-up based on it's LDAP syntax. The table key is
the LDAP syntax it's value is a Python callable that returns a
Python object matching the LDAP syntax. There are a handful of LDAP
attributes whose syntax is historically incorrect
(e.g. DistguishedNames that are defined as DirectoryStrings). The
table driven conversion mechanism is augmented with a table of
hard coded exceptions.
Currently only the following conversions occur via the table:
- dn's are converted to DN objects
- binary objects are converted to Python str objects (IPA
convention).
- everything else is converted to unicode using UTF-8 decoding (IPA
convention).
However, now that the table driven conversion mechanism is in place
it would be trivial to do things such as converting attributes
which have LDAP integer syntax into a Python integer, etc.
* Expected values in the unit tests which are a DN no longer need to
use lambda expressions to promote the returned value to a DN for
equality comparison. The return value is automatically promoted to
a DN. The lambda expressions have been removed making the code much
simpler and easier to read.
* Add class level logging to a number of classes which did not support
logging, less need for use of root_logger.
* Remove ipaserver/conn.py, it was unused.
* Consolidated duplicate code wherever it was found.
* Fixed many places that used string concatenation to form a new
string rather than string formatting operators. This is necessary
because string formatting converts it's arguments to a string prior
to building the result string. You can't concatenate a string and a
non-string.
* Simplify logic in rename_managed plugin. Use DN operators to edit
dn's.
* The live version of ipa-ldap-updater did not generate a log file.
The offline version did, now both do.
https://fedorahosted.org/freeipa/ticket/1670
https://fedorahosted.org/freeipa/ticket/1671
https://fedorahosted.org/freeipa/ticket/1672
https://fedorahosted.org/freeipa/ticket/1673
https://fedorahosted.org/freeipa/ticket/1674
https://fedorahosted.org/freeipa/ticket/1392
https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
|
|
|
if suffix is not None:
|
|
|
|
assert isinstance(suffix, DN)
|
2008-09-15 19:51:01 -05:00
|
|
|
domain = ipautil.get_domain_name()
|
Use DN objects instead of strings
* Convert every string specifying a DN into a DN object
* Every place a dn was manipulated in some fashion it was replaced by
the use of DN operators
* Add new DNParam parameter type for parameters which are DN's
* DN objects are used 100% of the time throughout the entire data
pipeline whenever something is logically a dn.
* Many classes now enforce DN usage for their attributes which are
dn's. This is implmented via ipautil.dn_attribute_property(). The
only permitted types for a class attribute specified to be a DN are
either None or a DN object.
* Require that every place a dn is used it must be a DN object.
This translates into lot of::
assert isinstance(dn, DN)
sprinkled through out the code. Maintaining these asserts is
valuable to preserve DN type enforcement. The asserts can be
disabled in production.
The goal of 100% DN usage 100% of the time has been realized, these
asserts are meant to preserve that.
The asserts also proved valuable in detecting functions which did
not obey their function signatures, such as the baseldap pre and
post callbacks.
* Moved ipalib.dn to ipapython.dn because DN class is shared with all
components, not just the server which uses ipalib.
* All API's now accept DN's natively, no need to convert to str (or
unicode).
* Removed ipalib.encoder and encode/decode decorators. Type conversion
is now explicitly performed in each IPASimpleLDAPObject method which
emulates a ldap.SimpleLDAPObject method.
* Entity & Entry classes now utilize DN's
* Removed __getattr__ in Entity & Entity clases. There were two
problems with it. It presented synthetic Python object attributes
based on the current LDAP data it contained. There is no way to
validate synthetic attributes using code checkers, you can't search
the code to find LDAP attribute accesses (because synthetic
attriutes look like Python attributes instead of LDAP data) and
error handling is circumscribed. Secondly __getattr__ was hiding
Python internal methods which broke class semantics.
* Replace use of methods inherited from ldap.SimpleLDAPObject via
IPAdmin class with IPAdmin methods. Directly using inherited methods
was causing us to bypass IPA logic. Mostly this meant replacing the
use of search_s() with getEntry() or getList(). Similarly direct
access of the LDAP data in classes using IPAdmin were replaced with
calls to getValue() or getValues().
* Objects returned by ldap2.find_entries() are now compatible with
either the python-ldap access methodology or the Entity/Entry access
methodology.
* All ldap operations now funnel through the common
IPASimpleLDAPObject giving us a single location where we interface
to python-ldap and perform conversions.
* The above 4 modifications means we've greatly reduced the
proliferation of multiple inconsistent ways to perform LDAP
operations. We are well on the way to having a single API in IPA for
doing LDAP (a long range goal).
* All certificate subject bases are now DN's
* DN objects were enhanced thusly:
- find, rfind, index, rindex, replace and insert methods were added
- AVA, RDN and DN classes were refactored in immutable and mutable
variants, the mutable variants are EditableAVA, EditableRDN and
EditableDN. By default we use the immutable variants preserving
important semantics. To edit a DN cast it to an EditableDN and
cast it back to DN when done editing. These issues are fully
described in other documentation.
- first_key_match was removed
- DN equalty comparison permits comparison to a basestring
* Fixed ldapupdate to work with DN's. This work included:
- Enhance test_updates.py to do more checking after applying
update. Add test for update_from_dict(). Convert code to use
unittest classes.
- Consolidated duplicate code.
- Moved code which should have been in the class into the class.
- Fix the handling of the 'deleteentry' update action. It's no longer
necessary to supply fake attributes to make it work. Detect case
where subsequent update applies a change to entry previously marked
for deletetion. General clean-up and simplification of the
'deleteentry' logic.
- Rewrote a couple of functions to be clearer and more Pythonic.
- Added documentation on the data structure being used.
- Simplfy the use of update_from_dict()
* Removed all usage of get_schema() which was being called prior to
accessing the .schema attribute of an object. If a class is using
internal lazy loading as an optimization it's not right to require
users of the interface to be aware of internal
optimization's. schema is now a property and when the schema
property is accessed it calls a private internal method to perform
the lazy loading.
* Added SchemaCache class to cache the schema's from individual
servers. This was done because of the observation we talk to
different LDAP servers, each of which may have it's own
schema. Previously we globally cached the schema from the first
server we connected to and returned that schema in all contexts. The
cache includes controls to invalidate it thus forcing a schema
refresh.
* Schema caching is now senstive to the run time context. During
install and upgrade the schema can change leading to errors due to
out-of-date cached schema. The schema cache is refreshed in these
contexts.
* We are aware of the LDAP syntax of all LDAP attributes. Every
attribute returned from an LDAP operation is passed through a
central table look-up based on it's LDAP syntax. The table key is
the LDAP syntax it's value is a Python callable that returns a
Python object matching the LDAP syntax. There are a handful of LDAP
attributes whose syntax is historically incorrect
(e.g. DistguishedNames that are defined as DirectoryStrings). The
table driven conversion mechanism is augmented with a table of
hard coded exceptions.
Currently only the following conversions occur via the table:
- dn's are converted to DN objects
- binary objects are converted to Python str objects (IPA
convention).
- everything else is converted to unicode using UTF-8 decoding (IPA
convention).
However, now that the table driven conversion mechanism is in place
it would be trivial to do things such as converting attributes
which have LDAP integer syntax into a Python integer, etc.
* Expected values in the unit tests which are a DN no longer need to
use lambda expressions to promote the returned value to a DN for
equality comparison. The return value is automatically promoted to
a DN. The lambda expressions have been removed making the code much
simpler and easier to read.
* Add class level logging to a number of classes which did not support
logging, less need for use of root_logger.
* Remove ipaserver/conn.py, it was unused.
* Consolidated duplicate code wherever it was found.
* Fixed many places that used string concatenation to form a new
string rather than string formatting operators. This is necessary
because string formatting converts it's arguments to a string prior
to building the result string. You can't concatenate a string and a
non-string.
* Simplify logic in rename_managed plugin. Use DN operators to edit
dn's.
* The live version of ipa-ldap-updater did not generate a log file.
The offline version did, now both do.
https://fedorahosted.org/freeipa/ticket/1670
https://fedorahosted.org/freeipa/ticket/1671
https://fedorahosted.org/freeipa/ticket/1672
https://fedorahosted.org/freeipa/ticket/1673
https://fedorahosted.org/freeipa/ticket/1674
https://fedorahosted.org/freeipa/ticket/1392
https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
|
|
|
libarch = self._identify_arch()
|
2008-09-15 19:51:01 -05:00
|
|
|
|
2012-02-10 11:00:35 -06:00
|
|
|
fqdn = installutils.get_fqdn()
|
|
|
|
if fqdn is None:
|
|
|
|
raise RuntimeError("Unable to determine hostname")
|
2011-02-15 13:11:27 -06:00
|
|
|
|
2011-02-10 21:26:46 -06:00
|
|
|
if not self.sub_dict.get("REALM") and self.realm is not None:
|
|
|
|
self.sub_dict["REALM"] = self.realm
|
2008-09-15 19:51:01 -05:00
|
|
|
if not self.sub_dict.get("FQDN"):
|
2015-03-17 10:53:44 -05:00
|
|
|
self.sub_dict["FQDN"] = fqdn
|
2008-09-15 19:51:01 -05:00
|
|
|
if not self.sub_dict.get("DOMAIN"):
|
|
|
|
self.sub_dict["DOMAIN"] = domain
|
2011-02-10 21:26:46 -06:00
|
|
|
if not self.sub_dict.get("SUFFIX") and suffix is not None:
|
2008-09-15 19:51:01 -05:00
|
|
|
self.sub_dict["SUFFIX"] = suffix
|
2010-04-16 15:23:45 -05:00
|
|
|
if not self.sub_dict.get("ESCAPED_SUFFIX"):
|
Use DN objects instead of strings
* Convert every string specifying a DN into a DN object
* Every place a dn was manipulated in some fashion it was replaced by
the use of DN operators
* Add new DNParam parameter type for parameters which are DN's
* DN objects are used 100% of the time throughout the entire data
pipeline whenever something is logically a dn.
* Many classes now enforce DN usage for their attributes which are
dn's. This is implmented via ipautil.dn_attribute_property(). The
only permitted types for a class attribute specified to be a DN are
either None or a DN object.
* Require that every place a dn is used it must be a DN object.
This translates into lot of::
assert isinstance(dn, DN)
sprinkled through out the code. Maintaining these asserts is
valuable to preserve DN type enforcement. The asserts can be
disabled in production.
The goal of 100% DN usage 100% of the time has been realized, these
asserts are meant to preserve that.
The asserts also proved valuable in detecting functions which did
not obey their function signatures, such as the baseldap pre and
post callbacks.
* Moved ipalib.dn to ipapython.dn because DN class is shared with all
components, not just the server which uses ipalib.
* All API's now accept DN's natively, no need to convert to str (or
unicode).
* Removed ipalib.encoder and encode/decode decorators. Type conversion
is now explicitly performed in each IPASimpleLDAPObject method which
emulates a ldap.SimpleLDAPObject method.
* Entity & Entry classes now utilize DN's
* Removed __getattr__ in Entity & Entity clases. There were two
problems with it. It presented synthetic Python object attributes
based on the current LDAP data it contained. There is no way to
validate synthetic attributes using code checkers, you can't search
the code to find LDAP attribute accesses (because synthetic
attriutes look like Python attributes instead of LDAP data) and
error handling is circumscribed. Secondly __getattr__ was hiding
Python internal methods which broke class semantics.
* Replace use of methods inherited from ldap.SimpleLDAPObject via
IPAdmin class with IPAdmin methods. Directly using inherited methods
was causing us to bypass IPA logic. Mostly this meant replacing the
use of search_s() with getEntry() or getList(). Similarly direct
access of the LDAP data in classes using IPAdmin were replaced with
calls to getValue() or getValues().
* Objects returned by ldap2.find_entries() are now compatible with
either the python-ldap access methodology or the Entity/Entry access
methodology.
* All ldap operations now funnel through the common
IPASimpleLDAPObject giving us a single location where we interface
to python-ldap and perform conversions.
* The above 4 modifications means we've greatly reduced the
proliferation of multiple inconsistent ways to perform LDAP
operations. We are well on the way to having a single API in IPA for
doing LDAP (a long range goal).
* All certificate subject bases are now DN's
* DN objects were enhanced thusly:
- find, rfind, index, rindex, replace and insert methods were added
- AVA, RDN and DN classes were refactored in immutable and mutable
variants, the mutable variants are EditableAVA, EditableRDN and
EditableDN. By default we use the immutable variants preserving
important semantics. To edit a DN cast it to an EditableDN and
cast it back to DN when done editing. These issues are fully
described in other documentation.
- first_key_match was removed
- DN equalty comparison permits comparison to a basestring
* Fixed ldapupdate to work with DN's. This work included:
- Enhance test_updates.py to do more checking after applying
update. Add test for update_from_dict(). Convert code to use
unittest classes.
- Consolidated duplicate code.
- Moved code which should have been in the class into the class.
- Fix the handling of the 'deleteentry' update action. It's no longer
necessary to supply fake attributes to make it work. Detect case
where subsequent update applies a change to entry previously marked
for deletetion. General clean-up and simplification of the
'deleteentry' logic.
- Rewrote a couple of functions to be clearer and more Pythonic.
- Added documentation on the data structure being used.
- Simplfy the use of update_from_dict()
* Removed all usage of get_schema() which was being called prior to
accessing the .schema attribute of an object. If a class is using
internal lazy loading as an optimization it's not right to require
users of the interface to be aware of internal
optimization's. schema is now a property and when the schema
property is accessed it calls a private internal method to perform
the lazy loading.
* Added SchemaCache class to cache the schema's from individual
servers. This was done because of the observation we talk to
different LDAP servers, each of which may have it's own
schema. Previously we globally cached the schema from the first
server we connected to and returned that schema in all contexts. The
cache includes controls to invalidate it thus forcing a schema
refresh.
* Schema caching is now senstive to the run time context. During
install and upgrade the schema can change leading to errors due to
out-of-date cached schema. The schema cache is refreshed in these
contexts.
* We are aware of the LDAP syntax of all LDAP attributes. Every
attribute returned from an LDAP operation is passed through a
central table look-up based on it's LDAP syntax. The table key is
the LDAP syntax it's value is a Python callable that returns a
Python object matching the LDAP syntax. There are a handful of LDAP
attributes whose syntax is historically incorrect
(e.g. DistguishedNames that are defined as DirectoryStrings). The
table driven conversion mechanism is augmented with a table of
hard coded exceptions.
Currently only the following conversions occur via the table:
- dn's are converted to DN objects
- binary objects are converted to Python str objects (IPA
convention).
- everything else is converted to unicode using UTF-8 decoding (IPA
convention).
However, now that the table driven conversion mechanism is in place
it would be trivial to do things such as converting attributes
which have LDAP integer syntax into a Python integer, etc.
* Expected values in the unit tests which are a DN no longer need to
use lambda expressions to promote the returned value to a DN for
equality comparison. The return value is automatically promoted to
a DN. The lambda expressions have been removed making the code much
simpler and easier to read.
* Add class level logging to a number of classes which did not support
logging, less need for use of root_logger.
* Remove ipaserver/conn.py, it was unused.
* Consolidated duplicate code wherever it was found.
* Fixed many places that used string concatenation to form a new
string rather than string formatting operators. This is necessary
because string formatting converts it's arguments to a string prior
to building the result string. You can't concatenate a string and a
non-string.
* Simplify logic in rename_managed plugin. Use DN operators to edit
dn's.
* The live version of ipa-ldap-updater did not generate a log file.
The offline version did, now both do.
https://fedorahosted.org/freeipa/ticket/1670
https://fedorahosted.org/freeipa/ticket/1671
https://fedorahosted.org/freeipa/ticket/1672
https://fedorahosted.org/freeipa/ticket/1673
https://fedorahosted.org/freeipa/ticket/1674
https://fedorahosted.org/freeipa/ticket/1392
https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
|
|
|
self.sub_dict["ESCAPED_SUFFIX"] = str(suffix)
|
2008-09-15 19:51:01 -05:00
|
|
|
if not self.sub_dict.get("LIBARCH"):
|
|
|
|
self.sub_dict["LIBARCH"] = libarch
|
|
|
|
if not self.sub_dict.get("TIME"):
|
|
|
|
self.sub_dict["TIME"] = int(time.time())
|
2011-02-15 13:11:27 -06:00
|
|
|
if not self.sub_dict.get("DOMAIN") and domain is not None:
|
|
|
|
self.sub_dict["DOMAIN"] = domain
|
2015-05-14 03:49:55 -05:00
|
|
|
if not self.sub_dict.get("MIN_DOMAIN_LEVEL"):
|
|
|
|
self.sub_dict["MIN_DOMAIN_LEVEL"] = str(constants.MIN_DOMAIN_LEVEL)
|
|
|
|
if not self.sub_dict.get("MAX_DOMAIN_LEVEL"):
|
|
|
|
self.sub_dict["MAX_DOMAIN_LEVEL"] = str(constants.MAX_DOMAIN_LEVEL)
|
2015-07-31 09:22:13 -05:00
|
|
|
if not self.sub_dict.get("STRIP_ATTRS"):
|
|
|
|
self.sub_dict["STRIP_ATTRS"] = "%s" % (
|
|
|
|
" ".join(constants.REPL_AGMT_STRIP_ATTRS),)
|
|
|
|
if not self.sub_dict.get("EXCLUDES"):
|
|
|
|
self.sub_dict["EXCLUDES"] = "(objectclass=*) $ EXCLUDE %s" % (
|
|
|
|
" ".join(constants.REPL_AGMT_EXCLUDES),)
|
|
|
|
if not self.sub_dict.get("TOTAL_EXCLUDES"):
|
|
|
|
self.sub_dict["TOTAL_EXCLUDES"] = "(objectclass=*) $ EXCLUDE " + \
|
|
|
|
" ".join(constants.REPL_AGMT_TOTAL_EXCLUDES)
|
2015-03-18 09:46:00 -05:00
|
|
|
self.api = create_api(mode=None)
|
|
|
|
self.api.bootstrap(in_server=True, context='updates')
|
|
|
|
self.api.finalize()
|
2010-05-27 10:58:31 -05:00
|
|
|
if online:
|
2011-04-11 14:30:11 -05:00
|
|
|
# Try out the connection/password
|
2013-04-25 08:14:34 -05:00
|
|
|
# (This will raise if the server is not available)
|
|
|
|
self.create_connection()
|
2015-03-18 09:46:00 -05:00
|
|
|
self.close_connection()
|
2010-05-27 10:58:31 -05:00
|
|
|
else:
|
|
|
|
raise RuntimeError("Offline updates are not supported.")
|
2008-09-15 19:51:01 -05:00
|
|
|
|
Use DN objects instead of strings
* Convert every string specifying a DN into a DN object
* Every place a dn was manipulated in some fashion it was replaced by
the use of DN operators
* Add new DNParam parameter type for parameters which are DN's
* DN objects are used 100% of the time throughout the entire data
pipeline whenever something is logically a dn.
* Many classes now enforce DN usage for their attributes which are
dn's. This is implmented via ipautil.dn_attribute_property(). The
only permitted types for a class attribute specified to be a DN are
either None or a DN object.
* Require that every place a dn is used it must be a DN object.
This translates into lot of::
assert isinstance(dn, DN)
sprinkled through out the code. Maintaining these asserts is
valuable to preserve DN type enforcement. The asserts can be
disabled in production.
The goal of 100% DN usage 100% of the time has been realized, these
asserts are meant to preserve that.
The asserts also proved valuable in detecting functions which did
not obey their function signatures, such as the baseldap pre and
post callbacks.
* Moved ipalib.dn to ipapython.dn because DN class is shared with all
components, not just the server which uses ipalib.
* All API's now accept DN's natively, no need to convert to str (or
unicode).
* Removed ipalib.encoder and encode/decode decorators. Type conversion
is now explicitly performed in each IPASimpleLDAPObject method which
emulates a ldap.SimpleLDAPObject method.
* Entity & Entry classes now utilize DN's
* Removed __getattr__ in Entity & Entity clases. There were two
problems with it. It presented synthetic Python object attributes
based on the current LDAP data it contained. There is no way to
validate synthetic attributes using code checkers, you can't search
the code to find LDAP attribute accesses (because synthetic
attriutes look like Python attributes instead of LDAP data) and
error handling is circumscribed. Secondly __getattr__ was hiding
Python internal methods which broke class semantics.
* Replace use of methods inherited from ldap.SimpleLDAPObject via
IPAdmin class with IPAdmin methods. Directly using inherited methods
was causing us to bypass IPA logic. Mostly this meant replacing the
use of search_s() with getEntry() or getList(). Similarly direct
access of the LDAP data in classes using IPAdmin were replaced with
calls to getValue() or getValues().
* Objects returned by ldap2.find_entries() are now compatible with
either the python-ldap access methodology or the Entity/Entry access
methodology.
* All ldap operations now funnel through the common
IPASimpleLDAPObject giving us a single location where we interface
to python-ldap and perform conversions.
* The above 4 modifications means we've greatly reduced the
proliferation of multiple inconsistent ways to perform LDAP
operations. We are well on the way to having a single API in IPA for
doing LDAP (a long range goal).
* All certificate subject bases are now DN's
* DN objects were enhanced thusly:
- find, rfind, index, rindex, replace and insert methods were added
- AVA, RDN and DN classes were refactored in immutable and mutable
variants, the mutable variants are EditableAVA, EditableRDN and
EditableDN. By default we use the immutable variants preserving
important semantics. To edit a DN cast it to an EditableDN and
cast it back to DN when done editing. These issues are fully
described in other documentation.
- first_key_match was removed
- DN equalty comparison permits comparison to a basestring
* Fixed ldapupdate to work with DN's. This work included:
- Enhance test_updates.py to do more checking after applying
update. Add test for update_from_dict(). Convert code to use
unittest classes.
- Consolidated duplicate code.
- Moved code which should have been in the class into the class.
- Fix the handling of the 'deleteentry' update action. It's no longer
necessary to supply fake attributes to make it work. Detect case
where subsequent update applies a change to entry previously marked
for deletetion. General clean-up and simplification of the
'deleteentry' logic.
- Rewrote a couple of functions to be clearer and more Pythonic.
- Added documentation on the data structure being used.
- Simplfy the use of update_from_dict()
* Removed all usage of get_schema() which was being called prior to
accessing the .schema attribute of an object. If a class is using
internal lazy loading as an optimization it's not right to require
users of the interface to be aware of internal
optimization's. schema is now a property and when the schema
property is accessed it calls a private internal method to perform
the lazy loading.
* Added SchemaCache class to cache the schema's from individual
servers. This was done because of the observation we talk to
different LDAP servers, each of which may have it's own
schema. Previously we globally cached the schema from the first
server we connected to and returned that schema in all contexts. The
cache includes controls to invalidate it thus forcing a schema
refresh.
* Schema caching is now senstive to the run time context. During
install and upgrade the schema can change leading to errors due to
out-of-date cached schema. The schema cache is refreshed in these
contexts.
* We are aware of the LDAP syntax of all LDAP attributes. Every
attribute returned from an LDAP operation is passed through a
central table look-up based on it's LDAP syntax. The table key is
the LDAP syntax it's value is a Python callable that returns a
Python object matching the LDAP syntax. There are a handful of LDAP
attributes whose syntax is historically incorrect
(e.g. DistguishedNames that are defined as DirectoryStrings). The
table driven conversion mechanism is augmented with a table of
hard coded exceptions.
Currently only the following conversions occur via the table:
- dn's are converted to DN objects
- binary objects are converted to Python str objects (IPA
convention).
- everything else is converted to unicode using UTF-8 decoding (IPA
convention).
However, now that the table driven conversion mechanism is in place
it would be trivial to do things such as converting attributes
which have LDAP integer syntax into a Python integer, etc.
* Expected values in the unit tests which are a DN no longer need to
use lambda expressions to promote the returned value to a DN for
equality comparison. The return value is automatically promoted to
a DN. The lambda expressions have been removed making the code much
simpler and easier to read.
* Add class level logging to a number of classes which did not support
logging, less need for use of root_logger.
* Remove ipaserver/conn.py, it was unused.
* Consolidated duplicate code wherever it was found.
* Fixed many places that used string concatenation to form a new
string rather than string formatting operators. This is necessary
because string formatting converts it's arguments to a string prior
to building the result string. You can't concatenate a string and a
non-string.
* Simplify logic in rename_managed plugin. Use DN operators to edit
dn's.
* The live version of ipa-ldap-updater did not generate a log file.
The offline version did, now both do.
https://fedorahosted.org/freeipa/ticket/1670
https://fedorahosted.org/freeipa/ticket/1671
https://fedorahosted.org/freeipa/ticket/1672
https://fedorahosted.org/freeipa/ticket/1673
https://fedorahosted.org/freeipa/ticket/1674
https://fedorahosted.org/freeipa/ticket/1392
https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
|
|
|
def _identify_arch(self):
|
2008-09-15 19:51:01 -05:00
|
|
|
"""On multi-arch systems some libraries may be in /lib64, /usr/lib64,
|
|
|
|
etc. Determine if a suffix is needed based on the current
|
|
|
|
architecture.
|
|
|
|
"""
|
2008-09-18 15:58:10 -05:00
|
|
|
bits = platform.architecture()[0]
|
2008-09-15 19:51:01 -05:00
|
|
|
|
2008-09-18 15:58:10 -05:00
|
|
|
if bits == "64bit":
|
2008-09-15 19:51:01 -05:00
|
|
|
return "64"
|
|
|
|
else:
|
|
|
|
return ""
|
|
|
|
|
2009-09-14 15:12:58 -05:00
|
|
|
def _template_str(self, s):
|
2008-09-15 19:51:01 -05:00
|
|
|
try:
|
|
|
|
return ipautil.template_str(s, self.sub_dict)
|
2015-07-30 09:49:29 -05:00
|
|
|
except KeyError as e:
|
2008-09-15 19:51:01 -05:00
|
|
|
raise BadSyntax("Unknown template keyword %s" % e)
|
|
|
|
|
|
|
|
def read_file(self, filename):
|
|
|
|
if filename == '-':
|
|
|
|
fd = sys.stdin
|
|
|
|
else:
|
|
|
|
fd = open(filename)
|
|
|
|
text = fd.readlines()
|
|
|
|
if fd != sys.stdin: fd.close()
|
|
|
|
return text
|
|
|
|
|
Use DN objects instead of strings
* Convert every string specifying a DN into a DN object
* Every place a dn was manipulated in some fashion it was replaced by
the use of DN operators
* Add new DNParam parameter type for parameters which are DN's
* DN objects are used 100% of the time throughout the entire data
pipeline whenever something is logically a dn.
* Many classes now enforce DN usage for their attributes which are
dn's. This is implmented via ipautil.dn_attribute_property(). The
only permitted types for a class attribute specified to be a DN are
either None or a DN object.
* Require that every place a dn is used it must be a DN object.
This translates into lot of::
assert isinstance(dn, DN)
sprinkled through out the code. Maintaining these asserts is
valuable to preserve DN type enforcement. The asserts can be
disabled in production.
The goal of 100% DN usage 100% of the time has been realized, these
asserts are meant to preserve that.
The asserts also proved valuable in detecting functions which did
not obey their function signatures, such as the baseldap pre and
post callbacks.
* Moved ipalib.dn to ipapython.dn because DN class is shared with all
components, not just the server which uses ipalib.
* All API's now accept DN's natively, no need to convert to str (or
unicode).
* Removed ipalib.encoder and encode/decode decorators. Type conversion
is now explicitly performed in each IPASimpleLDAPObject method which
emulates a ldap.SimpleLDAPObject method.
* Entity & Entry classes now utilize DN's
* Removed __getattr__ in Entity & Entity clases. There were two
problems with it. It presented synthetic Python object attributes
based on the current LDAP data it contained. There is no way to
validate synthetic attributes using code checkers, you can't search
the code to find LDAP attribute accesses (because synthetic
attriutes look like Python attributes instead of LDAP data) and
error handling is circumscribed. Secondly __getattr__ was hiding
Python internal methods which broke class semantics.
* Replace use of methods inherited from ldap.SimpleLDAPObject via
IPAdmin class with IPAdmin methods. Directly using inherited methods
was causing us to bypass IPA logic. Mostly this meant replacing the
use of search_s() with getEntry() or getList(). Similarly direct
access of the LDAP data in classes using IPAdmin were replaced with
calls to getValue() or getValues().
* Objects returned by ldap2.find_entries() are now compatible with
either the python-ldap access methodology or the Entity/Entry access
methodology.
* All ldap operations now funnel through the common
IPASimpleLDAPObject giving us a single location where we interface
to python-ldap and perform conversions.
* The above 4 modifications means we've greatly reduced the
proliferation of multiple inconsistent ways to perform LDAP
operations. We are well on the way to having a single API in IPA for
doing LDAP (a long range goal).
* All certificate subject bases are now DN's
* DN objects were enhanced thusly:
- find, rfind, index, rindex, replace and insert methods were added
- AVA, RDN and DN classes were refactored in immutable and mutable
variants, the mutable variants are EditableAVA, EditableRDN and
EditableDN. By default we use the immutable variants preserving
important semantics. To edit a DN cast it to an EditableDN and
cast it back to DN when done editing. These issues are fully
described in other documentation.
- first_key_match was removed
- DN equalty comparison permits comparison to a basestring
* Fixed ldapupdate to work with DN's. This work included:
- Enhance test_updates.py to do more checking after applying
update. Add test for update_from_dict(). Convert code to use
unittest classes.
- Consolidated duplicate code.
- Moved code which should have been in the class into the class.
- Fix the handling of the 'deleteentry' update action. It's no longer
necessary to supply fake attributes to make it work. Detect case
where subsequent update applies a change to entry previously marked
for deletetion. General clean-up and simplification of the
'deleteentry' logic.
- Rewrote a couple of functions to be clearer and more Pythonic.
- Added documentation on the data structure being used.
- Simplfy the use of update_from_dict()
* Removed all usage of get_schema() which was being called prior to
accessing the .schema attribute of an object. If a class is using
internal lazy loading as an optimization it's not right to require
users of the interface to be aware of internal
optimization's. schema is now a property and when the schema
property is accessed it calls a private internal method to perform
the lazy loading.
* Added SchemaCache class to cache the schema's from individual
servers. This was done because of the observation we talk to
different LDAP servers, each of which may have it's own
schema. Previously we globally cached the schema from the first
server we connected to and returned that schema in all contexts. The
cache includes controls to invalidate it thus forcing a schema
refresh.
* Schema caching is now senstive to the run time context. During
install and upgrade the schema can change leading to errors due to
out-of-date cached schema. The schema cache is refreshed in these
contexts.
* We are aware of the LDAP syntax of all LDAP attributes. Every
attribute returned from an LDAP operation is passed through a
central table look-up based on it's LDAP syntax. The table key is
the LDAP syntax it's value is a Python callable that returns a
Python object matching the LDAP syntax. There are a handful of LDAP
attributes whose syntax is historically incorrect
(e.g. DistguishedNames that are defined as DirectoryStrings). The
table driven conversion mechanism is augmented with a table of
hard coded exceptions.
Currently only the following conversions occur via the table:
- dn's are converted to DN objects
- binary objects are converted to Python str objects (IPA
convention).
- everything else is converted to unicode using UTF-8 decoding (IPA
convention).
However, now that the table driven conversion mechanism is in place
it would be trivial to do things such as converting attributes
which have LDAP integer syntax into a Python integer, etc.
* Expected values in the unit tests which are a DN no longer need to
use lambda expressions to promote the returned value to a DN for
equality comparison. The return value is automatically promoted to
a DN. The lambda expressions have been removed making the code much
simpler and easier to read.
* Add class level logging to a number of classes which did not support
logging, less need for use of root_logger.
* Remove ipaserver/conn.py, it was unused.
* Consolidated duplicate code wherever it was found.
* Fixed many places that used string concatenation to form a new
string rather than string formatting operators. This is necessary
because string formatting converts it's arguments to a string prior
to building the result string. You can't concatenate a string and a
non-string.
* Simplify logic in rename_managed plugin. Use DN operators to edit
dn's.
* The live version of ipa-ldap-updater did not generate a log file.
The offline version did, now both do.
https://fedorahosted.org/freeipa/ticket/1670
https://fedorahosted.org/freeipa/ticket/1671
https://fedorahosted.org/freeipa/ticket/1672
https://fedorahosted.org/freeipa/ticket/1673
https://fedorahosted.org/freeipa/ticket/1674
https://fedorahosted.org/freeipa/ticket/1392
https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
|
|
|
def parse_update_file(self, data_source_name, source_data, all_updates):
|
2008-09-15 19:51:01 -05:00
|
|
|
"""Parse the update file into a dictonary of lists and apply the update
|
|
|
|
for each DN in the file."""
|
|
|
|
update = {}
|
Use DN objects instead of strings
* Convert every string specifying a DN into a DN object
* Every place a dn was manipulated in some fashion it was replaced by
the use of DN operators
* Add new DNParam parameter type for parameters which are DN's
* DN objects are used 100% of the time throughout the entire data
pipeline whenever something is logically a dn.
* Many classes now enforce DN usage for their attributes which are
dn's. This is implmented via ipautil.dn_attribute_property(). The
only permitted types for a class attribute specified to be a DN are
either None or a DN object.
* Require that every place a dn is used it must be a DN object.
This translates into lot of::
assert isinstance(dn, DN)
sprinkled through out the code. Maintaining these asserts is
valuable to preserve DN type enforcement. The asserts can be
disabled in production.
The goal of 100% DN usage 100% of the time has been realized, these
asserts are meant to preserve that.
The asserts also proved valuable in detecting functions which did
not obey their function signatures, such as the baseldap pre and
post callbacks.
* Moved ipalib.dn to ipapython.dn because DN class is shared with all
components, not just the server which uses ipalib.
* All API's now accept DN's natively, no need to convert to str (or
unicode).
* Removed ipalib.encoder and encode/decode decorators. Type conversion
is now explicitly performed in each IPASimpleLDAPObject method which
emulates a ldap.SimpleLDAPObject method.
* Entity & Entry classes now utilize DN's
* Removed __getattr__ in Entity & Entity clases. There were two
problems with it. It presented synthetic Python object attributes
based on the current LDAP data it contained. There is no way to
validate synthetic attributes using code checkers, you can't search
the code to find LDAP attribute accesses (because synthetic
attriutes look like Python attributes instead of LDAP data) and
error handling is circumscribed. Secondly __getattr__ was hiding
Python internal methods which broke class semantics.
* Replace use of methods inherited from ldap.SimpleLDAPObject via
IPAdmin class with IPAdmin methods. Directly using inherited methods
was causing us to bypass IPA logic. Mostly this meant replacing the
use of search_s() with getEntry() or getList(). Similarly direct
access of the LDAP data in classes using IPAdmin were replaced with
calls to getValue() or getValues().
* Objects returned by ldap2.find_entries() are now compatible with
either the python-ldap access methodology or the Entity/Entry access
methodology.
* All ldap operations now funnel through the common
IPASimpleLDAPObject giving us a single location where we interface
to python-ldap and perform conversions.
* The above 4 modifications means we've greatly reduced the
proliferation of multiple inconsistent ways to perform LDAP
operations. We are well on the way to having a single API in IPA for
doing LDAP (a long range goal).
* All certificate subject bases are now DN's
* DN objects were enhanced thusly:
- find, rfind, index, rindex, replace and insert methods were added
- AVA, RDN and DN classes were refactored in immutable and mutable
variants, the mutable variants are EditableAVA, EditableRDN and
EditableDN. By default we use the immutable variants preserving
important semantics. To edit a DN cast it to an EditableDN and
cast it back to DN when done editing. These issues are fully
described in other documentation.
- first_key_match was removed
- DN equalty comparison permits comparison to a basestring
* Fixed ldapupdate to work with DN's. This work included:
- Enhance test_updates.py to do more checking after applying
update. Add test for update_from_dict(). Convert code to use
unittest classes.
- Consolidated duplicate code.
- Moved code which should have been in the class into the class.
- Fix the handling of the 'deleteentry' update action. It's no longer
necessary to supply fake attributes to make it work. Detect case
where subsequent update applies a change to entry previously marked
for deletetion. General clean-up and simplification of the
'deleteentry' logic.
- Rewrote a couple of functions to be clearer and more Pythonic.
- Added documentation on the data structure being used.
- Simplfy the use of update_from_dict()
* Removed all usage of get_schema() which was being called prior to
accessing the .schema attribute of an object. If a class is using
internal lazy loading as an optimization it's not right to require
users of the interface to be aware of internal
optimization's. schema is now a property and when the schema
property is accessed it calls a private internal method to perform
the lazy loading.
* Added SchemaCache class to cache the schema's from individual
servers. This was done because of the observation we talk to
different LDAP servers, each of which may have it's own
schema. Previously we globally cached the schema from the first
server we connected to and returned that schema in all contexts. The
cache includes controls to invalidate it thus forcing a schema
refresh.
* Schema caching is now senstive to the run time context. During
install and upgrade the schema can change leading to errors due to
out-of-date cached schema. The schema cache is refreshed in these
contexts.
* We are aware of the LDAP syntax of all LDAP attributes. Every
attribute returned from an LDAP operation is passed through a
central table look-up based on it's LDAP syntax. The table key is
the LDAP syntax it's value is a Python callable that returns a
Python object matching the LDAP syntax. There are a handful of LDAP
attributes whose syntax is historically incorrect
(e.g. DistguishedNames that are defined as DirectoryStrings). The
table driven conversion mechanism is augmented with a table of
hard coded exceptions.
Currently only the following conversions occur via the table:
- dn's are converted to DN objects
- binary objects are converted to Python str objects (IPA
convention).
- everything else is converted to unicode using UTF-8 decoding (IPA
convention).
However, now that the table driven conversion mechanism is in place
it would be trivial to do things such as converting attributes
which have LDAP integer syntax into a Python integer, etc.
* Expected values in the unit tests which are a DN no longer need to
use lambda expressions to promote the returned value to a DN for
equality comparison. The return value is automatically promoted to
a DN. The lambda expressions have been removed making the code much
simpler and easier to read.
* Add class level logging to a number of classes which did not support
logging, less need for use of root_logger.
* Remove ipaserver/conn.py, it was unused.
* Consolidated duplicate code wherever it was found.
* Fixed many places that used string concatenation to form a new
string rather than string formatting operators. This is necessary
because string formatting converts it's arguments to a string prior
to building the result string. You can't concatenate a string and a
non-string.
* Simplify logic in rename_managed plugin. Use DN operators to edit
dn's.
* The live version of ipa-ldap-updater did not generate a log file.
The offline version did, now both do.
https://fedorahosted.org/freeipa/ticket/1670
https://fedorahosted.org/freeipa/ticket/1671
https://fedorahosted.org/freeipa/ticket/1672
https://fedorahosted.org/freeipa/ticket/1673
https://fedorahosted.org/freeipa/ticket/1674
https://fedorahosted.org/freeipa/ticket/1392
https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
|
|
|
logical_line = ""
|
2008-09-15 19:51:01 -05:00
|
|
|
dn = None
|
|
|
|
lcount = 0
|
|
|
|
|
Use DN objects instead of strings
* Convert every string specifying a DN into a DN object
* Every place a dn was manipulated in some fashion it was replaced by
the use of DN operators
* Add new DNParam parameter type for parameters which are DN's
* DN objects are used 100% of the time throughout the entire data
pipeline whenever something is logically a dn.
* Many classes now enforce DN usage for their attributes which are
dn's. This is implmented via ipautil.dn_attribute_property(). The
only permitted types for a class attribute specified to be a DN are
either None or a DN object.
* Require that every place a dn is used it must be a DN object.
This translates into lot of::
assert isinstance(dn, DN)
sprinkled through out the code. Maintaining these asserts is
valuable to preserve DN type enforcement. The asserts can be
disabled in production.
The goal of 100% DN usage 100% of the time has been realized, these
asserts are meant to preserve that.
The asserts also proved valuable in detecting functions which did
not obey their function signatures, such as the baseldap pre and
post callbacks.
* Moved ipalib.dn to ipapython.dn because DN class is shared with all
components, not just the server which uses ipalib.
* All API's now accept DN's natively, no need to convert to str (or
unicode).
* Removed ipalib.encoder and encode/decode decorators. Type conversion
is now explicitly performed in each IPASimpleLDAPObject method which
emulates a ldap.SimpleLDAPObject method.
* Entity & Entry classes now utilize DN's
* Removed __getattr__ in Entity & Entity clases. There were two
problems with it. It presented synthetic Python object attributes
based on the current LDAP data it contained. There is no way to
validate synthetic attributes using code checkers, you can't search
the code to find LDAP attribute accesses (because synthetic
attriutes look like Python attributes instead of LDAP data) and
error handling is circumscribed. Secondly __getattr__ was hiding
Python internal methods which broke class semantics.
* Replace use of methods inherited from ldap.SimpleLDAPObject via
IPAdmin class with IPAdmin methods. Directly using inherited methods
was causing us to bypass IPA logic. Mostly this meant replacing the
use of search_s() with getEntry() or getList(). Similarly direct
access of the LDAP data in classes using IPAdmin were replaced with
calls to getValue() or getValues().
* Objects returned by ldap2.find_entries() are now compatible with
either the python-ldap access methodology or the Entity/Entry access
methodology.
* All ldap operations now funnel through the common
IPASimpleLDAPObject giving us a single location where we interface
to python-ldap and perform conversions.
* The above 4 modifications means we've greatly reduced the
proliferation of multiple inconsistent ways to perform LDAP
operations. We are well on the way to having a single API in IPA for
doing LDAP (a long range goal).
* All certificate subject bases are now DN's
* DN objects were enhanced thusly:
- find, rfind, index, rindex, replace and insert methods were added
- AVA, RDN and DN classes were refactored in immutable and mutable
variants, the mutable variants are EditableAVA, EditableRDN and
EditableDN. By default we use the immutable variants preserving
important semantics. To edit a DN cast it to an EditableDN and
cast it back to DN when done editing. These issues are fully
described in other documentation.
- first_key_match was removed
- DN equalty comparison permits comparison to a basestring
* Fixed ldapupdate to work with DN's. This work included:
- Enhance test_updates.py to do more checking after applying
update. Add test for update_from_dict(). Convert code to use
unittest classes.
- Consolidated duplicate code.
- Moved code which should have been in the class into the class.
- Fix the handling of the 'deleteentry' update action. It's no longer
necessary to supply fake attributes to make it work. Detect case
where subsequent update applies a change to entry previously marked
for deletetion. General clean-up and simplification of the
'deleteentry' logic.
- Rewrote a couple of functions to be clearer and more Pythonic.
- Added documentation on the data structure being used.
- Simplfy the use of update_from_dict()
* Removed all usage of get_schema() which was being called prior to
accessing the .schema attribute of an object. If a class is using
internal lazy loading as an optimization it's not right to require
users of the interface to be aware of internal
optimization's. schema is now a property and when the schema
property is accessed it calls a private internal method to perform
the lazy loading.
* Added SchemaCache class to cache the schema's from individual
servers. This was done because of the observation we talk to
different LDAP servers, each of which may have it's own
schema. Previously we globally cached the schema from the first
server we connected to and returned that schema in all contexts. The
cache includes controls to invalidate it thus forcing a schema
refresh.
* Schema caching is now senstive to the run time context. During
install and upgrade the schema can change leading to errors due to
out-of-date cached schema. The schema cache is refreshed in these
contexts.
* We are aware of the LDAP syntax of all LDAP attributes. Every
attribute returned from an LDAP operation is passed through a
central table look-up based on it's LDAP syntax. The table key is
the LDAP syntax it's value is a Python callable that returns a
Python object matching the LDAP syntax. There are a handful of LDAP
attributes whose syntax is historically incorrect
(e.g. DistguishedNames that are defined as DirectoryStrings). The
table driven conversion mechanism is augmented with a table of
hard coded exceptions.
Currently only the following conversions occur via the table:
- dn's are converted to DN objects
- binary objects are converted to Python str objects (IPA
convention).
- everything else is converted to unicode using UTF-8 decoding (IPA
convention).
However, now that the table driven conversion mechanism is in place
it would be trivial to do things such as converting attributes
which have LDAP integer syntax into a Python integer, etc.
* Expected values in the unit tests which are a DN no longer need to
use lambda expressions to promote the returned value to a DN for
equality comparison. The return value is automatically promoted to
a DN. The lambda expressions have been removed making the code much
simpler and easier to read.
* Add class level logging to a number of classes which did not support
logging, less need for use of root_logger.
* Remove ipaserver/conn.py, it was unused.
* Consolidated duplicate code wherever it was found.
* Fixed many places that used string concatenation to form a new
string rather than string formatting operators. This is necessary
because string formatting converts it's arguments to a string prior
to building the result string. You can't concatenate a string and a
non-string.
* Simplify logic in rename_managed plugin. Use DN operators to edit
dn's.
* The live version of ipa-ldap-updater did not generate a log file.
The offline version did, now both do.
https://fedorahosted.org/freeipa/ticket/1670
https://fedorahosted.org/freeipa/ticket/1671
https://fedorahosted.org/freeipa/ticket/1672
https://fedorahosted.org/freeipa/ticket/1673
https://fedorahosted.org/freeipa/ticket/1674
https://fedorahosted.org/freeipa/ticket/1392
https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
|
|
|
def emit_item(logical_line):
|
|
|
|
'''
|
|
|
|
Given a logical line containing an item to process perform the following:
|
2008-09-15 19:51:01 -05:00
|
|
|
|
Use DN objects instead of strings
* Convert every string specifying a DN into a DN object
* Every place a dn was manipulated in some fashion it was replaced by
the use of DN operators
* Add new DNParam parameter type for parameters which are DN's
* DN objects are used 100% of the time throughout the entire data
pipeline whenever something is logically a dn.
* Many classes now enforce DN usage for their attributes which are
dn's. This is implmented via ipautil.dn_attribute_property(). The
only permitted types for a class attribute specified to be a DN are
either None or a DN object.
* Require that every place a dn is used it must be a DN object.
This translates into lot of::
assert isinstance(dn, DN)
sprinkled through out the code. Maintaining these asserts is
valuable to preserve DN type enforcement. The asserts can be
disabled in production.
The goal of 100% DN usage 100% of the time has been realized, these
asserts are meant to preserve that.
The asserts also proved valuable in detecting functions which did
not obey their function signatures, such as the baseldap pre and
post callbacks.
* Moved ipalib.dn to ipapython.dn because DN class is shared with all
components, not just the server which uses ipalib.
* All API's now accept DN's natively, no need to convert to str (or
unicode).
* Removed ipalib.encoder and encode/decode decorators. Type conversion
is now explicitly performed in each IPASimpleLDAPObject method which
emulates a ldap.SimpleLDAPObject method.
* Entity & Entry classes now utilize DN's
* Removed __getattr__ in Entity & Entity clases. There were two
problems with it. It presented synthetic Python object attributes
based on the current LDAP data it contained. There is no way to
validate synthetic attributes using code checkers, you can't search
the code to find LDAP attribute accesses (because synthetic
attriutes look like Python attributes instead of LDAP data) and
error handling is circumscribed. Secondly __getattr__ was hiding
Python internal methods which broke class semantics.
* Replace use of methods inherited from ldap.SimpleLDAPObject via
IPAdmin class with IPAdmin methods. Directly using inherited methods
was causing us to bypass IPA logic. Mostly this meant replacing the
use of search_s() with getEntry() or getList(). Similarly direct
access of the LDAP data in classes using IPAdmin were replaced with
calls to getValue() or getValues().
* Objects returned by ldap2.find_entries() are now compatible with
either the python-ldap access methodology or the Entity/Entry access
methodology.
* All ldap operations now funnel through the common
IPASimpleLDAPObject giving us a single location where we interface
to python-ldap and perform conversions.
* The above 4 modifications means we've greatly reduced the
proliferation of multiple inconsistent ways to perform LDAP
operations. We are well on the way to having a single API in IPA for
doing LDAP (a long range goal).
* All certificate subject bases are now DN's
* DN objects were enhanced thusly:
- find, rfind, index, rindex, replace and insert methods were added
- AVA, RDN and DN classes were refactored in immutable and mutable
variants, the mutable variants are EditableAVA, EditableRDN and
EditableDN. By default we use the immutable variants preserving
important semantics. To edit a DN cast it to an EditableDN and
cast it back to DN when done editing. These issues are fully
described in other documentation.
- first_key_match was removed
- DN equalty comparison permits comparison to a basestring
* Fixed ldapupdate to work with DN's. This work included:
- Enhance test_updates.py to do more checking after applying
update. Add test for update_from_dict(). Convert code to use
unittest classes.
- Consolidated duplicate code.
- Moved code which should have been in the class into the class.
- Fix the handling of the 'deleteentry' update action. It's no longer
necessary to supply fake attributes to make it work. Detect case
where subsequent update applies a change to entry previously marked
for deletetion. General clean-up and simplification of the
'deleteentry' logic.
- Rewrote a couple of functions to be clearer and more Pythonic.
- Added documentation on the data structure being used.
- Simplfy the use of update_from_dict()
* Removed all usage of get_schema() which was being called prior to
accessing the .schema attribute of an object. If a class is using
internal lazy loading as an optimization it's not right to require
users of the interface to be aware of internal
optimization's. schema is now a property and when the schema
property is accessed it calls a private internal method to perform
the lazy loading.
* Added SchemaCache class to cache the schema's from individual
servers. This was done because of the observation we talk to
different LDAP servers, each of which may have it's own
schema. Previously we globally cached the schema from the first
server we connected to and returned that schema in all contexts. The
cache includes controls to invalidate it thus forcing a schema
refresh.
* Schema caching is now senstive to the run time context. During
install and upgrade the schema can change leading to errors due to
out-of-date cached schema. The schema cache is refreshed in these
contexts.
* We are aware of the LDAP syntax of all LDAP attributes. Every
attribute returned from an LDAP operation is passed through a
central table look-up based on it's LDAP syntax. The table key is
the LDAP syntax it's value is a Python callable that returns a
Python object matching the LDAP syntax. There are a handful of LDAP
attributes whose syntax is historically incorrect
(e.g. DistguishedNames that are defined as DirectoryStrings). The
table driven conversion mechanism is augmented with a table of
hard coded exceptions.
Currently only the following conversions occur via the table:
- dn's are converted to DN objects
- binary objects are converted to Python str objects (IPA
convention).
- everything else is converted to unicode using UTF-8 decoding (IPA
convention).
However, now that the table driven conversion mechanism is in place
it would be trivial to do things such as converting attributes
which have LDAP integer syntax into a Python integer, etc.
* Expected values in the unit tests which are a DN no longer need to
use lambda expressions to promote the returned value to a DN for
equality comparison. The return value is automatically promoted to
a DN. The lambda expressions have been removed making the code much
simpler and easier to read.
* Add class level logging to a number of classes which did not support
logging, less need for use of root_logger.
* Remove ipaserver/conn.py, it was unused.
* Consolidated duplicate code wherever it was found.
* Fixed many places that used string concatenation to form a new
string rather than string formatting operators. This is necessary
because string formatting converts it's arguments to a string prior
to building the result string. You can't concatenate a string and a
non-string.
* Simplify logic in rename_managed plugin. Use DN operators to edit
dn's.
* The live version of ipa-ldap-updater did not generate a log file.
The offline version did, now both do.
https://fedorahosted.org/freeipa/ticket/1670
https://fedorahosted.org/freeipa/ticket/1671
https://fedorahosted.org/freeipa/ticket/1672
https://fedorahosted.org/freeipa/ticket/1673
https://fedorahosted.org/freeipa/ticket/1674
https://fedorahosted.org/freeipa/ticket/1392
https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
|
|
|
* Strip leading & trailing whitespace
|
|
|
|
* Substitute any variables
|
|
|
|
* Get the action, attribute, and value
|
|
|
|
* Each update has one list per disposition, append to specified disposition list
|
|
|
|
'''
|
2008-09-15 19:51:01 -05:00
|
|
|
|
Use DN objects instead of strings
* Convert every string specifying a DN into a DN object
* Every place a dn was manipulated in some fashion it was replaced by
the use of DN operators
* Add new DNParam parameter type for parameters which are DN's
* DN objects are used 100% of the time throughout the entire data
pipeline whenever something is logically a dn.
* Many classes now enforce DN usage for their attributes which are
dn's. This is implmented via ipautil.dn_attribute_property(). The
only permitted types for a class attribute specified to be a DN are
either None or a DN object.
* Require that every place a dn is used it must be a DN object.
This translates into lot of::
assert isinstance(dn, DN)
sprinkled through out the code. Maintaining these asserts is
valuable to preserve DN type enforcement. The asserts can be
disabled in production.
The goal of 100% DN usage 100% of the time has been realized, these
asserts are meant to preserve that.
The asserts also proved valuable in detecting functions which did
not obey their function signatures, such as the baseldap pre and
post callbacks.
* Moved ipalib.dn to ipapython.dn because DN class is shared with all
components, not just the server which uses ipalib.
* All API's now accept DN's natively, no need to convert to str (or
unicode).
* Removed ipalib.encoder and encode/decode decorators. Type conversion
is now explicitly performed in each IPASimpleLDAPObject method which
emulates a ldap.SimpleLDAPObject method.
* Entity & Entry classes now utilize DN's
* Removed __getattr__ in Entity & Entity clases. There were two
problems with it. It presented synthetic Python object attributes
based on the current LDAP data it contained. There is no way to
validate synthetic attributes using code checkers, you can't search
the code to find LDAP attribute accesses (because synthetic
attriutes look like Python attributes instead of LDAP data) and
error handling is circumscribed. Secondly __getattr__ was hiding
Python internal methods which broke class semantics.
* Replace use of methods inherited from ldap.SimpleLDAPObject via
IPAdmin class with IPAdmin methods. Directly using inherited methods
was causing us to bypass IPA logic. Mostly this meant replacing the
use of search_s() with getEntry() or getList(). Similarly direct
access of the LDAP data in classes using IPAdmin were replaced with
calls to getValue() or getValues().
* Objects returned by ldap2.find_entries() are now compatible with
either the python-ldap access methodology or the Entity/Entry access
methodology.
* All ldap operations now funnel through the common
IPASimpleLDAPObject giving us a single location where we interface
to python-ldap and perform conversions.
* The above 4 modifications means we've greatly reduced the
proliferation of multiple inconsistent ways to perform LDAP
operations. We are well on the way to having a single API in IPA for
doing LDAP (a long range goal).
* All certificate subject bases are now DN's
* DN objects were enhanced thusly:
- find, rfind, index, rindex, replace and insert methods were added
- AVA, RDN and DN classes were refactored in immutable and mutable
variants, the mutable variants are EditableAVA, EditableRDN and
EditableDN. By default we use the immutable variants preserving
important semantics. To edit a DN cast it to an EditableDN and
cast it back to DN when done editing. These issues are fully
described in other documentation.
- first_key_match was removed
- DN equalty comparison permits comparison to a basestring
* Fixed ldapupdate to work with DN's. This work included:
- Enhance test_updates.py to do more checking after applying
update. Add test for update_from_dict(). Convert code to use
unittest classes.
- Consolidated duplicate code.
- Moved code which should have been in the class into the class.
- Fix the handling of the 'deleteentry' update action. It's no longer
necessary to supply fake attributes to make it work. Detect case
where subsequent update applies a change to entry previously marked
for deletetion. General clean-up and simplification of the
'deleteentry' logic.
- Rewrote a couple of functions to be clearer and more Pythonic.
- Added documentation on the data structure being used.
- Simplfy the use of update_from_dict()
* Removed all usage of get_schema() which was being called prior to
accessing the .schema attribute of an object. If a class is using
internal lazy loading as an optimization it's not right to require
users of the interface to be aware of internal
optimization's. schema is now a property and when the schema
property is accessed it calls a private internal method to perform
the lazy loading.
* Added SchemaCache class to cache the schema's from individual
servers. This was done because of the observation we talk to
different LDAP servers, each of which may have it's own
schema. Previously we globally cached the schema from the first
server we connected to and returned that schema in all contexts. The
cache includes controls to invalidate it thus forcing a schema
refresh.
* Schema caching is now senstive to the run time context. During
install and upgrade the schema can change leading to errors due to
out-of-date cached schema. The schema cache is refreshed in these
contexts.
* We are aware of the LDAP syntax of all LDAP attributes. Every
attribute returned from an LDAP operation is passed through a
central table look-up based on it's LDAP syntax. The table key is
the LDAP syntax it's value is a Python callable that returns a
Python object matching the LDAP syntax. There are a handful of LDAP
attributes whose syntax is historically incorrect
(e.g. DistguishedNames that are defined as DirectoryStrings). The
table driven conversion mechanism is augmented with a table of
hard coded exceptions.
Currently only the following conversions occur via the table:
- dn's are converted to DN objects
- binary objects are converted to Python str objects (IPA
convention).
- everything else is converted to unicode using UTF-8 decoding (IPA
convention).
However, now that the table driven conversion mechanism is in place
it would be trivial to do things such as converting attributes
which have LDAP integer syntax into a Python integer, etc.
* Expected values in the unit tests which are a DN no longer need to
use lambda expressions to promote the returned value to a DN for
equality comparison. The return value is automatically promoted to
a DN. The lambda expressions have been removed making the code much
simpler and easier to read.
* Add class level logging to a number of classes which did not support
logging, less need for use of root_logger.
* Remove ipaserver/conn.py, it was unused.
* Consolidated duplicate code wherever it was found.
* Fixed many places that used string concatenation to form a new
string rather than string formatting operators. This is necessary
because string formatting converts it's arguments to a string prior
to building the result string. You can't concatenate a string and a
non-string.
* Simplify logic in rename_managed plugin. Use DN operators to edit
dn's.
* The live version of ipa-ldap-updater did not generate a log file.
The offline version did, now both do.
https://fedorahosted.org/freeipa/ticket/1670
https://fedorahosted.org/freeipa/ticket/1671
https://fedorahosted.org/freeipa/ticket/1672
https://fedorahosted.org/freeipa/ticket/1673
https://fedorahosted.org/freeipa/ticket/1674
https://fedorahosted.org/freeipa/ticket/1392
https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
|
|
|
logical_line = logical_line.strip()
|
|
|
|
if logical_line == '':
|
|
|
|
return
|
|
|
|
|
|
|
|
# Perform variable substitution on constructued line
|
|
|
|
logical_line = self._template_str(logical_line)
|
2008-09-15 19:51:01 -05:00
|
|
|
|
Use DN objects instead of strings
* Convert every string specifying a DN into a DN object
* Every place a dn was manipulated in some fashion it was replaced by
the use of DN operators
* Add new DNParam parameter type for parameters which are DN's
* DN objects are used 100% of the time throughout the entire data
pipeline whenever something is logically a dn.
* Many classes now enforce DN usage for their attributes which are
dn's. This is implmented via ipautil.dn_attribute_property(). The
only permitted types for a class attribute specified to be a DN are
either None or a DN object.
* Require that every place a dn is used it must be a DN object.
This translates into lot of::
assert isinstance(dn, DN)
sprinkled through out the code. Maintaining these asserts is
valuable to preserve DN type enforcement. The asserts can be
disabled in production.
The goal of 100% DN usage 100% of the time has been realized, these
asserts are meant to preserve that.
The asserts also proved valuable in detecting functions which did
not obey their function signatures, such as the baseldap pre and
post callbacks.
* Moved ipalib.dn to ipapython.dn because DN class is shared with all
components, not just the server which uses ipalib.
* All API's now accept DN's natively, no need to convert to str (or
unicode).
* Removed ipalib.encoder and encode/decode decorators. Type conversion
is now explicitly performed in each IPASimpleLDAPObject method which
emulates a ldap.SimpleLDAPObject method.
* Entity & Entry classes now utilize DN's
* Removed __getattr__ in Entity & Entity clases. There were two
problems with it. It presented synthetic Python object attributes
based on the current LDAP data it contained. There is no way to
validate synthetic attributes using code checkers, you can't search
the code to find LDAP attribute accesses (because synthetic
attriutes look like Python attributes instead of LDAP data) and
error handling is circumscribed. Secondly __getattr__ was hiding
Python internal methods which broke class semantics.
* Replace use of methods inherited from ldap.SimpleLDAPObject via
IPAdmin class with IPAdmin methods. Directly using inherited methods
was causing us to bypass IPA logic. Mostly this meant replacing the
use of search_s() with getEntry() or getList(). Similarly direct
access of the LDAP data in classes using IPAdmin were replaced with
calls to getValue() or getValues().
* Objects returned by ldap2.find_entries() are now compatible with
either the python-ldap access methodology or the Entity/Entry access
methodology.
* All ldap operations now funnel through the common
IPASimpleLDAPObject giving us a single location where we interface
to python-ldap and perform conversions.
* The above 4 modifications means we've greatly reduced the
proliferation of multiple inconsistent ways to perform LDAP
operations. We are well on the way to having a single API in IPA for
doing LDAP (a long range goal).
* All certificate subject bases are now DN's
* DN objects were enhanced thusly:
- find, rfind, index, rindex, replace and insert methods were added
- AVA, RDN and DN classes were refactored in immutable and mutable
variants, the mutable variants are EditableAVA, EditableRDN and
EditableDN. By default we use the immutable variants preserving
important semantics. To edit a DN cast it to an EditableDN and
cast it back to DN when done editing. These issues are fully
described in other documentation.
- first_key_match was removed
- DN equalty comparison permits comparison to a basestring
* Fixed ldapupdate to work with DN's. This work included:
- Enhance test_updates.py to do more checking after applying
update. Add test for update_from_dict(). Convert code to use
unittest classes.
- Consolidated duplicate code.
- Moved code which should have been in the class into the class.
- Fix the handling of the 'deleteentry' update action. It's no longer
necessary to supply fake attributes to make it work. Detect case
where subsequent update applies a change to entry previously marked
for deletetion. General clean-up and simplification of the
'deleteentry' logic.
- Rewrote a couple of functions to be clearer and more Pythonic.
- Added documentation on the data structure being used.
- Simplfy the use of update_from_dict()
* Removed all usage of get_schema() which was being called prior to
accessing the .schema attribute of an object. If a class is using
internal lazy loading as an optimization it's not right to require
users of the interface to be aware of internal
optimization's. schema is now a property and when the schema
property is accessed it calls a private internal method to perform
the lazy loading.
* Added SchemaCache class to cache the schema's from individual
servers. This was done because of the observation we talk to
different LDAP servers, each of which may have it's own
schema. Previously we globally cached the schema from the first
server we connected to and returned that schema in all contexts. The
cache includes controls to invalidate it thus forcing a schema
refresh.
* Schema caching is now senstive to the run time context. During
install and upgrade the schema can change leading to errors due to
out-of-date cached schema. The schema cache is refreshed in these
contexts.
* We are aware of the LDAP syntax of all LDAP attributes. Every
attribute returned from an LDAP operation is passed through a
central table look-up based on it's LDAP syntax. The table key is
the LDAP syntax it's value is a Python callable that returns a
Python object matching the LDAP syntax. There are a handful of LDAP
attributes whose syntax is historically incorrect
(e.g. DistguishedNames that are defined as DirectoryStrings). The
table driven conversion mechanism is augmented with a table of
hard coded exceptions.
Currently only the following conversions occur via the table:
- dn's are converted to DN objects
- binary objects are converted to Python str objects (IPA
convention).
- everything else is converted to unicode using UTF-8 decoding (IPA
convention).
However, now that the table driven conversion mechanism is in place
it would be trivial to do things such as converting attributes
which have LDAP integer syntax into a Python integer, etc.
* Expected values in the unit tests which are a DN no longer need to
use lambda expressions to promote the returned value to a DN for
equality comparison. The return value is automatically promoted to
a DN. The lambda expressions have been removed making the code much
simpler and easier to read.
* Add class level logging to a number of classes which did not support
logging, less need for use of root_logger.
* Remove ipaserver/conn.py, it was unused.
* Consolidated duplicate code wherever it was found.
* Fixed many places that used string concatenation to form a new
string rather than string formatting operators. This is necessary
because string formatting converts it's arguments to a string prior
to building the result string. You can't concatenate a string and a
non-string.
* Simplify logic in rename_managed plugin. Use DN operators to edit
dn's.
* The live version of ipa-ldap-updater did not generate a log file.
The offline version did, now both do.
https://fedorahosted.org/freeipa/ticket/1670
https://fedorahosted.org/freeipa/ticket/1671
https://fedorahosted.org/freeipa/ticket/1672
https://fedorahosted.org/freeipa/ticket/1673
https://fedorahosted.org/freeipa/ticket/1674
https://fedorahosted.org/freeipa/ticket/1392
https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
|
|
|
items = logical_line.split(':', 2)
|
2008-09-15 19:51:01 -05:00
|
|
|
|
Use DN objects instead of strings
* Convert every string specifying a DN into a DN object
* Every place a dn was manipulated in some fashion it was replaced by
the use of DN operators
* Add new DNParam parameter type for parameters which are DN's
* DN objects are used 100% of the time throughout the entire data
pipeline whenever something is logically a dn.
* Many classes now enforce DN usage for their attributes which are
dn's. This is implmented via ipautil.dn_attribute_property(). The
only permitted types for a class attribute specified to be a DN are
either None or a DN object.
* Require that every place a dn is used it must be a DN object.
This translates into lot of::
assert isinstance(dn, DN)
sprinkled through out the code. Maintaining these asserts is
valuable to preserve DN type enforcement. The asserts can be
disabled in production.
The goal of 100% DN usage 100% of the time has been realized, these
asserts are meant to preserve that.
The asserts also proved valuable in detecting functions which did
not obey their function signatures, such as the baseldap pre and
post callbacks.
* Moved ipalib.dn to ipapython.dn because DN class is shared with all
components, not just the server which uses ipalib.
* All API's now accept DN's natively, no need to convert to str (or
unicode).
* Removed ipalib.encoder and encode/decode decorators. Type conversion
is now explicitly performed in each IPASimpleLDAPObject method which
emulates a ldap.SimpleLDAPObject method.
* Entity & Entry classes now utilize DN's
* Removed __getattr__ in Entity & Entity clases. There were two
problems with it. It presented synthetic Python object attributes
based on the current LDAP data it contained. There is no way to
validate synthetic attributes using code checkers, you can't search
the code to find LDAP attribute accesses (because synthetic
attriutes look like Python attributes instead of LDAP data) and
error handling is circumscribed. Secondly __getattr__ was hiding
Python internal methods which broke class semantics.
* Replace use of methods inherited from ldap.SimpleLDAPObject via
IPAdmin class with IPAdmin methods. Directly using inherited methods
was causing us to bypass IPA logic. Mostly this meant replacing the
use of search_s() with getEntry() or getList(). Similarly direct
access of the LDAP data in classes using IPAdmin were replaced with
calls to getValue() or getValues().
* Objects returned by ldap2.find_entries() are now compatible with
either the python-ldap access methodology or the Entity/Entry access
methodology.
* All ldap operations now funnel through the common
IPASimpleLDAPObject giving us a single location where we interface
to python-ldap and perform conversions.
* The above 4 modifications means we've greatly reduced the
proliferation of multiple inconsistent ways to perform LDAP
operations. We are well on the way to having a single API in IPA for
doing LDAP (a long range goal).
* All certificate subject bases are now DN's
* DN objects were enhanced thusly:
- find, rfind, index, rindex, replace and insert methods were added
- AVA, RDN and DN classes were refactored in immutable and mutable
variants, the mutable variants are EditableAVA, EditableRDN and
EditableDN. By default we use the immutable variants preserving
important semantics. To edit a DN cast it to an EditableDN and
cast it back to DN when done editing. These issues are fully
described in other documentation.
- first_key_match was removed
- DN equalty comparison permits comparison to a basestring
* Fixed ldapupdate to work with DN's. This work included:
- Enhance test_updates.py to do more checking after applying
update. Add test for update_from_dict(). Convert code to use
unittest classes.
- Consolidated duplicate code.
- Moved code which should have been in the class into the class.
- Fix the handling of the 'deleteentry' update action. It's no longer
necessary to supply fake attributes to make it work. Detect case
where subsequent update applies a change to entry previously marked
for deletetion. General clean-up and simplification of the
'deleteentry' logic.
- Rewrote a couple of functions to be clearer and more Pythonic.
- Added documentation on the data structure being used.
- Simplfy the use of update_from_dict()
* Removed all usage of get_schema() which was being called prior to
accessing the .schema attribute of an object. If a class is using
internal lazy loading as an optimization it's not right to require
users of the interface to be aware of internal
optimization's. schema is now a property and when the schema
property is accessed it calls a private internal method to perform
the lazy loading.
* Added SchemaCache class to cache the schema's from individual
servers. This was done because of the observation we talk to
different LDAP servers, each of which may have it's own
schema. Previously we globally cached the schema from the first
server we connected to and returned that schema in all contexts. The
cache includes controls to invalidate it thus forcing a schema
refresh.
* Schema caching is now senstive to the run time context. During
install and upgrade the schema can change leading to errors due to
out-of-date cached schema. The schema cache is refreshed in these
contexts.
* We are aware of the LDAP syntax of all LDAP attributes. Every
attribute returned from an LDAP operation is passed through a
central table look-up based on it's LDAP syntax. The table key is
the LDAP syntax it's value is a Python callable that returns a
Python object matching the LDAP syntax. There are a handful of LDAP
attributes whose syntax is historically incorrect
(e.g. DistguishedNames that are defined as DirectoryStrings). The
table driven conversion mechanism is augmented with a table of
hard coded exceptions.
Currently only the following conversions occur via the table:
- dn's are converted to DN objects
- binary objects are converted to Python str objects (IPA
convention).
- everything else is converted to unicode using UTF-8 decoding (IPA
convention).
However, now that the table driven conversion mechanism is in place
it would be trivial to do things such as converting attributes
which have LDAP integer syntax into a Python integer, etc.
* Expected values in the unit tests which are a DN no longer need to
use lambda expressions to promote the returned value to a DN for
equality comparison. The return value is automatically promoted to
a DN. The lambda expressions have been removed making the code much
simpler and easier to read.
* Add class level logging to a number of classes which did not support
logging, less need for use of root_logger.
* Remove ipaserver/conn.py, it was unused.
* Consolidated duplicate code wherever it was found.
* Fixed many places that used string concatenation to form a new
string rather than string formatting operators. This is necessary
because string formatting converts it's arguments to a string prior
to building the result string. You can't concatenate a string and a
non-string.
* Simplify logic in rename_managed plugin. Use DN operators to edit
dn's.
* The live version of ipa-ldap-updater did not generate a log file.
The offline version did, now both do.
https://fedorahosted.org/freeipa/ticket/1670
https://fedorahosted.org/freeipa/ticket/1671
https://fedorahosted.org/freeipa/ticket/1672
https://fedorahosted.org/freeipa/ticket/1673
https://fedorahosted.org/freeipa/ticket/1674
https://fedorahosted.org/freeipa/ticket/1392
https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
|
|
|
if len(items) == 0:
|
2015-08-12 06:49:54 -05:00
|
|
|
raise BadSyntax("Bad formatting on line %s:%d: %s" % (data_source_name, lcount, logical_line))
|
2008-09-15 19:51:01 -05:00
|
|
|
|
Use DN objects instead of strings
* Convert every string specifying a DN into a DN object
* Every place a dn was manipulated in some fashion it was replaced by
the use of DN operators
* Add new DNParam parameter type for parameters which are DN's
* DN objects are used 100% of the time throughout the entire data
pipeline whenever something is logically a dn.
* Many classes now enforce DN usage for their attributes which are
dn's. This is implmented via ipautil.dn_attribute_property(). The
only permitted types for a class attribute specified to be a DN are
either None or a DN object.
* Require that every place a dn is used it must be a DN object.
This translates into lot of::
assert isinstance(dn, DN)
sprinkled through out the code. Maintaining these asserts is
valuable to preserve DN type enforcement. The asserts can be
disabled in production.
The goal of 100% DN usage 100% of the time has been realized, these
asserts are meant to preserve that.
The asserts also proved valuable in detecting functions which did
not obey their function signatures, such as the baseldap pre and
post callbacks.
* Moved ipalib.dn to ipapython.dn because DN class is shared with all
components, not just the server which uses ipalib.
* All API's now accept DN's natively, no need to convert to str (or
unicode).
* Removed ipalib.encoder and encode/decode decorators. Type conversion
is now explicitly performed in each IPASimpleLDAPObject method which
emulates a ldap.SimpleLDAPObject method.
* Entity & Entry classes now utilize DN's
* Removed __getattr__ in Entity & Entity clases. There were two
problems with it. It presented synthetic Python object attributes
based on the current LDAP data it contained. There is no way to
validate synthetic attributes using code checkers, you can't search
the code to find LDAP attribute accesses (because synthetic
attriutes look like Python attributes instead of LDAP data) and
error handling is circumscribed. Secondly __getattr__ was hiding
Python internal methods which broke class semantics.
* Replace use of methods inherited from ldap.SimpleLDAPObject via
IPAdmin class with IPAdmin methods. Directly using inherited methods
was causing us to bypass IPA logic. Mostly this meant replacing the
use of search_s() with getEntry() or getList(). Similarly direct
access of the LDAP data in classes using IPAdmin were replaced with
calls to getValue() or getValues().
* Objects returned by ldap2.find_entries() are now compatible with
either the python-ldap access methodology or the Entity/Entry access
methodology.
* All ldap operations now funnel through the common
IPASimpleLDAPObject giving us a single location where we interface
to python-ldap and perform conversions.
* The above 4 modifications means we've greatly reduced the
proliferation of multiple inconsistent ways to perform LDAP
operations. We are well on the way to having a single API in IPA for
doing LDAP (a long range goal).
* All certificate subject bases are now DN's
* DN objects were enhanced thusly:
- find, rfind, index, rindex, replace and insert methods were added
- AVA, RDN and DN classes were refactored in immutable and mutable
variants, the mutable variants are EditableAVA, EditableRDN and
EditableDN. By default we use the immutable variants preserving
important semantics. To edit a DN cast it to an EditableDN and
cast it back to DN when done editing. These issues are fully
described in other documentation.
- first_key_match was removed
- DN equalty comparison permits comparison to a basestring
* Fixed ldapupdate to work with DN's. This work included:
- Enhance test_updates.py to do more checking after applying
update. Add test for update_from_dict(). Convert code to use
unittest classes.
- Consolidated duplicate code.
- Moved code which should have been in the class into the class.
- Fix the handling of the 'deleteentry' update action. It's no longer
necessary to supply fake attributes to make it work. Detect case
where subsequent update applies a change to entry previously marked
for deletetion. General clean-up and simplification of the
'deleteentry' logic.
- Rewrote a couple of functions to be clearer and more Pythonic.
- Added documentation on the data structure being used.
- Simplfy the use of update_from_dict()
* Removed all usage of get_schema() which was being called prior to
accessing the .schema attribute of an object. If a class is using
internal lazy loading as an optimization it's not right to require
users of the interface to be aware of internal
optimization's. schema is now a property and when the schema
property is accessed it calls a private internal method to perform
the lazy loading.
* Added SchemaCache class to cache the schema's from individual
servers. This was done because of the observation we talk to
different LDAP servers, each of which may have it's own
schema. Previously we globally cached the schema from the first
server we connected to and returned that schema in all contexts. The
cache includes controls to invalidate it thus forcing a schema
refresh.
* Schema caching is now senstive to the run time context. During
install and upgrade the schema can change leading to errors due to
out-of-date cached schema. The schema cache is refreshed in these
contexts.
* We are aware of the LDAP syntax of all LDAP attributes. Every
attribute returned from an LDAP operation is passed through a
central table look-up based on it's LDAP syntax. The table key is
the LDAP syntax it's value is a Python callable that returns a
Python object matching the LDAP syntax. There are a handful of LDAP
attributes whose syntax is historically incorrect
(e.g. DistguishedNames that are defined as DirectoryStrings). The
table driven conversion mechanism is augmented with a table of
hard coded exceptions.
Currently only the following conversions occur via the table:
- dn's are converted to DN objects
- binary objects are converted to Python str objects (IPA
convention).
- everything else is converted to unicode using UTF-8 decoding (IPA
convention).
However, now that the table driven conversion mechanism is in place
it would be trivial to do things such as converting attributes
which have LDAP integer syntax into a Python integer, etc.
* Expected values in the unit tests which are a DN no longer need to
use lambda expressions to promote the returned value to a DN for
equality comparison. The return value is automatically promoted to
a DN. The lambda expressions have been removed making the code much
simpler and easier to read.
* Add class level logging to a number of classes which did not support
logging, less need for use of root_logger.
* Remove ipaserver/conn.py, it was unused.
* Consolidated duplicate code wherever it was found.
* Fixed many places that used string concatenation to form a new
string rather than string formatting operators. This is necessary
because string formatting converts it's arguments to a string prior
to building the result string. You can't concatenate a string and a
non-string.
* Simplify logic in rename_managed plugin. Use DN operators to edit
dn's.
* The live version of ipa-ldap-updater did not generate a log file.
The offline version did, now both do.
https://fedorahosted.org/freeipa/ticket/1670
https://fedorahosted.org/freeipa/ticket/1671
https://fedorahosted.org/freeipa/ticket/1672
https://fedorahosted.org/freeipa/ticket/1673
https://fedorahosted.org/freeipa/ticket/1674
https://fedorahosted.org/freeipa/ticket/1392
https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
|
|
|
action = items[0].strip().lower()
|
2008-09-15 19:51:01 -05:00
|
|
|
|
Use DN objects instead of strings
* Convert every string specifying a DN into a DN object
* Every place a dn was manipulated in some fashion it was replaced by
the use of DN operators
* Add new DNParam parameter type for parameters which are DN's
* DN objects are used 100% of the time throughout the entire data
pipeline whenever something is logically a dn.
* Many classes now enforce DN usage for their attributes which are
dn's. This is implmented via ipautil.dn_attribute_property(). The
only permitted types for a class attribute specified to be a DN are
either None or a DN object.
* Require that every place a dn is used it must be a DN object.
This translates into lot of::
assert isinstance(dn, DN)
sprinkled through out the code. Maintaining these asserts is
valuable to preserve DN type enforcement. The asserts can be
disabled in production.
The goal of 100% DN usage 100% of the time has been realized, these
asserts are meant to preserve that.
The asserts also proved valuable in detecting functions which did
not obey their function signatures, such as the baseldap pre and
post callbacks.
* Moved ipalib.dn to ipapython.dn because DN class is shared with all
components, not just the server which uses ipalib.
* All API's now accept DN's natively, no need to convert to str (or
unicode).
* Removed ipalib.encoder and encode/decode decorators. Type conversion
is now explicitly performed in each IPASimpleLDAPObject method which
emulates a ldap.SimpleLDAPObject method.
* Entity & Entry classes now utilize DN's
* Removed __getattr__ in Entity & Entity clases. There were two
problems with it. It presented synthetic Python object attributes
based on the current LDAP data it contained. There is no way to
validate synthetic attributes using code checkers, you can't search
the code to find LDAP attribute accesses (because synthetic
attriutes look like Python attributes instead of LDAP data) and
error handling is circumscribed. Secondly __getattr__ was hiding
Python internal methods which broke class semantics.
* Replace use of methods inherited from ldap.SimpleLDAPObject via
IPAdmin class with IPAdmin methods. Directly using inherited methods
was causing us to bypass IPA logic. Mostly this meant replacing the
use of search_s() with getEntry() or getList(). Similarly direct
access of the LDAP data in classes using IPAdmin were replaced with
calls to getValue() or getValues().
* Objects returned by ldap2.find_entries() are now compatible with
either the python-ldap access methodology or the Entity/Entry access
methodology.
* All ldap operations now funnel through the common
IPASimpleLDAPObject giving us a single location where we interface
to python-ldap and perform conversions.
* The above 4 modifications means we've greatly reduced the
proliferation of multiple inconsistent ways to perform LDAP
operations. We are well on the way to having a single API in IPA for
doing LDAP (a long range goal).
* All certificate subject bases are now DN's
* DN objects were enhanced thusly:
- find, rfind, index, rindex, replace and insert methods were added
- AVA, RDN and DN classes were refactored in immutable and mutable
variants, the mutable variants are EditableAVA, EditableRDN and
EditableDN. By default we use the immutable variants preserving
important semantics. To edit a DN cast it to an EditableDN and
cast it back to DN when done editing. These issues are fully
described in other documentation.
- first_key_match was removed
- DN equalty comparison permits comparison to a basestring
* Fixed ldapupdate to work with DN's. This work included:
- Enhance test_updates.py to do more checking after applying
update. Add test for update_from_dict(). Convert code to use
unittest classes.
- Consolidated duplicate code.
- Moved code which should have been in the class into the class.
- Fix the handling of the 'deleteentry' update action. It's no longer
necessary to supply fake attributes to make it work. Detect case
where subsequent update applies a change to entry previously marked
for deletetion. General clean-up and simplification of the
'deleteentry' logic.
- Rewrote a couple of functions to be clearer and more Pythonic.
- Added documentation on the data structure being used.
- Simplfy the use of update_from_dict()
* Removed all usage of get_schema() which was being called prior to
accessing the .schema attribute of an object. If a class is using
internal lazy loading as an optimization it's not right to require
users of the interface to be aware of internal
optimization's. schema is now a property and when the schema
property is accessed it calls a private internal method to perform
the lazy loading.
* Added SchemaCache class to cache the schema's from individual
servers. This was done because of the observation we talk to
different LDAP servers, each of which may have it's own
schema. Previously we globally cached the schema from the first
server we connected to and returned that schema in all contexts. The
cache includes controls to invalidate it thus forcing a schema
refresh.
* Schema caching is now senstive to the run time context. During
install and upgrade the schema can change leading to errors due to
out-of-date cached schema. The schema cache is refreshed in these
contexts.
* We are aware of the LDAP syntax of all LDAP attributes. Every
attribute returned from an LDAP operation is passed through a
central table look-up based on it's LDAP syntax. The table key is
the LDAP syntax it's value is a Python callable that returns a
Python object matching the LDAP syntax. There are a handful of LDAP
attributes whose syntax is historically incorrect
(e.g. DistguishedNames that are defined as DirectoryStrings). The
table driven conversion mechanism is augmented with a table of
hard coded exceptions.
Currently only the following conversions occur via the table:
- dn's are converted to DN objects
- binary objects are converted to Python str objects (IPA
convention).
- everything else is converted to unicode using UTF-8 decoding (IPA
convention).
However, now that the table driven conversion mechanism is in place
it would be trivial to do things such as converting attributes
which have LDAP integer syntax into a Python integer, etc.
* Expected values in the unit tests which are a DN no longer need to
use lambda expressions to promote the returned value to a DN for
equality comparison. The return value is automatically promoted to
a DN. The lambda expressions have been removed making the code much
simpler and easier to read.
* Add class level logging to a number of classes which did not support
logging, less need for use of root_logger.
* Remove ipaserver/conn.py, it was unused.
* Consolidated duplicate code wherever it was found.
* Fixed many places that used string concatenation to form a new
string rather than string formatting operators. This is necessary
because string formatting converts it's arguments to a string prior
to building the result string. You can't concatenate a string and a
non-string.
* Simplify logic in rename_managed plugin. Use DN operators to edit
dn's.
* The live version of ipa-ldap-updater did not generate a log file.
The offline version did, now both do.
https://fedorahosted.org/freeipa/ticket/1670
https://fedorahosted.org/freeipa/ticket/1671
https://fedorahosted.org/freeipa/ticket/1672
https://fedorahosted.org/freeipa/ticket/1673
https://fedorahosted.org/freeipa/ticket/1674
https://fedorahosted.org/freeipa/ticket/1392
https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
|
|
|
if action not in self.action_keywords:
|
2015-08-12 06:49:54 -05:00
|
|
|
raise BadSyntax("Unknown update action '%s', data source=%s" % (action, data_source_name))
|
Use DN objects instead of strings
* Convert every string specifying a DN into a DN object
* Every place a dn was manipulated in some fashion it was replaced by
the use of DN operators
* Add new DNParam parameter type for parameters which are DN's
* DN objects are used 100% of the time throughout the entire data
pipeline whenever something is logically a dn.
* Many classes now enforce DN usage for their attributes which are
dn's. This is implmented via ipautil.dn_attribute_property(). The
only permitted types for a class attribute specified to be a DN are
either None or a DN object.
* Require that every place a dn is used it must be a DN object.
This translates into lot of::
assert isinstance(dn, DN)
sprinkled through out the code. Maintaining these asserts is
valuable to preserve DN type enforcement. The asserts can be
disabled in production.
The goal of 100% DN usage 100% of the time has been realized, these
asserts are meant to preserve that.
The asserts also proved valuable in detecting functions which did
not obey their function signatures, such as the baseldap pre and
post callbacks.
* Moved ipalib.dn to ipapython.dn because DN class is shared with all
components, not just the server which uses ipalib.
* All API's now accept DN's natively, no need to convert to str (or
unicode).
* Removed ipalib.encoder and encode/decode decorators. Type conversion
is now explicitly performed in each IPASimpleLDAPObject method which
emulates a ldap.SimpleLDAPObject method.
* Entity & Entry classes now utilize DN's
* Removed __getattr__ in Entity & Entity clases. There were two
problems with it. It presented synthetic Python object attributes
based on the current LDAP data it contained. There is no way to
validate synthetic attributes using code checkers, you can't search
the code to find LDAP attribute accesses (because synthetic
attriutes look like Python attributes instead of LDAP data) and
error handling is circumscribed. Secondly __getattr__ was hiding
Python internal methods which broke class semantics.
* Replace use of methods inherited from ldap.SimpleLDAPObject via
IPAdmin class with IPAdmin methods. Directly using inherited methods
was causing us to bypass IPA logic. Mostly this meant replacing the
use of search_s() with getEntry() or getList(). Similarly direct
access of the LDAP data in classes using IPAdmin were replaced with
calls to getValue() or getValues().
* Objects returned by ldap2.find_entries() are now compatible with
either the python-ldap access methodology or the Entity/Entry access
methodology.
* All ldap operations now funnel through the common
IPASimpleLDAPObject giving us a single location where we interface
to python-ldap and perform conversions.
* The above 4 modifications means we've greatly reduced the
proliferation of multiple inconsistent ways to perform LDAP
operations. We are well on the way to having a single API in IPA for
doing LDAP (a long range goal).
* All certificate subject bases are now DN's
* DN objects were enhanced thusly:
- find, rfind, index, rindex, replace and insert methods were added
- AVA, RDN and DN classes were refactored in immutable and mutable
variants, the mutable variants are EditableAVA, EditableRDN and
EditableDN. By default we use the immutable variants preserving
important semantics. To edit a DN cast it to an EditableDN and
cast it back to DN when done editing. These issues are fully
described in other documentation.
- first_key_match was removed
- DN equalty comparison permits comparison to a basestring
* Fixed ldapupdate to work with DN's. This work included:
- Enhance test_updates.py to do more checking after applying
update. Add test for update_from_dict(). Convert code to use
unittest classes.
- Consolidated duplicate code.
- Moved code which should have been in the class into the class.
- Fix the handling of the 'deleteentry' update action. It's no longer
necessary to supply fake attributes to make it work. Detect case
where subsequent update applies a change to entry previously marked
for deletetion. General clean-up and simplification of the
'deleteentry' logic.
- Rewrote a couple of functions to be clearer and more Pythonic.
- Added documentation on the data structure being used.
- Simplfy the use of update_from_dict()
* Removed all usage of get_schema() which was being called prior to
accessing the .schema attribute of an object. If a class is using
internal lazy loading as an optimization it's not right to require
users of the interface to be aware of internal
optimization's. schema is now a property and when the schema
property is accessed it calls a private internal method to perform
the lazy loading.
* Added SchemaCache class to cache the schema's from individual
servers. This was done because of the observation we talk to
different LDAP servers, each of which may have it's own
schema. Previously we globally cached the schema from the first
server we connected to and returned that schema in all contexts. The
cache includes controls to invalidate it thus forcing a schema
refresh.
* Schema caching is now senstive to the run time context. During
install and upgrade the schema can change leading to errors due to
out-of-date cached schema. The schema cache is refreshed in these
contexts.
* We are aware of the LDAP syntax of all LDAP attributes. Every
attribute returned from an LDAP operation is passed through a
central table look-up based on it's LDAP syntax. The table key is
the LDAP syntax it's value is a Python callable that returns a
Python object matching the LDAP syntax. There are a handful of LDAP
attributes whose syntax is historically incorrect
(e.g. DistguishedNames that are defined as DirectoryStrings). The
table driven conversion mechanism is augmented with a table of
hard coded exceptions.
Currently only the following conversions occur via the table:
- dn's are converted to DN objects
- binary objects are converted to Python str objects (IPA
convention).
- everything else is converted to unicode using UTF-8 decoding (IPA
convention).
However, now that the table driven conversion mechanism is in place
it would be trivial to do things such as converting attributes
which have LDAP integer syntax into a Python integer, etc.
* Expected values in the unit tests which are a DN no longer need to
use lambda expressions to promote the returned value to a DN for
equality comparison. The return value is automatically promoted to
a DN. The lambda expressions have been removed making the code much
simpler and easier to read.
* Add class level logging to a number of classes which did not support
logging, less need for use of root_logger.
* Remove ipaserver/conn.py, it was unused.
* Consolidated duplicate code wherever it was found.
* Fixed many places that used string concatenation to form a new
string rather than string formatting operators. This is necessary
because string formatting converts it's arguments to a string prior
to building the result string. You can't concatenate a string and a
non-string.
* Simplify logic in rename_managed plugin. Use DN operators to edit
dn's.
* The live version of ipa-ldap-updater did not generate a log file.
The offline version did, now both do.
https://fedorahosted.org/freeipa/ticket/1670
https://fedorahosted.org/freeipa/ticket/1671
https://fedorahosted.org/freeipa/ticket/1672
https://fedorahosted.org/freeipa/ticket/1673
https://fedorahosted.org/freeipa/ticket/1674
https://fedorahosted.org/freeipa/ticket/1392
https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
|
|
|
|
|
|
|
if action == 'deleteentry':
|
|
|
|
new_value = None
|
|
|
|
disposition = "deleteentry"
|
|
|
|
else:
|
|
|
|
if len(items) != 3:
|
2015-08-12 06:49:54 -05:00
|
|
|
raise BadSyntax("Bad formatting on line %s:%d: %s" % (data_source_name, lcount, logical_line))
|
Use DN objects instead of strings
* Convert every string specifying a DN into a DN object
* Every place a dn was manipulated in some fashion it was replaced by
the use of DN operators
* Add new DNParam parameter type for parameters which are DN's
* DN objects are used 100% of the time throughout the entire data
pipeline whenever something is logically a dn.
* Many classes now enforce DN usage for their attributes which are
dn's. This is implmented via ipautil.dn_attribute_property(). The
only permitted types for a class attribute specified to be a DN are
either None or a DN object.
* Require that every place a dn is used it must be a DN object.
This translates into lot of::
assert isinstance(dn, DN)
sprinkled through out the code. Maintaining these asserts is
valuable to preserve DN type enforcement. The asserts can be
disabled in production.
The goal of 100% DN usage 100% of the time has been realized, these
asserts are meant to preserve that.
The asserts also proved valuable in detecting functions which did
not obey their function signatures, such as the baseldap pre and
post callbacks.
* Moved ipalib.dn to ipapython.dn because DN class is shared with all
components, not just the server which uses ipalib.
* All API's now accept DN's natively, no need to convert to str (or
unicode).
* Removed ipalib.encoder and encode/decode decorators. Type conversion
is now explicitly performed in each IPASimpleLDAPObject method which
emulates a ldap.SimpleLDAPObject method.
* Entity & Entry classes now utilize DN's
* Removed __getattr__ in Entity & Entity clases. There were two
problems with it. It presented synthetic Python object attributes
based on the current LDAP data it contained. There is no way to
validate synthetic attributes using code checkers, you can't search
the code to find LDAP attribute accesses (because synthetic
attriutes look like Python attributes instead of LDAP data) and
error handling is circumscribed. Secondly __getattr__ was hiding
Python internal methods which broke class semantics.
* Replace use of methods inherited from ldap.SimpleLDAPObject via
IPAdmin class with IPAdmin methods. Directly using inherited methods
was causing us to bypass IPA logic. Mostly this meant replacing the
use of search_s() with getEntry() or getList(). Similarly direct
access of the LDAP data in classes using IPAdmin were replaced with
calls to getValue() or getValues().
* Objects returned by ldap2.find_entries() are now compatible with
either the python-ldap access methodology or the Entity/Entry access
methodology.
* All ldap operations now funnel through the common
IPASimpleLDAPObject giving us a single location where we interface
to python-ldap and perform conversions.
* The above 4 modifications means we've greatly reduced the
proliferation of multiple inconsistent ways to perform LDAP
operations. We are well on the way to having a single API in IPA for
doing LDAP (a long range goal).
* All certificate subject bases are now DN's
* DN objects were enhanced thusly:
- find, rfind, index, rindex, replace and insert methods were added
- AVA, RDN and DN classes were refactored in immutable and mutable
variants, the mutable variants are EditableAVA, EditableRDN and
EditableDN. By default we use the immutable variants preserving
important semantics. To edit a DN cast it to an EditableDN and
cast it back to DN when done editing. These issues are fully
described in other documentation.
- first_key_match was removed
- DN equalty comparison permits comparison to a basestring
* Fixed ldapupdate to work with DN's. This work included:
- Enhance test_updates.py to do more checking after applying
update. Add test for update_from_dict(). Convert code to use
unittest classes.
- Consolidated duplicate code.
- Moved code which should have been in the class into the class.
- Fix the handling of the 'deleteentry' update action. It's no longer
necessary to supply fake attributes to make it work. Detect case
where subsequent update applies a change to entry previously marked
for deletetion. General clean-up and simplification of the
'deleteentry' logic.
- Rewrote a couple of functions to be clearer and more Pythonic.
- Added documentation on the data structure being used.
- Simplfy the use of update_from_dict()
* Removed all usage of get_schema() which was being called prior to
accessing the .schema attribute of an object. If a class is using
internal lazy loading as an optimization it's not right to require
users of the interface to be aware of internal
optimization's. schema is now a property and when the schema
property is accessed it calls a private internal method to perform
the lazy loading.
* Added SchemaCache class to cache the schema's from individual
servers. This was done because of the observation we talk to
different LDAP servers, each of which may have it's own
schema. Previously we globally cached the schema from the first
server we connected to and returned that schema in all contexts. The
cache includes controls to invalidate it thus forcing a schema
refresh.
* Schema caching is now senstive to the run time context. During
install and upgrade the schema can change leading to errors due to
out-of-date cached schema. The schema cache is refreshed in these
contexts.
* We are aware of the LDAP syntax of all LDAP attributes. Every
attribute returned from an LDAP operation is passed through a
central table look-up based on it's LDAP syntax. The table key is
the LDAP syntax it's value is a Python callable that returns a
Python object matching the LDAP syntax. There are a handful of LDAP
attributes whose syntax is historically incorrect
(e.g. DistguishedNames that are defined as DirectoryStrings). The
table driven conversion mechanism is augmented with a table of
hard coded exceptions.
Currently only the following conversions occur via the table:
- dn's are converted to DN objects
- binary objects are converted to Python str objects (IPA
convention).
- everything else is converted to unicode using UTF-8 decoding (IPA
convention).
However, now that the table driven conversion mechanism is in place
it would be trivial to do things such as converting attributes
which have LDAP integer syntax into a Python integer, etc.
* Expected values in the unit tests which are a DN no longer need to
use lambda expressions to promote the returned value to a DN for
equality comparison. The return value is automatically promoted to
a DN. The lambda expressions have been removed making the code much
simpler and easier to read.
* Add class level logging to a number of classes which did not support
logging, less need for use of root_logger.
* Remove ipaserver/conn.py, it was unused.
* Consolidated duplicate code wherever it was found.
* Fixed many places that used string concatenation to form a new
string rather than string formatting operators. This is necessary
because string formatting converts it's arguments to a string prior
to building the result string. You can't concatenate a string and a
non-string.
* Simplify logic in rename_managed plugin. Use DN operators to edit
dn's.
* The live version of ipa-ldap-updater did not generate a log file.
The offline version did, now both do.
https://fedorahosted.org/freeipa/ticket/1670
https://fedorahosted.org/freeipa/ticket/1671
https://fedorahosted.org/freeipa/ticket/1672
https://fedorahosted.org/freeipa/ticket/1673
https://fedorahosted.org/freeipa/ticket/1674
https://fedorahosted.org/freeipa/ticket/1392
https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
|
|
|
|
|
|
|
attr = items[1].strip()
|
2015-05-05 08:12:12 -05:00
|
|
|
# do not strip here, we need detect '::' due to base64 encoded
|
|
|
|
# values, strip may result into fake detection
|
|
|
|
value = items[2]
|
|
|
|
|
|
|
|
# detect base64 encoding
|
|
|
|
# value which start with ':' are base64 encoded
|
|
|
|
# decode it as a binary value
|
|
|
|
if value.startswith(':'):
|
|
|
|
value = value[1:]
|
|
|
|
binary = True
|
|
|
|
else:
|
|
|
|
binary = False
|
|
|
|
value = value.strip()
|
|
|
|
|
|
|
|
if action == 'replace':
|
|
|
|
try:
|
|
|
|
value = value.split('::', 1)
|
|
|
|
except ValueError:
|
|
|
|
raise BadSyntax(
|
|
|
|
"Bad syntax in replace on line %s:%d: %s, needs to "
|
|
|
|
"be in the format old::new in %s" % (
|
|
|
|
data_source_name, lcount, logical_line, value)
|
|
|
|
)
|
|
|
|
else:
|
|
|
|
value = [value]
|
|
|
|
|
|
|
|
if binary:
|
|
|
|
for i, v in enumerate(value):
|
|
|
|
try:
|
|
|
|
value[i] = base64.b64decode(v)
|
2015-10-06 06:54:33 -05:00
|
|
|
except (TypeError, ValueError) as e:
|
2015-05-05 08:12:12 -05:00
|
|
|
raise BadSyntax(
|
|
|
|
"Base64 encoded value %s on line %s:%d: %s is "
|
|
|
|
"incorrect (%s)" % (v, data_source_name,
|
|
|
|
lcount, logical_line, e)
|
|
|
|
)
|
2015-10-14 08:02:51 -05:00
|
|
|
else:
|
|
|
|
for i, v in enumerate(value):
|
|
|
|
if isinstance(v, unicode):
|
|
|
|
value[i] = v.encode('utf-8')
|
2015-05-05 08:12:12 -05:00
|
|
|
|
|
|
|
if action != 'replace':
|
|
|
|
value = value[0]
|
Use DN objects instead of strings
* Convert every string specifying a DN into a DN object
* Every place a dn was manipulated in some fashion it was replaced by
the use of DN operators
* Add new DNParam parameter type for parameters which are DN's
* DN objects are used 100% of the time throughout the entire data
pipeline whenever something is logically a dn.
* Many classes now enforce DN usage for their attributes which are
dn's. This is implmented via ipautil.dn_attribute_property(). The
only permitted types for a class attribute specified to be a DN are
either None or a DN object.
* Require that every place a dn is used it must be a DN object.
This translates into lot of::
assert isinstance(dn, DN)
sprinkled through out the code. Maintaining these asserts is
valuable to preserve DN type enforcement. The asserts can be
disabled in production.
The goal of 100% DN usage 100% of the time has been realized, these
asserts are meant to preserve that.
The asserts also proved valuable in detecting functions which did
not obey their function signatures, such as the baseldap pre and
post callbacks.
* Moved ipalib.dn to ipapython.dn because DN class is shared with all
components, not just the server which uses ipalib.
* All API's now accept DN's natively, no need to convert to str (or
unicode).
* Removed ipalib.encoder and encode/decode decorators. Type conversion
is now explicitly performed in each IPASimpleLDAPObject method which
emulates a ldap.SimpleLDAPObject method.
* Entity & Entry classes now utilize DN's
* Removed __getattr__ in Entity & Entity clases. There were two
problems with it. It presented synthetic Python object attributes
based on the current LDAP data it contained. There is no way to
validate synthetic attributes using code checkers, you can't search
the code to find LDAP attribute accesses (because synthetic
attriutes look like Python attributes instead of LDAP data) and
error handling is circumscribed. Secondly __getattr__ was hiding
Python internal methods which broke class semantics.
* Replace use of methods inherited from ldap.SimpleLDAPObject via
IPAdmin class with IPAdmin methods. Directly using inherited methods
was causing us to bypass IPA logic. Mostly this meant replacing the
use of search_s() with getEntry() or getList(). Similarly direct
access of the LDAP data in classes using IPAdmin were replaced with
calls to getValue() or getValues().
* Objects returned by ldap2.find_entries() are now compatible with
either the python-ldap access methodology or the Entity/Entry access
methodology.
* All ldap operations now funnel through the common
IPASimpleLDAPObject giving us a single location where we interface
to python-ldap and perform conversions.
* The above 4 modifications means we've greatly reduced the
proliferation of multiple inconsistent ways to perform LDAP
operations. We are well on the way to having a single API in IPA for
doing LDAP (a long range goal).
* All certificate subject bases are now DN's
* DN objects were enhanced thusly:
- find, rfind, index, rindex, replace and insert methods were added
- AVA, RDN and DN classes were refactored in immutable and mutable
variants, the mutable variants are EditableAVA, EditableRDN and
EditableDN. By default we use the immutable variants preserving
important semantics. To edit a DN cast it to an EditableDN and
cast it back to DN when done editing. These issues are fully
described in other documentation.
- first_key_match was removed
- DN equalty comparison permits comparison to a basestring
* Fixed ldapupdate to work with DN's. This work included:
- Enhance test_updates.py to do more checking after applying
update. Add test for update_from_dict(). Convert code to use
unittest classes.
- Consolidated duplicate code.
- Moved code which should have been in the class into the class.
- Fix the handling of the 'deleteentry' update action. It's no longer
necessary to supply fake attributes to make it work. Detect case
where subsequent update applies a change to entry previously marked
for deletetion. General clean-up and simplification of the
'deleteentry' logic.
- Rewrote a couple of functions to be clearer and more Pythonic.
- Added documentation on the data structure being used.
- Simplfy the use of update_from_dict()
* Removed all usage of get_schema() which was being called prior to
accessing the .schema attribute of an object. If a class is using
internal lazy loading as an optimization it's not right to require
users of the interface to be aware of internal
optimization's. schema is now a property and when the schema
property is accessed it calls a private internal method to perform
the lazy loading.
* Added SchemaCache class to cache the schema's from individual
servers. This was done because of the observation we talk to
different LDAP servers, each of which may have it's own
schema. Previously we globally cached the schema from the first
server we connected to and returned that schema in all contexts. The
cache includes controls to invalidate it thus forcing a schema
refresh.
* Schema caching is now senstive to the run time context. During
install and upgrade the schema can change leading to errors due to
out-of-date cached schema. The schema cache is refreshed in these
contexts.
* We are aware of the LDAP syntax of all LDAP attributes. Every
attribute returned from an LDAP operation is passed through a
central table look-up based on it's LDAP syntax. The table key is
the LDAP syntax it's value is a Python callable that returns a
Python object matching the LDAP syntax. There are a handful of LDAP
attributes whose syntax is historically incorrect
(e.g. DistguishedNames that are defined as DirectoryStrings). The
table driven conversion mechanism is augmented with a table of
hard coded exceptions.
Currently only the following conversions occur via the table:
- dn's are converted to DN objects
- binary objects are converted to Python str objects (IPA
convention).
- everything else is converted to unicode using UTF-8 decoding (IPA
convention).
However, now that the table driven conversion mechanism is in place
it would be trivial to do things such as converting attributes
which have LDAP integer syntax into a Python integer, etc.
* Expected values in the unit tests which are a DN no longer need to
use lambda expressions to promote the returned value to a DN for
equality comparison. The return value is automatically promoted to
a DN. The lambda expressions have been removed making the code much
simpler and easier to read.
* Add class level logging to a number of classes which did not support
logging, less need for use of root_logger.
* Remove ipaserver/conn.py, it was unused.
* Consolidated duplicate code wherever it was found.
* Fixed many places that used string concatenation to form a new
string rather than string formatting operators. This is necessary
because string formatting converts it's arguments to a string prior
to building the result string. You can't concatenate a string and a
non-string.
* Simplify logic in rename_managed plugin. Use DN operators to edit
dn's.
* The live version of ipa-ldap-updater did not generate a log file.
The offline version did, now both do.
https://fedorahosted.org/freeipa/ticket/1670
https://fedorahosted.org/freeipa/ticket/1671
https://fedorahosted.org/freeipa/ticket/1672
https://fedorahosted.org/freeipa/ticket/1673
https://fedorahosted.org/freeipa/ticket/1674
https://fedorahosted.org/freeipa/ticket/1392
https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
|
|
|
|
|
|
|
if action == "default":
|
2015-05-05 08:12:12 -05:00
|
|
|
new_value = {'attr': attr, 'value': value}
|
Use DN objects instead of strings
* Convert every string specifying a DN into a DN object
* Every place a dn was manipulated in some fashion it was replaced by
the use of DN operators
* Add new DNParam parameter type for parameters which are DN's
* DN objects are used 100% of the time throughout the entire data
pipeline whenever something is logically a dn.
* Many classes now enforce DN usage for their attributes which are
dn's. This is implmented via ipautil.dn_attribute_property(). The
only permitted types for a class attribute specified to be a DN are
either None or a DN object.
* Require that every place a dn is used it must be a DN object.
This translates into lot of::
assert isinstance(dn, DN)
sprinkled through out the code. Maintaining these asserts is
valuable to preserve DN type enforcement. The asserts can be
disabled in production.
The goal of 100% DN usage 100% of the time has been realized, these
asserts are meant to preserve that.
The asserts also proved valuable in detecting functions which did
not obey their function signatures, such as the baseldap pre and
post callbacks.
* Moved ipalib.dn to ipapython.dn because DN class is shared with all
components, not just the server which uses ipalib.
* All API's now accept DN's natively, no need to convert to str (or
unicode).
* Removed ipalib.encoder and encode/decode decorators. Type conversion
is now explicitly performed in each IPASimpleLDAPObject method which
emulates a ldap.SimpleLDAPObject method.
* Entity & Entry classes now utilize DN's
* Removed __getattr__ in Entity & Entity clases. There were two
problems with it. It presented synthetic Python object attributes
based on the current LDAP data it contained. There is no way to
validate synthetic attributes using code checkers, you can't search
the code to find LDAP attribute accesses (because synthetic
attriutes look like Python attributes instead of LDAP data) and
error handling is circumscribed. Secondly __getattr__ was hiding
Python internal methods which broke class semantics.
* Replace use of methods inherited from ldap.SimpleLDAPObject via
IPAdmin class with IPAdmin methods. Directly using inherited methods
was causing us to bypass IPA logic. Mostly this meant replacing the
use of search_s() with getEntry() or getList(). Similarly direct
access of the LDAP data in classes using IPAdmin were replaced with
calls to getValue() or getValues().
* Objects returned by ldap2.find_entries() are now compatible with
either the python-ldap access methodology or the Entity/Entry access
methodology.
* All ldap operations now funnel through the common
IPASimpleLDAPObject giving us a single location where we interface
to python-ldap and perform conversions.
* The above 4 modifications means we've greatly reduced the
proliferation of multiple inconsistent ways to perform LDAP
operations. We are well on the way to having a single API in IPA for
doing LDAP (a long range goal).
* All certificate subject bases are now DN's
* DN objects were enhanced thusly:
- find, rfind, index, rindex, replace and insert methods were added
- AVA, RDN and DN classes were refactored in immutable and mutable
variants, the mutable variants are EditableAVA, EditableRDN and
EditableDN. By default we use the immutable variants preserving
important semantics. To edit a DN cast it to an EditableDN and
cast it back to DN when done editing. These issues are fully
described in other documentation.
- first_key_match was removed
- DN equalty comparison permits comparison to a basestring
* Fixed ldapupdate to work with DN's. This work included:
- Enhance test_updates.py to do more checking after applying
update. Add test for update_from_dict(). Convert code to use
unittest classes.
- Consolidated duplicate code.
- Moved code which should have been in the class into the class.
- Fix the handling of the 'deleteentry' update action. It's no longer
necessary to supply fake attributes to make it work. Detect case
where subsequent update applies a change to entry previously marked
for deletetion. General clean-up and simplification of the
'deleteentry' logic.
- Rewrote a couple of functions to be clearer and more Pythonic.
- Added documentation on the data structure being used.
- Simplfy the use of update_from_dict()
* Removed all usage of get_schema() which was being called prior to
accessing the .schema attribute of an object. If a class is using
internal lazy loading as an optimization it's not right to require
users of the interface to be aware of internal
optimization's. schema is now a property and when the schema
property is accessed it calls a private internal method to perform
the lazy loading.
* Added SchemaCache class to cache the schema's from individual
servers. This was done because of the observation we talk to
different LDAP servers, each of which may have it's own
schema. Previously we globally cached the schema from the first
server we connected to and returned that schema in all contexts. The
cache includes controls to invalidate it thus forcing a schema
refresh.
* Schema caching is now senstive to the run time context. During
install and upgrade the schema can change leading to errors due to
out-of-date cached schema. The schema cache is refreshed in these
contexts.
* We are aware of the LDAP syntax of all LDAP attributes. Every
attribute returned from an LDAP operation is passed through a
central table look-up based on it's LDAP syntax. The table key is
the LDAP syntax it's value is a Python callable that returns a
Python object matching the LDAP syntax. There are a handful of LDAP
attributes whose syntax is historically incorrect
(e.g. DistguishedNames that are defined as DirectoryStrings). The
table driven conversion mechanism is augmented with a table of
hard coded exceptions.
Currently only the following conversions occur via the table:
- dn's are converted to DN objects
- binary objects are converted to Python str objects (IPA
convention).
- everything else is converted to unicode using UTF-8 decoding (IPA
convention).
However, now that the table driven conversion mechanism is in place
it would be trivial to do things such as converting attributes
which have LDAP integer syntax into a Python integer, etc.
* Expected values in the unit tests which are a DN no longer need to
use lambda expressions to promote the returned value to a DN for
equality comparison. The return value is automatically promoted to
a DN. The lambda expressions have been removed making the code much
simpler and easier to read.
* Add class level logging to a number of classes which did not support
logging, less need for use of root_logger.
* Remove ipaserver/conn.py, it was unused.
* Consolidated duplicate code wherever it was found.
* Fixed many places that used string concatenation to form a new
string rather than string formatting operators. This is necessary
because string formatting converts it's arguments to a string prior
to building the result string. You can't concatenate a string and a
non-string.
* Simplify logic in rename_managed plugin. Use DN operators to edit
dn's.
* The live version of ipa-ldap-updater did not generate a log file.
The offline version did, now both do.
https://fedorahosted.org/freeipa/ticket/1670
https://fedorahosted.org/freeipa/ticket/1671
https://fedorahosted.org/freeipa/ticket/1672
https://fedorahosted.org/freeipa/ticket/1673
https://fedorahosted.org/freeipa/ticket/1674
https://fedorahosted.org/freeipa/ticket/1392
https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
|
|
|
disposition = "default"
|
2008-09-15 19:51:01 -05:00
|
|
|
else:
|
2015-05-05 08:12:12 -05:00
|
|
|
new_value = {'action': action, "attr": attr,
|
|
|
|
'value': value}
|
Use DN objects instead of strings
* Convert every string specifying a DN into a DN object
* Every place a dn was manipulated in some fashion it was replaced by
the use of DN operators
* Add new DNParam parameter type for parameters which are DN's
* DN objects are used 100% of the time throughout the entire data
pipeline whenever something is logically a dn.
* Many classes now enforce DN usage for their attributes which are
dn's. This is implmented via ipautil.dn_attribute_property(). The
only permitted types for a class attribute specified to be a DN are
either None or a DN object.
* Require that every place a dn is used it must be a DN object.
This translates into lot of::
assert isinstance(dn, DN)
sprinkled through out the code. Maintaining these asserts is
valuable to preserve DN type enforcement. The asserts can be
disabled in production.
The goal of 100% DN usage 100% of the time has been realized, these
asserts are meant to preserve that.
The asserts also proved valuable in detecting functions which did
not obey their function signatures, such as the baseldap pre and
post callbacks.
* Moved ipalib.dn to ipapython.dn because DN class is shared with all
components, not just the server which uses ipalib.
* All API's now accept DN's natively, no need to convert to str (or
unicode).
* Removed ipalib.encoder and encode/decode decorators. Type conversion
is now explicitly performed in each IPASimpleLDAPObject method which
emulates a ldap.SimpleLDAPObject method.
* Entity & Entry classes now utilize DN's
* Removed __getattr__ in Entity & Entity clases. There were two
problems with it. It presented synthetic Python object attributes
based on the current LDAP data it contained. There is no way to
validate synthetic attributes using code checkers, you can't search
the code to find LDAP attribute accesses (because synthetic
attriutes look like Python attributes instead of LDAP data) and
error handling is circumscribed. Secondly __getattr__ was hiding
Python internal methods which broke class semantics.
* Replace use of methods inherited from ldap.SimpleLDAPObject via
IPAdmin class with IPAdmin methods. Directly using inherited methods
was causing us to bypass IPA logic. Mostly this meant replacing the
use of search_s() with getEntry() or getList(). Similarly direct
access of the LDAP data in classes using IPAdmin were replaced with
calls to getValue() or getValues().
* Objects returned by ldap2.find_entries() are now compatible with
either the python-ldap access methodology or the Entity/Entry access
methodology.
* All ldap operations now funnel through the common
IPASimpleLDAPObject giving us a single location where we interface
to python-ldap and perform conversions.
* The above 4 modifications means we've greatly reduced the
proliferation of multiple inconsistent ways to perform LDAP
operations. We are well on the way to having a single API in IPA for
doing LDAP (a long range goal).
* All certificate subject bases are now DN's
* DN objects were enhanced thusly:
- find, rfind, index, rindex, replace and insert methods were added
- AVA, RDN and DN classes were refactored in immutable and mutable
variants, the mutable variants are EditableAVA, EditableRDN and
EditableDN. By default we use the immutable variants preserving
important semantics. To edit a DN cast it to an EditableDN and
cast it back to DN when done editing. These issues are fully
described in other documentation.
- first_key_match was removed
- DN equalty comparison permits comparison to a basestring
* Fixed ldapupdate to work with DN's. This work included:
- Enhance test_updates.py to do more checking after applying
update. Add test for update_from_dict(). Convert code to use
unittest classes.
- Consolidated duplicate code.
- Moved code which should have been in the class into the class.
- Fix the handling of the 'deleteentry' update action. It's no longer
necessary to supply fake attributes to make it work. Detect case
where subsequent update applies a change to entry previously marked
for deletetion. General clean-up and simplification of the
'deleteentry' logic.
- Rewrote a couple of functions to be clearer and more Pythonic.
- Added documentation on the data structure being used.
- Simplfy the use of update_from_dict()
* Removed all usage of get_schema() which was being called prior to
accessing the .schema attribute of an object. If a class is using
internal lazy loading as an optimization it's not right to require
users of the interface to be aware of internal
optimization's. schema is now a property and when the schema
property is accessed it calls a private internal method to perform
the lazy loading.
* Added SchemaCache class to cache the schema's from individual
servers. This was done because of the observation we talk to
different LDAP servers, each of which may have it's own
schema. Previously we globally cached the schema from the first
server we connected to and returned that schema in all contexts. The
cache includes controls to invalidate it thus forcing a schema
refresh.
* Schema caching is now senstive to the run time context. During
install and upgrade the schema can change leading to errors due to
out-of-date cached schema. The schema cache is refreshed in these
contexts.
* We are aware of the LDAP syntax of all LDAP attributes. Every
attribute returned from an LDAP operation is passed through a
central table look-up based on it's LDAP syntax. The table key is
the LDAP syntax it's value is a Python callable that returns a
Python object matching the LDAP syntax. There are a handful of LDAP
attributes whose syntax is historically incorrect
(e.g. DistguishedNames that are defined as DirectoryStrings). The
table driven conversion mechanism is augmented with a table of
hard coded exceptions.
Currently only the following conversions occur via the table:
- dn's are converted to DN objects
- binary objects are converted to Python str objects (IPA
convention).
- everything else is converted to unicode using UTF-8 decoding (IPA
convention).
However, now that the table driven conversion mechanism is in place
it would be trivial to do things such as converting attributes
which have LDAP integer syntax into a Python integer, etc.
* Expected values in the unit tests which are a DN no longer need to
use lambda expressions to promote the returned value to a DN for
equality comparison. The return value is automatically promoted to
a DN. The lambda expressions have been removed making the code much
simpler and easier to read.
* Add class level logging to a number of classes which did not support
logging, less need for use of root_logger.
* Remove ipaserver/conn.py, it was unused.
* Consolidated duplicate code wherever it was found.
* Fixed many places that used string concatenation to form a new
string rather than string formatting operators. This is necessary
because string formatting converts it's arguments to a string prior
to building the result string. You can't concatenate a string and a
non-string.
* Simplify logic in rename_managed plugin. Use DN operators to edit
dn's.
* The live version of ipa-ldap-updater did not generate a log file.
The offline version did, now both do.
https://fedorahosted.org/freeipa/ticket/1670
https://fedorahosted.org/freeipa/ticket/1671
https://fedorahosted.org/freeipa/ticket/1672
https://fedorahosted.org/freeipa/ticket/1673
https://fedorahosted.org/freeipa/ticket/1674
https://fedorahosted.org/freeipa/ticket/1392
https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
|
|
|
disposition = "updates"
|
|
|
|
|
|
|
|
disposition_list = update.setdefault(disposition, [])
|
|
|
|
disposition_list.append(new_value)
|
|
|
|
|
|
|
|
def emit_update(update):
|
|
|
|
'''
|
2015-03-06 08:14:17 -06:00
|
|
|
When processing a dn is completed emit the update by appending it
|
|
|
|
into list of all updates
|
Use DN objects instead of strings
* Convert every string specifying a DN into a DN object
* Every place a dn was manipulated in some fashion it was replaced by
the use of DN operators
* Add new DNParam parameter type for parameters which are DN's
* DN objects are used 100% of the time throughout the entire data
pipeline whenever something is logically a dn.
* Many classes now enforce DN usage for their attributes which are
dn's. This is implmented via ipautil.dn_attribute_property(). The
only permitted types for a class attribute specified to be a DN are
either None or a DN object.
* Require that every place a dn is used it must be a DN object.
This translates into lot of::
assert isinstance(dn, DN)
sprinkled through out the code. Maintaining these asserts is
valuable to preserve DN type enforcement. The asserts can be
disabled in production.
The goal of 100% DN usage 100% of the time has been realized, these
asserts are meant to preserve that.
The asserts also proved valuable in detecting functions which did
not obey their function signatures, such as the baseldap pre and
post callbacks.
* Moved ipalib.dn to ipapython.dn because DN class is shared with all
components, not just the server which uses ipalib.
* All API's now accept DN's natively, no need to convert to str (or
unicode).
* Removed ipalib.encoder and encode/decode decorators. Type conversion
is now explicitly performed in each IPASimpleLDAPObject method which
emulates a ldap.SimpleLDAPObject method.
* Entity & Entry classes now utilize DN's
* Removed __getattr__ in Entity & Entity clases. There were two
problems with it. It presented synthetic Python object attributes
based on the current LDAP data it contained. There is no way to
validate synthetic attributes using code checkers, you can't search
the code to find LDAP attribute accesses (because synthetic
attriutes look like Python attributes instead of LDAP data) and
error handling is circumscribed. Secondly __getattr__ was hiding
Python internal methods which broke class semantics.
* Replace use of methods inherited from ldap.SimpleLDAPObject via
IPAdmin class with IPAdmin methods. Directly using inherited methods
was causing us to bypass IPA logic. Mostly this meant replacing the
use of search_s() with getEntry() or getList(). Similarly direct
access of the LDAP data in classes using IPAdmin were replaced with
calls to getValue() or getValues().
* Objects returned by ldap2.find_entries() are now compatible with
either the python-ldap access methodology or the Entity/Entry access
methodology.
* All ldap operations now funnel through the common
IPASimpleLDAPObject giving us a single location where we interface
to python-ldap and perform conversions.
* The above 4 modifications means we've greatly reduced the
proliferation of multiple inconsistent ways to perform LDAP
operations. We are well on the way to having a single API in IPA for
doing LDAP (a long range goal).
* All certificate subject bases are now DN's
* DN objects were enhanced thusly:
- find, rfind, index, rindex, replace and insert methods were added
- AVA, RDN and DN classes were refactored in immutable and mutable
variants, the mutable variants are EditableAVA, EditableRDN and
EditableDN. By default we use the immutable variants preserving
important semantics. To edit a DN cast it to an EditableDN and
cast it back to DN when done editing. These issues are fully
described in other documentation.
- first_key_match was removed
- DN equalty comparison permits comparison to a basestring
* Fixed ldapupdate to work with DN's. This work included:
- Enhance test_updates.py to do more checking after applying
update. Add test for update_from_dict(). Convert code to use
unittest classes.
- Consolidated duplicate code.
- Moved code which should have been in the class into the class.
- Fix the handling of the 'deleteentry' update action. It's no longer
necessary to supply fake attributes to make it work. Detect case
where subsequent update applies a change to entry previously marked
for deletetion. General clean-up and simplification of the
'deleteentry' logic.
- Rewrote a couple of functions to be clearer and more Pythonic.
- Added documentation on the data structure being used.
- Simplfy the use of update_from_dict()
* Removed all usage of get_schema() which was being called prior to
accessing the .schema attribute of an object. If a class is using
internal lazy loading as an optimization it's not right to require
users of the interface to be aware of internal
optimization's. schema is now a property and when the schema
property is accessed it calls a private internal method to perform
the lazy loading.
* Added SchemaCache class to cache the schema's from individual
servers. This was done because of the observation we talk to
different LDAP servers, each of which may have it's own
schema. Previously we globally cached the schema from the first
server we connected to and returned that schema in all contexts. The
cache includes controls to invalidate it thus forcing a schema
refresh.
* Schema caching is now senstive to the run time context. During
install and upgrade the schema can change leading to errors due to
out-of-date cached schema. The schema cache is refreshed in these
contexts.
* We are aware of the LDAP syntax of all LDAP attributes. Every
attribute returned from an LDAP operation is passed through a
central table look-up based on it's LDAP syntax. The table key is
the LDAP syntax it's value is a Python callable that returns a
Python object matching the LDAP syntax. There are a handful of LDAP
attributes whose syntax is historically incorrect
(e.g. DistguishedNames that are defined as DirectoryStrings). The
table driven conversion mechanism is augmented with a table of
hard coded exceptions.
Currently only the following conversions occur via the table:
- dn's are converted to DN objects
- binary objects are converted to Python str objects (IPA
convention).
- everything else is converted to unicode using UTF-8 decoding (IPA
convention).
However, now that the table driven conversion mechanism is in place
it would be trivial to do things such as converting attributes
which have LDAP integer syntax into a Python integer, etc.
* Expected values in the unit tests which are a DN no longer need to
use lambda expressions to promote the returned value to a DN for
equality comparison. The return value is automatically promoted to
a DN. The lambda expressions have been removed making the code much
simpler and easier to read.
* Add class level logging to a number of classes which did not support
logging, less need for use of root_logger.
* Remove ipaserver/conn.py, it was unused.
* Consolidated duplicate code wherever it was found.
* Fixed many places that used string concatenation to form a new
string rather than string formatting operators. This is necessary
because string formatting converts it's arguments to a string prior
to building the result string. You can't concatenate a string and a
non-string.
* Simplify logic in rename_managed plugin. Use DN operators to edit
dn's.
* The live version of ipa-ldap-updater did not generate a log file.
The offline version did, now both do.
https://fedorahosted.org/freeipa/ticket/1670
https://fedorahosted.org/freeipa/ticket/1671
https://fedorahosted.org/freeipa/ticket/1672
https://fedorahosted.org/freeipa/ticket/1673
https://fedorahosted.org/freeipa/ticket/1674
https://fedorahosted.org/freeipa/ticket/1392
https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
|
|
|
'''
|
2015-03-06 08:14:17 -06:00
|
|
|
dn = update.get('dn')
|
|
|
|
assert isinstance(dn, DN)
|
|
|
|
all_updates.append(update)
|
Use DN objects instead of strings
* Convert every string specifying a DN into a DN object
* Every place a dn was manipulated in some fashion it was replaced by
the use of DN operators
* Add new DNParam parameter type for parameters which are DN's
* DN objects are used 100% of the time throughout the entire data
pipeline whenever something is logically a dn.
* Many classes now enforce DN usage for their attributes which are
dn's. This is implmented via ipautil.dn_attribute_property(). The
only permitted types for a class attribute specified to be a DN are
either None or a DN object.
* Require that every place a dn is used it must be a DN object.
This translates into lot of::
assert isinstance(dn, DN)
sprinkled through out the code. Maintaining these asserts is
valuable to preserve DN type enforcement. The asserts can be
disabled in production.
The goal of 100% DN usage 100% of the time has been realized, these
asserts are meant to preserve that.
The asserts also proved valuable in detecting functions which did
not obey their function signatures, such as the baseldap pre and
post callbacks.
* Moved ipalib.dn to ipapython.dn because DN class is shared with all
components, not just the server which uses ipalib.
* All API's now accept DN's natively, no need to convert to str (or
unicode).
* Removed ipalib.encoder and encode/decode decorators. Type conversion
is now explicitly performed in each IPASimpleLDAPObject method which
emulates a ldap.SimpleLDAPObject method.
* Entity & Entry classes now utilize DN's
* Removed __getattr__ in Entity & Entity clases. There were two
problems with it. It presented synthetic Python object attributes
based on the current LDAP data it contained. There is no way to
validate synthetic attributes using code checkers, you can't search
the code to find LDAP attribute accesses (because synthetic
attriutes look like Python attributes instead of LDAP data) and
error handling is circumscribed. Secondly __getattr__ was hiding
Python internal methods which broke class semantics.
* Replace use of methods inherited from ldap.SimpleLDAPObject via
IPAdmin class with IPAdmin methods. Directly using inherited methods
was causing us to bypass IPA logic. Mostly this meant replacing the
use of search_s() with getEntry() or getList(). Similarly direct
access of the LDAP data in classes using IPAdmin were replaced with
calls to getValue() or getValues().
* Objects returned by ldap2.find_entries() are now compatible with
either the python-ldap access methodology or the Entity/Entry access
methodology.
* All ldap operations now funnel through the common
IPASimpleLDAPObject giving us a single location where we interface
to python-ldap and perform conversions.
* The above 4 modifications means we've greatly reduced the
proliferation of multiple inconsistent ways to perform LDAP
operations. We are well on the way to having a single API in IPA for
doing LDAP (a long range goal).
* All certificate subject bases are now DN's
* DN objects were enhanced thusly:
- find, rfind, index, rindex, replace and insert methods were added
- AVA, RDN and DN classes were refactored in immutable and mutable
variants, the mutable variants are EditableAVA, EditableRDN and
EditableDN. By default we use the immutable variants preserving
important semantics. To edit a DN cast it to an EditableDN and
cast it back to DN when done editing. These issues are fully
described in other documentation.
- first_key_match was removed
- DN equalty comparison permits comparison to a basestring
* Fixed ldapupdate to work with DN's. This work included:
- Enhance test_updates.py to do more checking after applying
update. Add test for update_from_dict(). Convert code to use
unittest classes.
- Consolidated duplicate code.
- Moved code which should have been in the class into the class.
- Fix the handling of the 'deleteentry' update action. It's no longer
necessary to supply fake attributes to make it work. Detect case
where subsequent update applies a change to entry previously marked
for deletetion. General clean-up and simplification of the
'deleteentry' logic.
- Rewrote a couple of functions to be clearer and more Pythonic.
- Added documentation on the data structure being used.
- Simplfy the use of update_from_dict()
* Removed all usage of get_schema() which was being called prior to
accessing the .schema attribute of an object. If a class is using
internal lazy loading as an optimization it's not right to require
users of the interface to be aware of internal
optimization's. schema is now a property and when the schema
property is accessed it calls a private internal method to perform
the lazy loading.
* Added SchemaCache class to cache the schema's from individual
servers. This was done because of the observation we talk to
different LDAP servers, each of which may have it's own
schema. Previously we globally cached the schema from the first
server we connected to and returned that schema in all contexts. The
cache includes controls to invalidate it thus forcing a schema
refresh.
* Schema caching is now senstive to the run time context. During
install and upgrade the schema can change leading to errors due to
out-of-date cached schema. The schema cache is refreshed in these
contexts.
* We are aware of the LDAP syntax of all LDAP attributes. Every
attribute returned from an LDAP operation is passed through a
central table look-up based on it's LDAP syntax. The table key is
the LDAP syntax it's value is a Python callable that returns a
Python object matching the LDAP syntax. There are a handful of LDAP
attributes whose syntax is historically incorrect
(e.g. DistguishedNames that are defined as DirectoryStrings). The
table driven conversion mechanism is augmented with a table of
hard coded exceptions.
Currently only the following conversions occur via the table:
- dn's are converted to DN objects
- binary objects are converted to Python str objects (IPA
convention).
- everything else is converted to unicode using UTF-8 decoding (IPA
convention).
However, now that the table driven conversion mechanism is in place
it would be trivial to do things such as converting attributes
which have LDAP integer syntax into a Python integer, etc.
* Expected values in the unit tests which are a DN no longer need to
use lambda expressions to promote the returned value to a DN for
equality comparison. The return value is automatically promoted to
a DN. The lambda expressions have been removed making the code much
simpler and easier to read.
* Add class level logging to a number of classes which did not support
logging, less need for use of root_logger.
* Remove ipaserver/conn.py, it was unused.
* Consolidated duplicate code wherever it was found.
* Fixed many places that used string concatenation to form a new
string rather than string formatting operators. This is necessary
because string formatting converts it's arguments to a string prior
to building the result string. You can't concatenate a string and a
non-string.
* Simplify logic in rename_managed plugin. Use DN operators to edit
dn's.
* The live version of ipa-ldap-updater did not generate a log file.
The offline version did, now both do.
https://fedorahosted.org/freeipa/ticket/1670
https://fedorahosted.org/freeipa/ticket/1671
https://fedorahosted.org/freeipa/ticket/1672
https://fedorahosted.org/freeipa/ticket/1673
https://fedorahosted.org/freeipa/ticket/1674
https://fedorahosted.org/freeipa/ticket/1392
https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
|
|
|
|
2015-03-18 09:46:00 -05:00
|
|
|
def emit_plugin_update(update):
|
|
|
|
'''
|
|
|
|
When processing a plugin is complete emit the plugin update by
|
|
|
|
appending it into list of all updates
|
|
|
|
'''
|
|
|
|
all_updates.append(update)
|
|
|
|
|
Use DN objects instead of strings
* Convert every string specifying a DN into a DN object
* Every place a dn was manipulated in some fashion it was replaced by
the use of DN operators
* Add new DNParam parameter type for parameters which are DN's
* DN objects are used 100% of the time throughout the entire data
pipeline whenever something is logically a dn.
* Many classes now enforce DN usage for their attributes which are
dn's. This is implmented via ipautil.dn_attribute_property(). The
only permitted types for a class attribute specified to be a DN are
either None or a DN object.
* Require that every place a dn is used it must be a DN object.
This translates into lot of::
assert isinstance(dn, DN)
sprinkled through out the code. Maintaining these asserts is
valuable to preserve DN type enforcement. The asserts can be
disabled in production.
The goal of 100% DN usage 100% of the time has been realized, these
asserts are meant to preserve that.
The asserts also proved valuable in detecting functions which did
not obey their function signatures, such as the baseldap pre and
post callbacks.
* Moved ipalib.dn to ipapython.dn because DN class is shared with all
components, not just the server which uses ipalib.
* All API's now accept DN's natively, no need to convert to str (or
unicode).
* Removed ipalib.encoder and encode/decode decorators. Type conversion
is now explicitly performed in each IPASimpleLDAPObject method which
emulates a ldap.SimpleLDAPObject method.
* Entity & Entry classes now utilize DN's
* Removed __getattr__ in Entity & Entity clases. There were two
problems with it. It presented synthetic Python object attributes
based on the current LDAP data it contained. There is no way to
validate synthetic attributes using code checkers, you can't search
the code to find LDAP attribute accesses (because synthetic
attriutes look like Python attributes instead of LDAP data) and
error handling is circumscribed. Secondly __getattr__ was hiding
Python internal methods which broke class semantics.
* Replace use of methods inherited from ldap.SimpleLDAPObject via
IPAdmin class with IPAdmin methods. Directly using inherited methods
was causing us to bypass IPA logic. Mostly this meant replacing the
use of search_s() with getEntry() or getList(). Similarly direct
access of the LDAP data in classes using IPAdmin were replaced with
calls to getValue() or getValues().
* Objects returned by ldap2.find_entries() are now compatible with
either the python-ldap access methodology or the Entity/Entry access
methodology.
* All ldap operations now funnel through the common
IPASimpleLDAPObject giving us a single location where we interface
to python-ldap and perform conversions.
* The above 4 modifications means we've greatly reduced the
proliferation of multiple inconsistent ways to perform LDAP
operations. We are well on the way to having a single API in IPA for
doing LDAP (a long range goal).
* All certificate subject bases are now DN's
* DN objects were enhanced thusly:
- find, rfind, index, rindex, replace and insert methods were added
- AVA, RDN and DN classes were refactored in immutable and mutable
variants, the mutable variants are EditableAVA, EditableRDN and
EditableDN. By default we use the immutable variants preserving
important semantics. To edit a DN cast it to an EditableDN and
cast it back to DN when done editing. These issues are fully
described in other documentation.
- first_key_match was removed
- DN equalty comparison permits comparison to a basestring
* Fixed ldapupdate to work with DN's. This work included:
- Enhance test_updates.py to do more checking after applying
update. Add test for update_from_dict(). Convert code to use
unittest classes.
- Consolidated duplicate code.
- Moved code which should have been in the class into the class.
- Fix the handling of the 'deleteentry' update action. It's no longer
necessary to supply fake attributes to make it work. Detect case
where subsequent update applies a change to entry previously marked
for deletetion. General clean-up and simplification of the
'deleteentry' logic.
- Rewrote a couple of functions to be clearer and more Pythonic.
- Added documentation on the data structure being used.
- Simplfy the use of update_from_dict()
* Removed all usage of get_schema() which was being called prior to
accessing the .schema attribute of an object. If a class is using
internal lazy loading as an optimization it's not right to require
users of the interface to be aware of internal
optimization's. schema is now a property and when the schema
property is accessed it calls a private internal method to perform
the lazy loading.
* Added SchemaCache class to cache the schema's from individual
servers. This was done because of the observation we talk to
different LDAP servers, each of which may have it's own
schema. Previously we globally cached the schema from the first
server we connected to and returned that schema in all contexts. The
cache includes controls to invalidate it thus forcing a schema
refresh.
* Schema caching is now senstive to the run time context. During
install and upgrade the schema can change leading to errors due to
out-of-date cached schema. The schema cache is refreshed in these
contexts.
* We are aware of the LDAP syntax of all LDAP attributes. Every
attribute returned from an LDAP operation is passed through a
central table look-up based on it's LDAP syntax. The table key is
the LDAP syntax it's value is a Python callable that returns a
Python object matching the LDAP syntax. There are a handful of LDAP
attributes whose syntax is historically incorrect
(e.g. DistguishedNames that are defined as DirectoryStrings). The
table driven conversion mechanism is augmented with a table of
hard coded exceptions.
Currently only the following conversions occur via the table:
- dn's are converted to DN objects
- binary objects are converted to Python str objects (IPA
convention).
- everything else is converted to unicode using UTF-8 decoding (IPA
convention).
However, now that the table driven conversion mechanism is in place
it would be trivial to do things such as converting attributes
which have LDAP integer syntax into a Python integer, etc.
* Expected values in the unit tests which are a DN no longer need to
use lambda expressions to promote the returned value to a DN for
equality comparison. The return value is automatically promoted to
a DN. The lambda expressions have been removed making the code much
simpler and easier to read.
* Add class level logging to a number of classes which did not support
logging, less need for use of root_logger.
* Remove ipaserver/conn.py, it was unused.
* Consolidated duplicate code wherever it was found.
* Fixed many places that used string concatenation to form a new
string rather than string formatting operators. This is necessary
because string formatting converts it's arguments to a string prior
to building the result string. You can't concatenate a string and a
non-string.
* Simplify logic in rename_managed plugin. Use DN operators to edit
dn's.
* The live version of ipa-ldap-updater did not generate a log file.
The offline version did, now both do.
https://fedorahosted.org/freeipa/ticket/1670
https://fedorahosted.org/freeipa/ticket/1671
https://fedorahosted.org/freeipa/ticket/1672
https://fedorahosted.org/freeipa/ticket/1673
https://fedorahosted.org/freeipa/ticket/1674
https://fedorahosted.org/freeipa/ticket/1392
https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
|
|
|
# Iterate over source input lines
|
|
|
|
for source_line in source_data:
|
|
|
|
lcount += 1
|
|
|
|
|
|
|
|
# strip trailing whitespace and newline
|
|
|
|
source_line = source_line.rstrip()
|
2008-09-15 19:51:01 -05:00
|
|
|
|
Use DN objects instead of strings
* Convert every string specifying a DN into a DN object
* Every place a dn was manipulated in some fashion it was replaced by
the use of DN operators
* Add new DNParam parameter type for parameters which are DN's
* DN objects are used 100% of the time throughout the entire data
pipeline whenever something is logically a dn.
* Many classes now enforce DN usage for their attributes which are
dn's. This is implmented via ipautil.dn_attribute_property(). The
only permitted types for a class attribute specified to be a DN are
either None or a DN object.
* Require that every place a dn is used it must be a DN object.
This translates into lot of::
assert isinstance(dn, DN)
sprinkled through out the code. Maintaining these asserts is
valuable to preserve DN type enforcement. The asserts can be
disabled in production.
The goal of 100% DN usage 100% of the time has been realized, these
asserts are meant to preserve that.
The asserts also proved valuable in detecting functions which did
not obey their function signatures, such as the baseldap pre and
post callbacks.
* Moved ipalib.dn to ipapython.dn because DN class is shared with all
components, not just the server which uses ipalib.
* All API's now accept DN's natively, no need to convert to str (or
unicode).
* Removed ipalib.encoder and encode/decode decorators. Type conversion
is now explicitly performed in each IPASimpleLDAPObject method which
emulates a ldap.SimpleLDAPObject method.
* Entity & Entry classes now utilize DN's
* Removed __getattr__ in Entity & Entity clases. There were two
problems with it. It presented synthetic Python object attributes
based on the current LDAP data it contained. There is no way to
validate synthetic attributes using code checkers, you can't search
the code to find LDAP attribute accesses (because synthetic
attriutes look like Python attributes instead of LDAP data) and
error handling is circumscribed. Secondly __getattr__ was hiding
Python internal methods which broke class semantics.
* Replace use of methods inherited from ldap.SimpleLDAPObject via
IPAdmin class with IPAdmin methods. Directly using inherited methods
was causing us to bypass IPA logic. Mostly this meant replacing the
use of search_s() with getEntry() or getList(). Similarly direct
access of the LDAP data in classes using IPAdmin were replaced with
calls to getValue() or getValues().
* Objects returned by ldap2.find_entries() are now compatible with
either the python-ldap access methodology or the Entity/Entry access
methodology.
* All ldap operations now funnel through the common
IPASimpleLDAPObject giving us a single location where we interface
to python-ldap and perform conversions.
* The above 4 modifications means we've greatly reduced the
proliferation of multiple inconsistent ways to perform LDAP
operations. We are well on the way to having a single API in IPA for
doing LDAP (a long range goal).
* All certificate subject bases are now DN's
* DN objects were enhanced thusly:
- find, rfind, index, rindex, replace and insert methods were added
- AVA, RDN and DN classes were refactored in immutable and mutable
variants, the mutable variants are EditableAVA, EditableRDN and
EditableDN. By default we use the immutable variants preserving
important semantics. To edit a DN cast it to an EditableDN and
cast it back to DN when done editing. These issues are fully
described in other documentation.
- first_key_match was removed
- DN equalty comparison permits comparison to a basestring
* Fixed ldapupdate to work with DN's. This work included:
- Enhance test_updates.py to do more checking after applying
update. Add test for update_from_dict(). Convert code to use
unittest classes.
- Consolidated duplicate code.
- Moved code which should have been in the class into the class.
- Fix the handling of the 'deleteentry' update action. It's no longer
necessary to supply fake attributes to make it work. Detect case
where subsequent update applies a change to entry previously marked
for deletetion. General clean-up and simplification of the
'deleteentry' logic.
- Rewrote a couple of functions to be clearer and more Pythonic.
- Added documentation on the data structure being used.
- Simplfy the use of update_from_dict()
* Removed all usage of get_schema() which was being called prior to
accessing the .schema attribute of an object. If a class is using
internal lazy loading as an optimization it's not right to require
users of the interface to be aware of internal
optimization's. schema is now a property and when the schema
property is accessed it calls a private internal method to perform
the lazy loading.
* Added SchemaCache class to cache the schema's from individual
servers. This was done because of the observation we talk to
different LDAP servers, each of which may have it's own
schema. Previously we globally cached the schema from the first
server we connected to and returned that schema in all contexts. The
cache includes controls to invalidate it thus forcing a schema
refresh.
* Schema caching is now senstive to the run time context. During
install and upgrade the schema can change leading to errors due to
out-of-date cached schema. The schema cache is refreshed in these
contexts.
* We are aware of the LDAP syntax of all LDAP attributes. Every
attribute returned from an LDAP operation is passed through a
central table look-up based on it's LDAP syntax. The table key is
the LDAP syntax it's value is a Python callable that returns a
Python object matching the LDAP syntax. There are a handful of LDAP
attributes whose syntax is historically incorrect
(e.g. DistguishedNames that are defined as DirectoryStrings). The
table driven conversion mechanism is augmented with a table of
hard coded exceptions.
Currently only the following conversions occur via the table:
- dn's are converted to DN objects
- binary objects are converted to Python str objects (IPA
convention).
- everything else is converted to unicode using UTF-8 decoding (IPA
convention).
However, now that the table driven conversion mechanism is in place
it would be trivial to do things such as converting attributes
which have LDAP integer syntax into a Python integer, etc.
* Expected values in the unit tests which are a DN no longer need to
use lambda expressions to promote the returned value to a DN for
equality comparison. The return value is automatically promoted to
a DN. The lambda expressions have been removed making the code much
simpler and easier to read.
* Add class level logging to a number of classes which did not support
logging, less need for use of root_logger.
* Remove ipaserver/conn.py, it was unused.
* Consolidated duplicate code wherever it was found.
* Fixed many places that used string concatenation to form a new
string rather than string formatting operators. This is necessary
because string formatting converts it's arguments to a string prior
to building the result string. You can't concatenate a string and a
non-string.
* Simplify logic in rename_managed plugin. Use DN operators to edit
dn's.
* The live version of ipa-ldap-updater did not generate a log file.
The offline version did, now both do.
https://fedorahosted.org/freeipa/ticket/1670
https://fedorahosted.org/freeipa/ticket/1671
https://fedorahosted.org/freeipa/ticket/1672
https://fedorahosted.org/freeipa/ticket/1673
https://fedorahosted.org/freeipa/ticket/1674
https://fedorahosted.org/freeipa/ticket/1392
https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
|
|
|
# skip comments and empty lines
|
|
|
|
if source_line.startswith('#') or source_line == '':
|
|
|
|
continue
|
2008-09-15 19:51:01 -05:00
|
|
|
|
2015-03-18 09:46:00 -05:00
|
|
|
state = None
|
|
|
|
emit_previous_dn = False
|
|
|
|
|
|
|
|
# parse special keywords
|
Use DN objects instead of strings
* Convert every string specifying a DN into a DN object
* Every place a dn was manipulated in some fashion it was replaced by
the use of DN operators
* Add new DNParam parameter type for parameters which are DN's
* DN objects are used 100% of the time throughout the entire data
pipeline whenever something is logically a dn.
* Many classes now enforce DN usage for their attributes which are
dn's. This is implmented via ipautil.dn_attribute_property(). The
only permitted types for a class attribute specified to be a DN are
either None or a DN object.
* Require that every place a dn is used it must be a DN object.
This translates into lot of::
assert isinstance(dn, DN)
sprinkled through out the code. Maintaining these asserts is
valuable to preserve DN type enforcement. The asserts can be
disabled in production.
The goal of 100% DN usage 100% of the time has been realized, these
asserts are meant to preserve that.
The asserts also proved valuable in detecting functions which did
not obey their function signatures, such as the baseldap pre and
post callbacks.
* Moved ipalib.dn to ipapython.dn because DN class is shared with all
components, not just the server which uses ipalib.
* All API's now accept DN's natively, no need to convert to str (or
unicode).
* Removed ipalib.encoder and encode/decode decorators. Type conversion
is now explicitly performed in each IPASimpleLDAPObject method which
emulates a ldap.SimpleLDAPObject method.
* Entity & Entry classes now utilize DN's
* Removed __getattr__ in Entity & Entity clases. There were two
problems with it. It presented synthetic Python object attributes
based on the current LDAP data it contained. There is no way to
validate synthetic attributes using code checkers, you can't search
the code to find LDAP attribute accesses (because synthetic
attriutes look like Python attributes instead of LDAP data) and
error handling is circumscribed. Secondly __getattr__ was hiding
Python internal methods which broke class semantics.
* Replace use of methods inherited from ldap.SimpleLDAPObject via
IPAdmin class with IPAdmin methods. Directly using inherited methods
was causing us to bypass IPA logic. Mostly this meant replacing the
use of search_s() with getEntry() or getList(). Similarly direct
access of the LDAP data in classes using IPAdmin were replaced with
calls to getValue() or getValues().
* Objects returned by ldap2.find_entries() are now compatible with
either the python-ldap access methodology or the Entity/Entry access
methodology.
* All ldap operations now funnel through the common
IPASimpleLDAPObject giving us a single location where we interface
to python-ldap and perform conversions.
* The above 4 modifications means we've greatly reduced the
proliferation of multiple inconsistent ways to perform LDAP
operations. We are well on the way to having a single API in IPA for
doing LDAP (a long range goal).
* All certificate subject bases are now DN's
* DN objects were enhanced thusly:
- find, rfind, index, rindex, replace and insert methods were added
- AVA, RDN and DN classes were refactored in immutable and mutable
variants, the mutable variants are EditableAVA, EditableRDN and
EditableDN. By default we use the immutable variants preserving
important semantics. To edit a DN cast it to an EditableDN and
cast it back to DN when done editing. These issues are fully
described in other documentation.
- first_key_match was removed
- DN equalty comparison permits comparison to a basestring
* Fixed ldapupdate to work with DN's. This work included:
- Enhance test_updates.py to do more checking after applying
update. Add test for update_from_dict(). Convert code to use
unittest classes.
- Consolidated duplicate code.
- Moved code which should have been in the class into the class.
- Fix the handling of the 'deleteentry' update action. It's no longer
necessary to supply fake attributes to make it work. Detect case
where subsequent update applies a change to entry previously marked
for deletetion. General clean-up and simplification of the
'deleteentry' logic.
- Rewrote a couple of functions to be clearer and more Pythonic.
- Added documentation on the data structure being used.
- Simplfy the use of update_from_dict()
* Removed all usage of get_schema() which was being called prior to
accessing the .schema attribute of an object. If a class is using
internal lazy loading as an optimization it's not right to require
users of the interface to be aware of internal
optimization's. schema is now a property and when the schema
property is accessed it calls a private internal method to perform
the lazy loading.
* Added SchemaCache class to cache the schema's from individual
servers. This was done because of the observation we talk to
different LDAP servers, each of which may have it's own
schema. Previously we globally cached the schema from the first
server we connected to and returned that schema in all contexts. The
cache includes controls to invalidate it thus forcing a schema
refresh.
* Schema caching is now senstive to the run time context. During
install and upgrade the schema can change leading to errors due to
out-of-date cached schema. The schema cache is refreshed in these
contexts.
* We are aware of the LDAP syntax of all LDAP attributes. Every
attribute returned from an LDAP operation is passed through a
central table look-up based on it's LDAP syntax. The table key is
the LDAP syntax it's value is a Python callable that returns a
Python object matching the LDAP syntax. There are a handful of LDAP
attributes whose syntax is historically incorrect
(e.g. DistguishedNames that are defined as DirectoryStrings). The
table driven conversion mechanism is augmented with a table of
hard coded exceptions.
Currently only the following conversions occur via the table:
- dn's are converted to DN objects
- binary objects are converted to Python str objects (IPA
convention).
- everything else is converted to unicode using UTF-8 decoding (IPA
convention).
However, now that the table driven conversion mechanism is in place
it would be trivial to do things such as converting attributes
which have LDAP integer syntax into a Python integer, etc.
* Expected values in the unit tests which are a DN no longer need to
use lambda expressions to promote the returned value to a DN for
equality comparison. The return value is automatically promoted to
a DN. The lambda expressions have been removed making the code much
simpler and easier to read.
* Add class level logging to a number of classes which did not support
logging, less need for use of root_logger.
* Remove ipaserver/conn.py, it was unused.
* Consolidated duplicate code wherever it was found.
* Fixed many places that used string concatenation to form a new
string rather than string formatting operators. This is necessary
because string formatting converts it's arguments to a string prior
to building the result string. You can't concatenate a string and a
non-string.
* Simplify logic in rename_managed plugin. Use DN operators to edit
dn's.
* The live version of ipa-ldap-updater did not generate a log file.
The offline version did, now both do.
https://fedorahosted.org/freeipa/ticket/1670
https://fedorahosted.org/freeipa/ticket/1671
https://fedorahosted.org/freeipa/ticket/1672
https://fedorahosted.org/freeipa/ticket/1673
https://fedorahosted.org/freeipa/ticket/1674
https://fedorahosted.org/freeipa/ticket/1392
https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
|
|
|
if source_line.lower().startswith('dn:'):
|
2015-03-18 09:46:00 -05:00
|
|
|
state = 'dn'
|
|
|
|
emit_previous_dn = True
|
|
|
|
elif source_line.lower().startswith('plugin:'):
|
|
|
|
state = 'plugin'
|
|
|
|
emit_previous_dn = True
|
|
|
|
|
|
|
|
if emit_previous_dn and dn is not None:
|
|
|
|
# Emit previous dn
|
|
|
|
emit_item(logical_line)
|
|
|
|
logical_line = ''
|
|
|
|
emit_update(update)
|
|
|
|
update = {}
|
|
|
|
dn = None
|
|
|
|
|
|
|
|
if state == 'dn':
|
Use DN objects instead of strings
* Convert every string specifying a DN into a DN object
* Every place a dn was manipulated in some fashion it was replaced by
the use of DN operators
* Add new DNParam parameter type for parameters which are DN's
* DN objects are used 100% of the time throughout the entire data
pipeline whenever something is logically a dn.
* Many classes now enforce DN usage for their attributes which are
dn's. This is implmented via ipautil.dn_attribute_property(). The
only permitted types for a class attribute specified to be a DN are
either None or a DN object.
* Require that every place a dn is used it must be a DN object.
This translates into lot of::
assert isinstance(dn, DN)
sprinkled through out the code. Maintaining these asserts is
valuable to preserve DN type enforcement. The asserts can be
disabled in production.
The goal of 100% DN usage 100% of the time has been realized, these
asserts are meant to preserve that.
The asserts also proved valuable in detecting functions which did
not obey their function signatures, such as the baseldap pre and
post callbacks.
* Moved ipalib.dn to ipapython.dn because DN class is shared with all
components, not just the server which uses ipalib.
* All API's now accept DN's natively, no need to convert to str (or
unicode).
* Removed ipalib.encoder and encode/decode decorators. Type conversion
is now explicitly performed in each IPASimpleLDAPObject method which
emulates a ldap.SimpleLDAPObject method.
* Entity & Entry classes now utilize DN's
* Removed __getattr__ in Entity & Entity clases. There were two
problems with it. It presented synthetic Python object attributes
based on the current LDAP data it contained. There is no way to
validate synthetic attributes using code checkers, you can't search
the code to find LDAP attribute accesses (because synthetic
attriutes look like Python attributes instead of LDAP data) and
error handling is circumscribed. Secondly __getattr__ was hiding
Python internal methods which broke class semantics.
* Replace use of methods inherited from ldap.SimpleLDAPObject via
IPAdmin class with IPAdmin methods. Directly using inherited methods
was causing us to bypass IPA logic. Mostly this meant replacing the
use of search_s() with getEntry() or getList(). Similarly direct
access of the LDAP data in classes using IPAdmin were replaced with
calls to getValue() or getValues().
* Objects returned by ldap2.find_entries() are now compatible with
either the python-ldap access methodology or the Entity/Entry access
methodology.
* All ldap operations now funnel through the common
IPASimpleLDAPObject giving us a single location where we interface
to python-ldap and perform conversions.
* The above 4 modifications means we've greatly reduced the
proliferation of multiple inconsistent ways to perform LDAP
operations. We are well on the way to having a single API in IPA for
doing LDAP (a long range goal).
* All certificate subject bases are now DN's
* DN objects were enhanced thusly:
- find, rfind, index, rindex, replace and insert methods were added
- AVA, RDN and DN classes were refactored in immutable and mutable
variants, the mutable variants are EditableAVA, EditableRDN and
EditableDN. By default we use the immutable variants preserving
important semantics. To edit a DN cast it to an EditableDN and
cast it back to DN when done editing. These issues are fully
described in other documentation.
- first_key_match was removed
- DN equalty comparison permits comparison to a basestring
* Fixed ldapupdate to work with DN's. This work included:
- Enhance test_updates.py to do more checking after applying
update. Add test for update_from_dict(). Convert code to use
unittest classes.
- Consolidated duplicate code.
- Moved code which should have been in the class into the class.
- Fix the handling of the 'deleteentry' update action. It's no longer
necessary to supply fake attributes to make it work. Detect case
where subsequent update applies a change to entry previously marked
for deletetion. General clean-up and simplification of the
'deleteentry' logic.
- Rewrote a couple of functions to be clearer and more Pythonic.
- Added documentation on the data structure being used.
- Simplfy the use of update_from_dict()
* Removed all usage of get_schema() which was being called prior to
accessing the .schema attribute of an object. If a class is using
internal lazy loading as an optimization it's not right to require
users of the interface to be aware of internal
optimization's. schema is now a property and when the schema
property is accessed it calls a private internal method to perform
the lazy loading.
* Added SchemaCache class to cache the schema's from individual
servers. This was done because of the observation we talk to
different LDAP servers, each of which may have it's own
schema. Previously we globally cached the schema from the first
server we connected to and returned that schema in all contexts. The
cache includes controls to invalidate it thus forcing a schema
refresh.
* Schema caching is now senstive to the run time context. During
install and upgrade the schema can change leading to errors due to
out-of-date cached schema. The schema cache is refreshed in these
contexts.
* We are aware of the LDAP syntax of all LDAP attributes. Every
attribute returned from an LDAP operation is passed through a
central table look-up based on it's LDAP syntax. The table key is
the LDAP syntax it's value is a Python callable that returns a
Python object matching the LDAP syntax. There are a handful of LDAP
attributes whose syntax is historically incorrect
(e.g. DistguishedNames that are defined as DirectoryStrings). The
table driven conversion mechanism is augmented with a table of
hard coded exceptions.
Currently only the following conversions occur via the table:
- dn's are converted to DN objects
- binary objects are converted to Python str objects (IPA
convention).
- everything else is converted to unicode using UTF-8 decoding (IPA
convention).
However, now that the table driven conversion mechanism is in place
it would be trivial to do things such as converting attributes
which have LDAP integer syntax into a Python integer, etc.
* Expected values in the unit tests which are a DN no longer need to
use lambda expressions to promote the returned value to a DN for
equality comparison. The return value is automatically promoted to
a DN. The lambda expressions have been removed making the code much
simpler and easier to read.
* Add class level logging to a number of classes which did not support
logging, less need for use of root_logger.
* Remove ipaserver/conn.py, it was unused.
* Consolidated duplicate code wherever it was found.
* Fixed many places that used string concatenation to form a new
string rather than string formatting operators. This is necessary
because string formatting converts it's arguments to a string prior
to building the result string. You can't concatenate a string and a
non-string.
* Simplify logic in rename_managed plugin. Use DN operators to edit
dn's.
* The live version of ipa-ldap-updater did not generate a log file.
The offline version did, now both do.
https://fedorahosted.org/freeipa/ticket/1670
https://fedorahosted.org/freeipa/ticket/1671
https://fedorahosted.org/freeipa/ticket/1672
https://fedorahosted.org/freeipa/ticket/1673
https://fedorahosted.org/freeipa/ticket/1674
https://fedorahosted.org/freeipa/ticket/1392
https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
|
|
|
# Starting new dn
|
|
|
|
dn = source_line[3:].strip()
|
|
|
|
dn = DN(self._template_str(dn))
|
|
|
|
update['dn'] = dn
|
2015-03-18 09:46:00 -05:00
|
|
|
elif state == 'plugin':
|
|
|
|
# plugin specification is online only
|
|
|
|
plugin_name = source_line[7:].strip()
|
|
|
|
if not plugin_name:
|
|
|
|
raise BadSyntax("plugin name is not defined")
|
|
|
|
update['plugin'] = plugin_name
|
|
|
|
emit_plugin_update(update)
|
|
|
|
update = {}
|
Use DN objects instead of strings
* Convert every string specifying a DN into a DN object
* Every place a dn was manipulated in some fashion it was replaced by
the use of DN operators
* Add new DNParam parameter type for parameters which are DN's
* DN objects are used 100% of the time throughout the entire data
pipeline whenever something is logically a dn.
* Many classes now enforce DN usage for their attributes which are
dn's. This is implmented via ipautil.dn_attribute_property(). The
only permitted types for a class attribute specified to be a DN are
either None or a DN object.
* Require that every place a dn is used it must be a DN object.
This translates into lot of::
assert isinstance(dn, DN)
sprinkled through out the code. Maintaining these asserts is
valuable to preserve DN type enforcement. The asserts can be
disabled in production.
The goal of 100% DN usage 100% of the time has been realized, these
asserts are meant to preserve that.
The asserts also proved valuable in detecting functions which did
not obey their function signatures, such as the baseldap pre and
post callbacks.
* Moved ipalib.dn to ipapython.dn because DN class is shared with all
components, not just the server which uses ipalib.
* All API's now accept DN's natively, no need to convert to str (or
unicode).
* Removed ipalib.encoder and encode/decode decorators. Type conversion
is now explicitly performed in each IPASimpleLDAPObject method which
emulates a ldap.SimpleLDAPObject method.
* Entity & Entry classes now utilize DN's
* Removed __getattr__ in Entity & Entity clases. There were two
problems with it. It presented synthetic Python object attributes
based on the current LDAP data it contained. There is no way to
validate synthetic attributes using code checkers, you can't search
the code to find LDAP attribute accesses (because synthetic
attriutes look like Python attributes instead of LDAP data) and
error handling is circumscribed. Secondly __getattr__ was hiding
Python internal methods which broke class semantics.
* Replace use of methods inherited from ldap.SimpleLDAPObject via
IPAdmin class with IPAdmin methods. Directly using inherited methods
was causing us to bypass IPA logic. Mostly this meant replacing the
use of search_s() with getEntry() or getList(). Similarly direct
access of the LDAP data in classes using IPAdmin were replaced with
calls to getValue() or getValues().
* Objects returned by ldap2.find_entries() are now compatible with
either the python-ldap access methodology or the Entity/Entry access
methodology.
* All ldap operations now funnel through the common
IPASimpleLDAPObject giving us a single location where we interface
to python-ldap and perform conversions.
* The above 4 modifications means we've greatly reduced the
proliferation of multiple inconsistent ways to perform LDAP
operations. We are well on the way to having a single API in IPA for
doing LDAP (a long range goal).
* All certificate subject bases are now DN's
* DN objects were enhanced thusly:
- find, rfind, index, rindex, replace and insert methods were added
- AVA, RDN and DN classes were refactored in immutable and mutable
variants, the mutable variants are EditableAVA, EditableRDN and
EditableDN. By default we use the immutable variants preserving
important semantics. To edit a DN cast it to an EditableDN and
cast it back to DN when done editing. These issues are fully
described in other documentation.
- first_key_match was removed
- DN equalty comparison permits comparison to a basestring
* Fixed ldapupdate to work with DN's. This work included:
- Enhance test_updates.py to do more checking after applying
update. Add test for update_from_dict(). Convert code to use
unittest classes.
- Consolidated duplicate code.
- Moved code which should have been in the class into the class.
- Fix the handling of the 'deleteentry' update action. It's no longer
necessary to supply fake attributes to make it work. Detect case
where subsequent update applies a change to entry previously marked
for deletetion. General clean-up and simplification of the
'deleteentry' logic.
- Rewrote a couple of functions to be clearer and more Pythonic.
- Added documentation on the data structure being used.
- Simplfy the use of update_from_dict()
* Removed all usage of get_schema() which was being called prior to
accessing the .schema attribute of an object. If a class is using
internal lazy loading as an optimization it's not right to require
users of the interface to be aware of internal
optimization's. schema is now a property and when the schema
property is accessed it calls a private internal method to perform
the lazy loading.
* Added SchemaCache class to cache the schema's from individual
servers. This was done because of the observation we talk to
different LDAP servers, each of which may have it's own
schema. Previously we globally cached the schema from the first
server we connected to and returned that schema in all contexts. The
cache includes controls to invalidate it thus forcing a schema
refresh.
* Schema caching is now senstive to the run time context. During
install and upgrade the schema can change leading to errors due to
out-of-date cached schema. The schema cache is refreshed in these
contexts.
* We are aware of the LDAP syntax of all LDAP attributes. Every
attribute returned from an LDAP operation is passed through a
central table look-up based on it's LDAP syntax. The table key is
the LDAP syntax it's value is a Python callable that returns a
Python object matching the LDAP syntax. There are a handful of LDAP
attributes whose syntax is historically incorrect
(e.g. DistguishedNames that are defined as DirectoryStrings). The
table driven conversion mechanism is augmented with a table of
hard coded exceptions.
Currently only the following conversions occur via the table:
- dn's are converted to DN objects
- binary objects are converted to Python str objects (IPA
convention).
- everything else is converted to unicode using UTF-8 decoding (IPA
convention).
However, now that the table driven conversion mechanism is in place
it would be trivial to do things such as converting attributes
which have LDAP integer syntax into a Python integer, etc.
* Expected values in the unit tests which are a DN no longer need to
use lambda expressions to promote the returned value to a DN for
equality comparison. The return value is automatically promoted to
a DN. The lambda expressions have been removed making the code much
simpler and easier to read.
* Add class level logging to a number of classes which did not support
logging, less need for use of root_logger.
* Remove ipaserver/conn.py, it was unused.
* Consolidated duplicate code wherever it was found.
* Fixed many places that used string concatenation to form a new
string rather than string formatting operators. This is necessary
because string formatting converts it's arguments to a string prior
to building the result string. You can't concatenate a string and a
non-string.
* Simplify logic in rename_managed plugin. Use DN operators to edit
dn's.
* The live version of ipa-ldap-updater did not generate a log file.
The offline version did, now both do.
https://fedorahosted.org/freeipa/ticket/1670
https://fedorahosted.org/freeipa/ticket/1671
https://fedorahosted.org/freeipa/ticket/1672
https://fedorahosted.org/freeipa/ticket/1673
https://fedorahosted.org/freeipa/ticket/1674
https://fedorahosted.org/freeipa/ticket/1392
https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
|
|
|
else:
|
|
|
|
# Process items belonging to dn
|
|
|
|
if dn is None:
|
2015-08-12 06:49:54 -05:00
|
|
|
raise BadSyntax("dn is not defined in the update, data source=%s" % (data_source_name))
|
2008-09-15 19:51:01 -05:00
|
|
|
|
Use DN objects instead of strings
* Convert every string specifying a DN into a DN object
* Every place a dn was manipulated in some fashion it was replaced by
the use of DN operators
* Add new DNParam parameter type for parameters which are DN's
* DN objects are used 100% of the time throughout the entire data
pipeline whenever something is logically a dn.
* Many classes now enforce DN usage for their attributes which are
dn's. This is implmented via ipautil.dn_attribute_property(). The
only permitted types for a class attribute specified to be a DN are
either None or a DN object.
* Require that every place a dn is used it must be a DN object.
This translates into lot of::
assert isinstance(dn, DN)
sprinkled through out the code. Maintaining these asserts is
valuable to preserve DN type enforcement. The asserts can be
disabled in production.
The goal of 100% DN usage 100% of the time has been realized, these
asserts are meant to preserve that.
The asserts also proved valuable in detecting functions which did
not obey their function signatures, such as the baseldap pre and
post callbacks.
* Moved ipalib.dn to ipapython.dn because DN class is shared with all
components, not just the server which uses ipalib.
* All API's now accept DN's natively, no need to convert to str (or
unicode).
* Removed ipalib.encoder and encode/decode decorators. Type conversion
is now explicitly performed in each IPASimpleLDAPObject method which
emulates a ldap.SimpleLDAPObject method.
* Entity & Entry classes now utilize DN's
* Removed __getattr__ in Entity & Entity clases. There were two
problems with it. It presented synthetic Python object attributes
based on the current LDAP data it contained. There is no way to
validate synthetic attributes using code checkers, you can't search
the code to find LDAP attribute accesses (because synthetic
attriutes look like Python attributes instead of LDAP data) and
error handling is circumscribed. Secondly __getattr__ was hiding
Python internal methods which broke class semantics.
* Replace use of methods inherited from ldap.SimpleLDAPObject via
IPAdmin class with IPAdmin methods. Directly using inherited methods
was causing us to bypass IPA logic. Mostly this meant replacing the
use of search_s() with getEntry() or getList(). Similarly direct
access of the LDAP data in classes using IPAdmin were replaced with
calls to getValue() or getValues().
* Objects returned by ldap2.find_entries() are now compatible with
either the python-ldap access methodology or the Entity/Entry access
methodology.
* All ldap operations now funnel through the common
IPASimpleLDAPObject giving us a single location where we interface
to python-ldap and perform conversions.
* The above 4 modifications means we've greatly reduced the
proliferation of multiple inconsistent ways to perform LDAP
operations. We are well on the way to having a single API in IPA for
doing LDAP (a long range goal).
* All certificate subject bases are now DN's
* DN objects were enhanced thusly:
- find, rfind, index, rindex, replace and insert methods were added
- AVA, RDN and DN classes were refactored in immutable and mutable
variants, the mutable variants are EditableAVA, EditableRDN and
EditableDN. By default we use the immutable variants preserving
important semantics. To edit a DN cast it to an EditableDN and
cast it back to DN when done editing. These issues are fully
described in other documentation.
- first_key_match was removed
- DN equalty comparison permits comparison to a basestring
* Fixed ldapupdate to work with DN's. This work included:
- Enhance test_updates.py to do more checking after applying
update. Add test for update_from_dict(). Convert code to use
unittest classes.
- Consolidated duplicate code.
- Moved code which should have been in the class into the class.
- Fix the handling of the 'deleteentry' update action. It's no longer
necessary to supply fake attributes to make it work. Detect case
where subsequent update applies a change to entry previously marked
for deletetion. General clean-up and simplification of the
'deleteentry' logic.
- Rewrote a couple of functions to be clearer and more Pythonic.
- Added documentation on the data structure being used.
- Simplfy the use of update_from_dict()
* Removed all usage of get_schema() which was being called prior to
accessing the .schema attribute of an object. If a class is using
internal lazy loading as an optimization it's not right to require
users of the interface to be aware of internal
optimization's. schema is now a property and when the schema
property is accessed it calls a private internal method to perform
the lazy loading.
* Added SchemaCache class to cache the schema's from individual
servers. This was done because of the observation we talk to
different LDAP servers, each of which may have it's own
schema. Previously we globally cached the schema from the first
server we connected to and returned that schema in all contexts. The
cache includes controls to invalidate it thus forcing a schema
refresh.
* Schema caching is now senstive to the run time context. During
install and upgrade the schema can change leading to errors due to
out-of-date cached schema. The schema cache is refreshed in these
contexts.
* We are aware of the LDAP syntax of all LDAP attributes. Every
attribute returned from an LDAP operation is passed through a
central table look-up based on it's LDAP syntax. The table key is
the LDAP syntax it's value is a Python callable that returns a
Python object matching the LDAP syntax. There are a handful of LDAP
attributes whose syntax is historically incorrect
(e.g. DistguishedNames that are defined as DirectoryStrings). The
table driven conversion mechanism is augmented with a table of
hard coded exceptions.
Currently only the following conversions occur via the table:
- dn's are converted to DN objects
- binary objects are converted to Python str objects (IPA
convention).
- everything else is converted to unicode using UTF-8 decoding (IPA
convention).
However, now that the table driven conversion mechanism is in place
it would be trivial to do things such as converting attributes
which have LDAP integer syntax into a Python integer, etc.
* Expected values in the unit tests which are a DN no longer need to
use lambda expressions to promote the returned value to a DN for
equality comparison. The return value is automatically promoted to
a DN. The lambda expressions have been removed making the code much
simpler and easier to read.
* Add class level logging to a number of classes which did not support
logging, less need for use of root_logger.
* Remove ipaserver/conn.py, it was unused.
* Consolidated duplicate code wherever it was found.
* Fixed many places that used string concatenation to form a new
string rather than string formatting operators. This is necessary
because string formatting converts it's arguments to a string prior
to building the result string. You can't concatenate a string and a
non-string.
* Simplify logic in rename_managed plugin. Use DN operators to edit
dn's.
* The live version of ipa-ldap-updater did not generate a log file.
The offline version did, now both do.
https://fedorahosted.org/freeipa/ticket/1670
https://fedorahosted.org/freeipa/ticket/1671
https://fedorahosted.org/freeipa/ticket/1672
https://fedorahosted.org/freeipa/ticket/1673
https://fedorahosted.org/freeipa/ticket/1674
https://fedorahosted.org/freeipa/ticket/1392
https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
|
|
|
# If continuation line, append to existing logical line & continue,
|
|
|
|
# otherwise flush the previous item.
|
|
|
|
if source_line.startswith(' '):
|
|
|
|
logical_line += source_line[1:]
|
|
|
|
continue
|
|
|
|
else:
|
|
|
|
emit_item(logical_line)
|
|
|
|
logical_line = source_line
|
2008-09-15 19:51:01 -05:00
|
|
|
|
|
|
|
if dn is not None:
|
Use DN objects instead of strings
* Convert every string specifying a DN into a DN object
* Every place a dn was manipulated in some fashion it was replaced by
the use of DN operators
* Add new DNParam parameter type for parameters which are DN's
* DN objects are used 100% of the time throughout the entire data
pipeline whenever something is logically a dn.
* Many classes now enforce DN usage for their attributes which are
dn's. This is implmented via ipautil.dn_attribute_property(). The
only permitted types for a class attribute specified to be a DN are
either None or a DN object.
* Require that every place a dn is used it must be a DN object.
This translates into lot of::
assert isinstance(dn, DN)
sprinkled through out the code. Maintaining these asserts is
valuable to preserve DN type enforcement. The asserts can be
disabled in production.
The goal of 100% DN usage 100% of the time has been realized, these
asserts are meant to preserve that.
The asserts also proved valuable in detecting functions which did
not obey their function signatures, such as the baseldap pre and
post callbacks.
* Moved ipalib.dn to ipapython.dn because DN class is shared with all
components, not just the server which uses ipalib.
* All API's now accept DN's natively, no need to convert to str (or
unicode).
* Removed ipalib.encoder and encode/decode decorators. Type conversion
is now explicitly performed in each IPASimpleLDAPObject method which
emulates a ldap.SimpleLDAPObject method.
* Entity & Entry classes now utilize DN's
* Removed __getattr__ in Entity & Entity clases. There were two
problems with it. It presented synthetic Python object attributes
based on the current LDAP data it contained. There is no way to
validate synthetic attributes using code checkers, you can't search
the code to find LDAP attribute accesses (because synthetic
attriutes look like Python attributes instead of LDAP data) and
error handling is circumscribed. Secondly __getattr__ was hiding
Python internal methods which broke class semantics.
* Replace use of methods inherited from ldap.SimpleLDAPObject via
IPAdmin class with IPAdmin methods. Directly using inherited methods
was causing us to bypass IPA logic. Mostly this meant replacing the
use of search_s() with getEntry() or getList(). Similarly direct
access of the LDAP data in classes using IPAdmin were replaced with
calls to getValue() or getValues().
* Objects returned by ldap2.find_entries() are now compatible with
either the python-ldap access methodology or the Entity/Entry access
methodology.
* All ldap operations now funnel through the common
IPASimpleLDAPObject giving us a single location where we interface
to python-ldap and perform conversions.
* The above 4 modifications means we've greatly reduced the
proliferation of multiple inconsistent ways to perform LDAP
operations. We are well on the way to having a single API in IPA for
doing LDAP (a long range goal).
* All certificate subject bases are now DN's
* DN objects were enhanced thusly:
- find, rfind, index, rindex, replace and insert methods were added
- AVA, RDN and DN classes were refactored in immutable and mutable
variants, the mutable variants are EditableAVA, EditableRDN and
EditableDN. By default we use the immutable variants preserving
important semantics. To edit a DN cast it to an EditableDN and
cast it back to DN when done editing. These issues are fully
described in other documentation.
- first_key_match was removed
- DN equalty comparison permits comparison to a basestring
* Fixed ldapupdate to work with DN's. This work included:
- Enhance test_updates.py to do more checking after applying
update. Add test for update_from_dict(). Convert code to use
unittest classes.
- Consolidated duplicate code.
- Moved code which should have been in the class into the class.
- Fix the handling of the 'deleteentry' update action. It's no longer
necessary to supply fake attributes to make it work. Detect case
where subsequent update applies a change to entry previously marked
for deletetion. General clean-up and simplification of the
'deleteentry' logic.
- Rewrote a couple of functions to be clearer and more Pythonic.
- Added documentation on the data structure being used.
- Simplfy the use of update_from_dict()
* Removed all usage of get_schema() which was being called prior to
accessing the .schema attribute of an object. If a class is using
internal lazy loading as an optimization it's not right to require
users of the interface to be aware of internal
optimization's. schema is now a property and when the schema
property is accessed it calls a private internal method to perform
the lazy loading.
* Added SchemaCache class to cache the schema's from individual
servers. This was done because of the observation we talk to
different LDAP servers, each of which may have it's own
schema. Previously we globally cached the schema from the first
server we connected to and returned that schema in all contexts. The
cache includes controls to invalidate it thus forcing a schema
refresh.
* Schema caching is now senstive to the run time context. During
install and upgrade the schema can change leading to errors due to
out-of-date cached schema. The schema cache is refreshed in these
contexts.
* We are aware of the LDAP syntax of all LDAP attributes. Every
attribute returned from an LDAP operation is passed through a
central table look-up based on it's LDAP syntax. The table key is
the LDAP syntax it's value is a Python callable that returns a
Python object matching the LDAP syntax. There are a handful of LDAP
attributes whose syntax is historically incorrect
(e.g. DistguishedNames that are defined as DirectoryStrings). The
table driven conversion mechanism is augmented with a table of
hard coded exceptions.
Currently only the following conversions occur via the table:
- dn's are converted to DN objects
- binary objects are converted to Python str objects (IPA
convention).
- everything else is converted to unicode using UTF-8 decoding (IPA
convention).
However, now that the table driven conversion mechanism is in place
it would be trivial to do things such as converting attributes
which have LDAP integer syntax into a Python integer, etc.
* Expected values in the unit tests which are a DN no longer need to
use lambda expressions to promote the returned value to a DN for
equality comparison. The return value is automatically promoted to
a DN. The lambda expressions have been removed making the code much
simpler and easier to read.
* Add class level logging to a number of classes which did not support
logging, less need for use of root_logger.
* Remove ipaserver/conn.py, it was unused.
* Consolidated duplicate code wherever it was found.
* Fixed many places that used string concatenation to form a new
string rather than string formatting operators. This is necessary
because string formatting converts it's arguments to a string prior
to building the result string. You can't concatenate a string and a
non-string.
* Simplify logic in rename_managed plugin. Use DN operators to edit
dn's.
* The live version of ipa-ldap-updater did not generate a log file.
The offline version did, now both do.
https://fedorahosted.org/freeipa/ticket/1670
https://fedorahosted.org/freeipa/ticket/1671
https://fedorahosted.org/freeipa/ticket/1672
https://fedorahosted.org/freeipa/ticket/1673
https://fedorahosted.org/freeipa/ticket/1674
https://fedorahosted.org/freeipa/ticket/1392
https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
|
|
|
emit_item(logical_line)
|
|
|
|
logical_line = ''
|
|
|
|
emit_update(update)
|
|
|
|
update = {}
|
2008-09-15 19:51:01 -05:00
|
|
|
|
Use DN objects instead of strings
* Convert every string specifying a DN into a DN object
* Every place a dn was manipulated in some fashion it was replaced by
the use of DN operators
* Add new DNParam parameter type for parameters which are DN's
* DN objects are used 100% of the time throughout the entire data
pipeline whenever something is logically a dn.
* Many classes now enforce DN usage for their attributes which are
dn's. This is implmented via ipautil.dn_attribute_property(). The
only permitted types for a class attribute specified to be a DN are
either None or a DN object.
* Require that every place a dn is used it must be a DN object.
This translates into lot of::
assert isinstance(dn, DN)
sprinkled through out the code. Maintaining these asserts is
valuable to preserve DN type enforcement. The asserts can be
disabled in production.
The goal of 100% DN usage 100% of the time has been realized, these
asserts are meant to preserve that.
The asserts also proved valuable in detecting functions which did
not obey their function signatures, such as the baseldap pre and
post callbacks.
* Moved ipalib.dn to ipapython.dn because DN class is shared with all
components, not just the server which uses ipalib.
* All API's now accept DN's natively, no need to convert to str (or
unicode).
* Removed ipalib.encoder and encode/decode decorators. Type conversion
is now explicitly performed in each IPASimpleLDAPObject method which
emulates a ldap.SimpleLDAPObject method.
* Entity & Entry classes now utilize DN's
* Removed __getattr__ in Entity & Entity clases. There were two
problems with it. It presented synthetic Python object attributes
based on the current LDAP data it contained. There is no way to
validate synthetic attributes using code checkers, you can't search
the code to find LDAP attribute accesses (because synthetic
attriutes look like Python attributes instead of LDAP data) and
error handling is circumscribed. Secondly __getattr__ was hiding
Python internal methods which broke class semantics.
* Replace use of methods inherited from ldap.SimpleLDAPObject via
IPAdmin class with IPAdmin methods. Directly using inherited methods
was causing us to bypass IPA logic. Mostly this meant replacing the
use of search_s() with getEntry() or getList(). Similarly direct
access of the LDAP data in classes using IPAdmin were replaced with
calls to getValue() or getValues().
* Objects returned by ldap2.find_entries() are now compatible with
either the python-ldap access methodology or the Entity/Entry access
methodology.
* All ldap operations now funnel through the common
IPASimpleLDAPObject giving us a single location where we interface
to python-ldap and perform conversions.
* The above 4 modifications means we've greatly reduced the
proliferation of multiple inconsistent ways to perform LDAP
operations. We are well on the way to having a single API in IPA for
doing LDAP (a long range goal).
* All certificate subject bases are now DN's
* DN objects were enhanced thusly:
- find, rfind, index, rindex, replace and insert methods were added
- AVA, RDN and DN classes were refactored in immutable and mutable
variants, the mutable variants are EditableAVA, EditableRDN and
EditableDN. By default we use the immutable variants preserving
important semantics. To edit a DN cast it to an EditableDN and
cast it back to DN when done editing. These issues are fully
described in other documentation.
- first_key_match was removed
- DN equalty comparison permits comparison to a basestring
* Fixed ldapupdate to work with DN's. This work included:
- Enhance test_updates.py to do more checking after applying
update. Add test for update_from_dict(). Convert code to use
unittest classes.
- Consolidated duplicate code.
- Moved code which should have been in the class into the class.
- Fix the handling of the 'deleteentry' update action. It's no longer
necessary to supply fake attributes to make it work. Detect case
where subsequent update applies a change to entry previously marked
for deletetion. General clean-up and simplification of the
'deleteentry' logic.
- Rewrote a couple of functions to be clearer and more Pythonic.
- Added documentation on the data structure being used.
- Simplfy the use of update_from_dict()
* Removed all usage of get_schema() which was being called prior to
accessing the .schema attribute of an object. If a class is using
internal lazy loading as an optimization it's not right to require
users of the interface to be aware of internal
optimization's. schema is now a property and when the schema
property is accessed it calls a private internal method to perform
the lazy loading.
* Added SchemaCache class to cache the schema's from individual
servers. This was done because of the observation we talk to
different LDAP servers, each of which may have it's own
schema. Previously we globally cached the schema from the first
server we connected to and returned that schema in all contexts. The
cache includes controls to invalidate it thus forcing a schema
refresh.
* Schema caching is now senstive to the run time context. During
install and upgrade the schema can change leading to errors due to
out-of-date cached schema. The schema cache is refreshed in these
contexts.
* We are aware of the LDAP syntax of all LDAP attributes. Every
attribute returned from an LDAP operation is passed through a
central table look-up based on it's LDAP syntax. The table key is
the LDAP syntax it's value is a Python callable that returns a
Python object matching the LDAP syntax. There are a handful of LDAP
attributes whose syntax is historically incorrect
(e.g. DistguishedNames that are defined as DirectoryStrings). The
table driven conversion mechanism is augmented with a table of
hard coded exceptions.
Currently only the following conversions occur via the table:
- dn's are converted to DN objects
- binary objects are converted to Python str objects (IPA
convention).
- everything else is converted to unicode using UTF-8 decoding (IPA
convention).
However, now that the table driven conversion mechanism is in place
it would be trivial to do things such as converting attributes
which have LDAP integer syntax into a Python integer, etc.
* Expected values in the unit tests which are a DN no longer need to
use lambda expressions to promote the returned value to a DN for
equality comparison. The return value is automatically promoted to
a DN. The lambda expressions have been removed making the code much
simpler and easier to read.
* Add class level logging to a number of classes which did not support
logging, less need for use of root_logger.
* Remove ipaserver/conn.py, it was unused.
* Consolidated duplicate code wherever it was found.
* Fixed many places that used string concatenation to form a new
string rather than string formatting operators. This is necessary
because string formatting converts it's arguments to a string prior
to building the result string. You can't concatenate a string and a
non-string.
* Simplify logic in rename_managed plugin. Use DN operators to edit
dn's.
* The live version of ipa-ldap-updater did not generate a log file.
The offline version did, now both do.
https://fedorahosted.org/freeipa/ticket/1670
https://fedorahosted.org/freeipa/ticket/1671
https://fedorahosted.org/freeipa/ticket/1672
https://fedorahosted.org/freeipa/ticket/1673
https://fedorahosted.org/freeipa/ticket/1674
https://fedorahosted.org/freeipa/ticket/1392
https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
|
|
|
return all_updates
|
2008-09-15 19:51:01 -05:00
|
|
|
|
|
|
|
def create_index_task(self, attribute):
|
|
|
|
"""Create a task to update an index for an attribute"""
|
2009-10-12 12:54:08 -05:00
|
|
|
|
|
|
|
# Sleep a bit to ensure previous operations are complete
|
2015-03-17 06:23:06 -05:00
|
|
|
time.sleep(5)
|
2008-09-15 19:51:01 -05:00
|
|
|
|
2012-07-24 04:07:23 -05:00
|
|
|
cn_uuid = uuid.uuid1()
|
|
|
|
# cn_uuid.time is in nanoseconds, but other users of LDAPUpdate expect
|
|
|
|
# seconds in 'TIME' so scale the value down
|
|
|
|
self.sub_dict['TIME'] = int(cn_uuid.time/1e9)
|
|
|
|
cn = "indextask_%s_%s_%s" % (attribute, cn_uuid.time, cn_uuid.clock_seq)
|
|
|
|
dn = DN(('cn', cn), ('cn', 'index'), ('cn', 'tasks'), ('cn', 'config'))
|
2008-09-15 19:51:01 -05:00
|
|
|
|
2013-01-18 08:24:35 -06:00
|
|
|
e = self.conn.make_entry(
|
|
|
|
dn,
|
|
|
|
objectClass=['top', 'extensibleObject'],
|
|
|
|
cn=[cn],
|
|
|
|
nsInstance=['userRoot'],
|
|
|
|
nsIndexAttribute=[attribute],
|
|
|
|
)
|
2008-09-15 19:51:01 -05:00
|
|
|
|
2015-06-08 10:33:11 -05:00
|
|
|
self.debug("Creating task to index attribute: %s", attribute)
|
Use DN objects instead of strings
* Convert every string specifying a DN into a DN object
* Every place a dn was manipulated in some fashion it was replaced by
the use of DN operators
* Add new DNParam parameter type for parameters which are DN's
* DN objects are used 100% of the time throughout the entire data
pipeline whenever something is logically a dn.
* Many classes now enforce DN usage for their attributes which are
dn's. This is implmented via ipautil.dn_attribute_property(). The
only permitted types for a class attribute specified to be a DN are
either None or a DN object.
* Require that every place a dn is used it must be a DN object.
This translates into lot of::
assert isinstance(dn, DN)
sprinkled through out the code. Maintaining these asserts is
valuable to preserve DN type enforcement. The asserts can be
disabled in production.
The goal of 100% DN usage 100% of the time has been realized, these
asserts are meant to preserve that.
The asserts also proved valuable in detecting functions which did
not obey their function signatures, such as the baseldap pre and
post callbacks.
* Moved ipalib.dn to ipapython.dn because DN class is shared with all
components, not just the server which uses ipalib.
* All API's now accept DN's natively, no need to convert to str (or
unicode).
* Removed ipalib.encoder and encode/decode decorators. Type conversion
is now explicitly performed in each IPASimpleLDAPObject method which
emulates a ldap.SimpleLDAPObject method.
* Entity & Entry classes now utilize DN's
* Removed __getattr__ in Entity & Entity clases. There were two
problems with it. It presented synthetic Python object attributes
based on the current LDAP data it contained. There is no way to
validate synthetic attributes using code checkers, you can't search
the code to find LDAP attribute accesses (because synthetic
attriutes look like Python attributes instead of LDAP data) and
error handling is circumscribed. Secondly __getattr__ was hiding
Python internal methods which broke class semantics.
* Replace use of methods inherited from ldap.SimpleLDAPObject via
IPAdmin class with IPAdmin methods. Directly using inherited methods
was causing us to bypass IPA logic. Mostly this meant replacing the
use of search_s() with getEntry() or getList(). Similarly direct
access of the LDAP data in classes using IPAdmin were replaced with
calls to getValue() or getValues().
* Objects returned by ldap2.find_entries() are now compatible with
either the python-ldap access methodology or the Entity/Entry access
methodology.
* All ldap operations now funnel through the common
IPASimpleLDAPObject giving us a single location where we interface
to python-ldap and perform conversions.
* The above 4 modifications means we've greatly reduced the
proliferation of multiple inconsistent ways to perform LDAP
operations. We are well on the way to having a single API in IPA for
doing LDAP (a long range goal).
* All certificate subject bases are now DN's
* DN objects were enhanced thusly:
- find, rfind, index, rindex, replace and insert methods were added
- AVA, RDN and DN classes were refactored in immutable and mutable
variants, the mutable variants are EditableAVA, EditableRDN and
EditableDN. By default we use the immutable variants preserving
important semantics. To edit a DN cast it to an EditableDN and
cast it back to DN when done editing. These issues are fully
described in other documentation.
- first_key_match was removed
- DN equalty comparison permits comparison to a basestring
* Fixed ldapupdate to work with DN's. This work included:
- Enhance test_updates.py to do more checking after applying
update. Add test for update_from_dict(). Convert code to use
unittest classes.
- Consolidated duplicate code.
- Moved code which should have been in the class into the class.
- Fix the handling of the 'deleteentry' update action. It's no longer
necessary to supply fake attributes to make it work. Detect case
where subsequent update applies a change to entry previously marked
for deletetion. General clean-up and simplification of the
'deleteentry' logic.
- Rewrote a couple of functions to be clearer and more Pythonic.
- Added documentation on the data structure being used.
- Simplfy the use of update_from_dict()
* Removed all usage of get_schema() which was being called prior to
accessing the .schema attribute of an object. If a class is using
internal lazy loading as an optimization it's not right to require
users of the interface to be aware of internal
optimization's. schema is now a property and when the schema
property is accessed it calls a private internal method to perform
the lazy loading.
* Added SchemaCache class to cache the schema's from individual
servers. This was done because of the observation we talk to
different LDAP servers, each of which may have it's own
schema. Previously we globally cached the schema from the first
server we connected to and returned that schema in all contexts. The
cache includes controls to invalidate it thus forcing a schema
refresh.
* Schema caching is now senstive to the run time context. During
install and upgrade the schema can change leading to errors due to
out-of-date cached schema. The schema cache is refreshed in these
contexts.
* We are aware of the LDAP syntax of all LDAP attributes. Every
attribute returned from an LDAP operation is passed through a
central table look-up based on it's LDAP syntax. The table key is
the LDAP syntax it's value is a Python callable that returns a
Python object matching the LDAP syntax. There are a handful of LDAP
attributes whose syntax is historically incorrect
(e.g. DistguishedNames that are defined as DirectoryStrings). The
table driven conversion mechanism is augmented with a table of
hard coded exceptions.
Currently only the following conversions occur via the table:
- dn's are converted to DN objects
- binary objects are converted to Python str objects (IPA
convention).
- everything else is converted to unicode using UTF-8 decoding (IPA
convention).
However, now that the table driven conversion mechanism is in place
it would be trivial to do things such as converting attributes
which have LDAP integer syntax into a Python integer, etc.
* Expected values in the unit tests which are a DN no longer need to
use lambda expressions to promote the returned value to a DN for
equality comparison. The return value is automatically promoted to
a DN. The lambda expressions have been removed making the code much
simpler and easier to read.
* Add class level logging to a number of classes which did not support
logging, less need for use of root_logger.
* Remove ipaserver/conn.py, it was unused.
* Consolidated duplicate code wherever it was found.
* Fixed many places that used string concatenation to form a new
string rather than string formatting operators. This is necessary
because string formatting converts it's arguments to a string prior
to building the result string. You can't concatenate a string and a
non-string.
* Simplify logic in rename_managed plugin. Use DN operators to edit
dn's.
* The live version of ipa-ldap-updater did not generate a log file.
The offline version did, now both do.
https://fedorahosted.org/freeipa/ticket/1670
https://fedorahosted.org/freeipa/ticket/1671
https://fedorahosted.org/freeipa/ticket/1672
https://fedorahosted.org/freeipa/ticket/1673
https://fedorahosted.org/freeipa/ticket/1674
https://fedorahosted.org/freeipa/ticket/1392
https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
|
|
|
self.debug("Task id: %s", dn)
|
2008-09-15 19:51:01 -05:00
|
|
|
|
2015-03-17 06:23:06 -05:00
|
|
|
self.conn.add_entry(e)
|
2008-09-15 19:51:01 -05:00
|
|
|
|
|
|
|
return dn
|
|
|
|
|
|
|
|
def monitor_index_task(self, dn):
|
|
|
|
"""Give a task DN monitor it and wait until it has completed (or failed)
|
|
|
|
"""
|
|
|
|
|
Use DN objects instead of strings
* Convert every string specifying a DN into a DN object
* Every place a dn was manipulated in some fashion it was replaced by
the use of DN operators
* Add new DNParam parameter type for parameters which are DN's
* DN objects are used 100% of the time throughout the entire data
pipeline whenever something is logically a dn.
* Many classes now enforce DN usage for their attributes which are
dn's. This is implmented via ipautil.dn_attribute_property(). The
only permitted types for a class attribute specified to be a DN are
either None or a DN object.
* Require that every place a dn is used it must be a DN object.
This translates into lot of::
assert isinstance(dn, DN)
sprinkled through out the code. Maintaining these asserts is
valuable to preserve DN type enforcement. The asserts can be
disabled in production.
The goal of 100% DN usage 100% of the time has been realized, these
asserts are meant to preserve that.
The asserts also proved valuable in detecting functions which did
not obey their function signatures, such as the baseldap pre and
post callbacks.
* Moved ipalib.dn to ipapython.dn because DN class is shared with all
components, not just the server which uses ipalib.
* All API's now accept DN's natively, no need to convert to str (or
unicode).
* Removed ipalib.encoder and encode/decode decorators. Type conversion
is now explicitly performed in each IPASimpleLDAPObject method which
emulates a ldap.SimpleLDAPObject method.
* Entity & Entry classes now utilize DN's
* Removed __getattr__ in Entity & Entity clases. There were two
problems with it. It presented synthetic Python object attributes
based on the current LDAP data it contained. There is no way to
validate synthetic attributes using code checkers, you can't search
the code to find LDAP attribute accesses (because synthetic
attriutes look like Python attributes instead of LDAP data) and
error handling is circumscribed. Secondly __getattr__ was hiding
Python internal methods which broke class semantics.
* Replace use of methods inherited from ldap.SimpleLDAPObject via
IPAdmin class with IPAdmin methods. Directly using inherited methods
was causing us to bypass IPA logic. Mostly this meant replacing the
use of search_s() with getEntry() or getList(). Similarly direct
access of the LDAP data in classes using IPAdmin were replaced with
calls to getValue() or getValues().
* Objects returned by ldap2.find_entries() are now compatible with
either the python-ldap access methodology or the Entity/Entry access
methodology.
* All ldap operations now funnel through the common
IPASimpleLDAPObject giving us a single location where we interface
to python-ldap and perform conversions.
* The above 4 modifications means we've greatly reduced the
proliferation of multiple inconsistent ways to perform LDAP
operations. We are well on the way to having a single API in IPA for
doing LDAP (a long range goal).
* All certificate subject bases are now DN's
* DN objects were enhanced thusly:
- find, rfind, index, rindex, replace and insert methods were added
- AVA, RDN and DN classes were refactored in immutable and mutable
variants, the mutable variants are EditableAVA, EditableRDN and
EditableDN. By default we use the immutable variants preserving
important semantics. To edit a DN cast it to an EditableDN and
cast it back to DN when done editing. These issues are fully
described in other documentation.
- first_key_match was removed
- DN equalty comparison permits comparison to a basestring
* Fixed ldapupdate to work with DN's. This work included:
- Enhance test_updates.py to do more checking after applying
update. Add test for update_from_dict(). Convert code to use
unittest classes.
- Consolidated duplicate code.
- Moved code which should have been in the class into the class.
- Fix the handling of the 'deleteentry' update action. It's no longer
necessary to supply fake attributes to make it work. Detect case
where subsequent update applies a change to entry previously marked
for deletetion. General clean-up and simplification of the
'deleteentry' logic.
- Rewrote a couple of functions to be clearer and more Pythonic.
- Added documentation on the data structure being used.
- Simplfy the use of update_from_dict()
* Removed all usage of get_schema() which was being called prior to
accessing the .schema attribute of an object. If a class is using
internal lazy loading as an optimization it's not right to require
users of the interface to be aware of internal
optimization's. schema is now a property and when the schema
property is accessed it calls a private internal method to perform
the lazy loading.
* Added SchemaCache class to cache the schema's from individual
servers. This was done because of the observation we talk to
different LDAP servers, each of which may have it's own
schema. Previously we globally cached the schema from the first
server we connected to and returned that schema in all contexts. The
cache includes controls to invalidate it thus forcing a schema
refresh.
* Schema caching is now senstive to the run time context. During
install and upgrade the schema can change leading to errors due to
out-of-date cached schema. The schema cache is refreshed in these
contexts.
* We are aware of the LDAP syntax of all LDAP attributes. Every
attribute returned from an LDAP operation is passed through a
central table look-up based on it's LDAP syntax. The table key is
the LDAP syntax it's value is a Python callable that returns a
Python object matching the LDAP syntax. There are a handful of LDAP
attributes whose syntax is historically incorrect
(e.g. DistguishedNames that are defined as DirectoryStrings). The
table driven conversion mechanism is augmented with a table of
hard coded exceptions.
Currently only the following conversions occur via the table:
- dn's are converted to DN objects
- binary objects are converted to Python str objects (IPA
convention).
- everything else is converted to unicode using UTF-8 decoding (IPA
convention).
However, now that the table driven conversion mechanism is in place
it would be trivial to do things such as converting attributes
which have LDAP integer syntax into a Python integer, etc.
* Expected values in the unit tests which are a DN no longer need to
use lambda expressions to promote the returned value to a DN for
equality comparison. The return value is automatically promoted to
a DN. The lambda expressions have been removed making the code much
simpler and easier to read.
* Add class level logging to a number of classes which did not support
logging, less need for use of root_logger.
* Remove ipaserver/conn.py, it was unused.
* Consolidated duplicate code wherever it was found.
* Fixed many places that used string concatenation to form a new
string rather than string formatting operators. This is necessary
because string formatting converts it's arguments to a string prior
to building the result string. You can't concatenate a string and a
non-string.
* Simplify logic in rename_managed plugin. Use DN operators to edit
dn's.
* The live version of ipa-ldap-updater did not generate a log file.
The offline version did, now both do.
https://fedorahosted.org/freeipa/ticket/1670
https://fedorahosted.org/freeipa/ticket/1671
https://fedorahosted.org/freeipa/ticket/1672
https://fedorahosted.org/freeipa/ticket/1673
https://fedorahosted.org/freeipa/ticket/1674
https://fedorahosted.org/freeipa/ticket/1392
https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
|
|
|
assert isinstance(dn, DN)
|
|
|
|
|
2008-09-15 19:51:01 -05:00
|
|
|
# Pause for a moment to give the task time to be created
|
|
|
|
time.sleep(1)
|
|
|
|
|
|
|
|
attrlist = ['nstaskstatus', 'nstaskexitcode']
|
|
|
|
entry = None
|
|
|
|
|
2008-09-18 15:58:10 -05:00
|
|
|
while True:
|
2008-09-15 19:51:01 -05:00
|
|
|
try:
|
2013-01-23 09:05:21 -06:00
|
|
|
entry = self.conn.get_entry(dn, attrlist)
|
2015-07-30 09:49:29 -05:00
|
|
|
except errors.NotFound as e:
|
Use DN objects instead of strings
* Convert every string specifying a DN into a DN object
* Every place a dn was manipulated in some fashion it was replaced by
the use of DN operators
* Add new DNParam parameter type for parameters which are DN's
* DN objects are used 100% of the time throughout the entire data
pipeline whenever something is logically a dn.
* Many classes now enforce DN usage for their attributes which are
dn's. This is implmented via ipautil.dn_attribute_property(). The
only permitted types for a class attribute specified to be a DN are
either None or a DN object.
* Require that every place a dn is used it must be a DN object.
This translates into lot of::
assert isinstance(dn, DN)
sprinkled through out the code. Maintaining these asserts is
valuable to preserve DN type enforcement. The asserts can be
disabled in production.
The goal of 100% DN usage 100% of the time has been realized, these
asserts are meant to preserve that.
The asserts also proved valuable in detecting functions which did
not obey their function signatures, such as the baseldap pre and
post callbacks.
* Moved ipalib.dn to ipapython.dn because DN class is shared with all
components, not just the server which uses ipalib.
* All API's now accept DN's natively, no need to convert to str (or
unicode).
* Removed ipalib.encoder and encode/decode decorators. Type conversion
is now explicitly performed in each IPASimpleLDAPObject method which
emulates a ldap.SimpleLDAPObject method.
* Entity & Entry classes now utilize DN's
* Removed __getattr__ in Entity & Entity clases. There were two
problems with it. It presented synthetic Python object attributes
based on the current LDAP data it contained. There is no way to
validate synthetic attributes using code checkers, you can't search
the code to find LDAP attribute accesses (because synthetic
attriutes look like Python attributes instead of LDAP data) and
error handling is circumscribed. Secondly __getattr__ was hiding
Python internal methods which broke class semantics.
* Replace use of methods inherited from ldap.SimpleLDAPObject via
IPAdmin class with IPAdmin methods. Directly using inherited methods
was causing us to bypass IPA logic. Mostly this meant replacing the
use of search_s() with getEntry() or getList(). Similarly direct
access of the LDAP data in classes using IPAdmin were replaced with
calls to getValue() or getValues().
* Objects returned by ldap2.find_entries() are now compatible with
either the python-ldap access methodology or the Entity/Entry access
methodology.
* All ldap operations now funnel through the common
IPASimpleLDAPObject giving us a single location where we interface
to python-ldap and perform conversions.
* The above 4 modifications means we've greatly reduced the
proliferation of multiple inconsistent ways to perform LDAP
operations. We are well on the way to having a single API in IPA for
doing LDAP (a long range goal).
* All certificate subject bases are now DN's
* DN objects were enhanced thusly:
- find, rfind, index, rindex, replace and insert methods were added
- AVA, RDN and DN classes were refactored in immutable and mutable
variants, the mutable variants are EditableAVA, EditableRDN and
EditableDN. By default we use the immutable variants preserving
important semantics. To edit a DN cast it to an EditableDN and
cast it back to DN when done editing. These issues are fully
described in other documentation.
- first_key_match was removed
- DN equalty comparison permits comparison to a basestring
* Fixed ldapupdate to work with DN's. This work included:
- Enhance test_updates.py to do more checking after applying
update. Add test for update_from_dict(). Convert code to use
unittest classes.
- Consolidated duplicate code.
- Moved code which should have been in the class into the class.
- Fix the handling of the 'deleteentry' update action. It's no longer
necessary to supply fake attributes to make it work. Detect case
where subsequent update applies a change to entry previously marked
for deletetion. General clean-up and simplification of the
'deleteentry' logic.
- Rewrote a couple of functions to be clearer and more Pythonic.
- Added documentation on the data structure being used.
- Simplfy the use of update_from_dict()
* Removed all usage of get_schema() which was being called prior to
accessing the .schema attribute of an object. If a class is using
internal lazy loading as an optimization it's not right to require
users of the interface to be aware of internal
optimization's. schema is now a property and when the schema
property is accessed it calls a private internal method to perform
the lazy loading.
* Added SchemaCache class to cache the schema's from individual
servers. This was done because of the observation we talk to
different LDAP servers, each of which may have it's own
schema. Previously we globally cached the schema from the first
server we connected to and returned that schema in all contexts. The
cache includes controls to invalidate it thus forcing a schema
refresh.
* Schema caching is now senstive to the run time context. During
install and upgrade the schema can change leading to errors due to
out-of-date cached schema. The schema cache is refreshed in these
contexts.
* We are aware of the LDAP syntax of all LDAP attributes. Every
attribute returned from an LDAP operation is passed through a
central table look-up based on it's LDAP syntax. The table key is
the LDAP syntax it's value is a Python callable that returns a
Python object matching the LDAP syntax. There are a handful of LDAP
attributes whose syntax is historically incorrect
(e.g. DistguishedNames that are defined as DirectoryStrings). The
table driven conversion mechanism is augmented with a table of
hard coded exceptions.
Currently only the following conversions occur via the table:
- dn's are converted to DN objects
- binary objects are converted to Python str objects (IPA
convention).
- everything else is converted to unicode using UTF-8 decoding (IPA
convention).
However, now that the table driven conversion mechanism is in place
it would be trivial to do things such as converting attributes
which have LDAP integer syntax into a Python integer, etc.
* Expected values in the unit tests which are a DN no longer need to
use lambda expressions to promote the returned value to a DN for
equality comparison. The return value is automatically promoted to
a DN. The lambda expressions have been removed making the code much
simpler and easier to read.
* Add class level logging to a number of classes which did not support
logging, less need for use of root_logger.
* Remove ipaserver/conn.py, it was unused.
* Consolidated duplicate code wherever it was found.
* Fixed many places that used string concatenation to form a new
string rather than string formatting operators. This is necessary
because string formatting converts it's arguments to a string prior
to building the result string. You can't concatenate a string and a
non-string.
* Simplify logic in rename_managed plugin. Use DN operators to edit
dn's.
* The live version of ipa-ldap-updater did not generate a log file.
The offline version did, now both do.
https://fedorahosted.org/freeipa/ticket/1670
https://fedorahosted.org/freeipa/ticket/1671
https://fedorahosted.org/freeipa/ticket/1672
https://fedorahosted.org/freeipa/ticket/1673
https://fedorahosted.org/freeipa/ticket/1674
https://fedorahosted.org/freeipa/ticket/1392
https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
|
|
|
self.error("Task not found: %s", dn)
|
2008-09-15 19:51:01 -05:00
|
|
|
return
|
2015-07-30 09:49:29 -05:00
|
|
|
except errors.DatabaseError as e:
|
Use DN objects instead of strings
* Convert every string specifying a DN into a DN object
* Every place a dn was manipulated in some fashion it was replaced by
the use of DN operators
* Add new DNParam parameter type for parameters which are DN's
* DN objects are used 100% of the time throughout the entire data
pipeline whenever something is logically a dn.
* Many classes now enforce DN usage for their attributes which are
dn's. This is implmented via ipautil.dn_attribute_property(). The
only permitted types for a class attribute specified to be a DN are
either None or a DN object.
* Require that every place a dn is used it must be a DN object.
This translates into lot of::
assert isinstance(dn, DN)
sprinkled through out the code. Maintaining these asserts is
valuable to preserve DN type enforcement. The asserts can be
disabled in production.
The goal of 100% DN usage 100% of the time has been realized, these
asserts are meant to preserve that.
The asserts also proved valuable in detecting functions which did
not obey their function signatures, such as the baseldap pre and
post callbacks.
* Moved ipalib.dn to ipapython.dn because DN class is shared with all
components, not just the server which uses ipalib.
* All API's now accept DN's natively, no need to convert to str (or
unicode).
* Removed ipalib.encoder and encode/decode decorators. Type conversion
is now explicitly performed in each IPASimpleLDAPObject method which
emulates a ldap.SimpleLDAPObject method.
* Entity & Entry classes now utilize DN's
* Removed __getattr__ in Entity & Entity clases. There were two
problems with it. It presented synthetic Python object attributes
based on the current LDAP data it contained. There is no way to
validate synthetic attributes using code checkers, you can't search
the code to find LDAP attribute accesses (because synthetic
attriutes look like Python attributes instead of LDAP data) and
error handling is circumscribed. Secondly __getattr__ was hiding
Python internal methods which broke class semantics.
* Replace use of methods inherited from ldap.SimpleLDAPObject via
IPAdmin class with IPAdmin methods. Directly using inherited methods
was causing us to bypass IPA logic. Mostly this meant replacing the
use of search_s() with getEntry() or getList(). Similarly direct
access of the LDAP data in classes using IPAdmin were replaced with
calls to getValue() or getValues().
* Objects returned by ldap2.find_entries() are now compatible with
either the python-ldap access methodology or the Entity/Entry access
methodology.
* All ldap operations now funnel through the common
IPASimpleLDAPObject giving us a single location where we interface
to python-ldap and perform conversions.
* The above 4 modifications means we've greatly reduced the
proliferation of multiple inconsistent ways to perform LDAP
operations. We are well on the way to having a single API in IPA for
doing LDAP (a long range goal).
* All certificate subject bases are now DN's
* DN objects were enhanced thusly:
- find, rfind, index, rindex, replace and insert methods were added
- AVA, RDN and DN classes were refactored in immutable and mutable
variants, the mutable variants are EditableAVA, EditableRDN and
EditableDN. By default we use the immutable variants preserving
important semantics. To edit a DN cast it to an EditableDN and
cast it back to DN when done editing. These issues are fully
described in other documentation.
- first_key_match was removed
- DN equalty comparison permits comparison to a basestring
* Fixed ldapupdate to work with DN's. This work included:
- Enhance test_updates.py to do more checking after applying
update. Add test for update_from_dict(). Convert code to use
unittest classes.
- Consolidated duplicate code.
- Moved code which should have been in the class into the class.
- Fix the handling of the 'deleteentry' update action. It's no longer
necessary to supply fake attributes to make it work. Detect case
where subsequent update applies a change to entry previously marked
for deletetion. General clean-up and simplification of the
'deleteentry' logic.
- Rewrote a couple of functions to be clearer and more Pythonic.
- Added documentation on the data structure being used.
- Simplfy the use of update_from_dict()
* Removed all usage of get_schema() which was being called prior to
accessing the .schema attribute of an object. If a class is using
internal lazy loading as an optimization it's not right to require
users of the interface to be aware of internal
optimization's. schema is now a property and when the schema
property is accessed it calls a private internal method to perform
the lazy loading.
* Added SchemaCache class to cache the schema's from individual
servers. This was done because of the observation we talk to
different LDAP servers, each of which may have it's own
schema. Previously we globally cached the schema from the first
server we connected to and returned that schema in all contexts. The
cache includes controls to invalidate it thus forcing a schema
refresh.
* Schema caching is now senstive to the run time context. During
install and upgrade the schema can change leading to errors due to
out-of-date cached schema. The schema cache is refreshed in these
contexts.
* We are aware of the LDAP syntax of all LDAP attributes. Every
attribute returned from an LDAP operation is passed through a
central table look-up based on it's LDAP syntax. The table key is
the LDAP syntax it's value is a Python callable that returns a
Python object matching the LDAP syntax. There are a handful of LDAP
attributes whose syntax is historically incorrect
(e.g. DistguishedNames that are defined as DirectoryStrings). The
table driven conversion mechanism is augmented with a table of
hard coded exceptions.
Currently only the following conversions occur via the table:
- dn's are converted to DN objects
- binary objects are converted to Python str objects (IPA
convention).
- everything else is converted to unicode using UTF-8 decoding (IPA
convention).
However, now that the table driven conversion mechanism is in place
it would be trivial to do things such as converting attributes
which have LDAP integer syntax into a Python integer, etc.
* Expected values in the unit tests which are a DN no longer need to
use lambda expressions to promote the returned value to a DN for
equality comparison. The return value is automatically promoted to
a DN. The lambda expressions have been removed making the code much
simpler and easier to read.
* Add class level logging to a number of classes which did not support
logging, less need for use of root_logger.
* Remove ipaserver/conn.py, it was unused.
* Consolidated duplicate code wherever it was found.
* Fixed many places that used string concatenation to form a new
string rather than string formatting operators. This is necessary
because string formatting converts it's arguments to a string prior
to building the result string. You can't concatenate a string and a
non-string.
* Simplify logic in rename_managed plugin. Use DN operators to edit
dn's.
* The live version of ipa-ldap-updater did not generate a log file.
The offline version did, now both do.
https://fedorahosted.org/freeipa/ticket/1670
https://fedorahosted.org/freeipa/ticket/1671
https://fedorahosted.org/freeipa/ticket/1672
https://fedorahosted.org/freeipa/ticket/1673
https://fedorahosted.org/freeipa/ticket/1674
https://fedorahosted.org/freeipa/ticket/1392
https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
|
|
|
self.error("Task lookup failure %s", e)
|
2008-09-15 19:51:01 -05:00
|
|
|
return
|
|
|
|
|
2013-09-10 05:20:24 -05:00
|
|
|
status = entry.single_value.get('nstaskstatus')
|
2008-09-15 19:51:01 -05:00
|
|
|
if status is None:
|
|
|
|
# task doesn't have a status yet
|
|
|
|
time.sleep(1)
|
|
|
|
continue
|
|
|
|
|
|
|
|
if status.lower().find("finished") > -1:
|
2015-06-08 10:33:11 -05:00
|
|
|
self.debug("Indexing finished")
|
2008-09-18 15:58:10 -05:00
|
|
|
break
|
2008-09-15 19:51:01 -05:00
|
|
|
|
Use DN objects instead of strings
* Convert every string specifying a DN into a DN object
* Every place a dn was manipulated in some fashion it was replaced by
the use of DN operators
* Add new DNParam parameter type for parameters which are DN's
* DN objects are used 100% of the time throughout the entire data
pipeline whenever something is logically a dn.
* Many classes now enforce DN usage for their attributes which are
dn's. This is implmented via ipautil.dn_attribute_property(). The
only permitted types for a class attribute specified to be a DN are
either None or a DN object.
* Require that every place a dn is used it must be a DN object.
This translates into lot of::
assert isinstance(dn, DN)
sprinkled through out the code. Maintaining these asserts is
valuable to preserve DN type enforcement. The asserts can be
disabled in production.
The goal of 100% DN usage 100% of the time has been realized, these
asserts are meant to preserve that.
The asserts also proved valuable in detecting functions which did
not obey their function signatures, such as the baseldap pre and
post callbacks.
* Moved ipalib.dn to ipapython.dn because DN class is shared with all
components, not just the server which uses ipalib.
* All API's now accept DN's natively, no need to convert to str (or
unicode).
* Removed ipalib.encoder and encode/decode decorators. Type conversion
is now explicitly performed in each IPASimpleLDAPObject method which
emulates a ldap.SimpleLDAPObject method.
* Entity & Entry classes now utilize DN's
* Removed __getattr__ in Entity & Entity clases. There were two
problems with it. It presented synthetic Python object attributes
based on the current LDAP data it contained. There is no way to
validate synthetic attributes using code checkers, you can't search
the code to find LDAP attribute accesses (because synthetic
attriutes look like Python attributes instead of LDAP data) and
error handling is circumscribed. Secondly __getattr__ was hiding
Python internal methods which broke class semantics.
* Replace use of methods inherited from ldap.SimpleLDAPObject via
IPAdmin class with IPAdmin methods. Directly using inherited methods
was causing us to bypass IPA logic. Mostly this meant replacing the
use of search_s() with getEntry() or getList(). Similarly direct
access of the LDAP data in classes using IPAdmin were replaced with
calls to getValue() or getValues().
* Objects returned by ldap2.find_entries() are now compatible with
either the python-ldap access methodology or the Entity/Entry access
methodology.
* All ldap operations now funnel through the common
IPASimpleLDAPObject giving us a single location where we interface
to python-ldap and perform conversions.
* The above 4 modifications means we've greatly reduced the
proliferation of multiple inconsistent ways to perform LDAP
operations. We are well on the way to having a single API in IPA for
doing LDAP (a long range goal).
* All certificate subject bases are now DN's
* DN objects were enhanced thusly:
- find, rfind, index, rindex, replace and insert methods were added
- AVA, RDN and DN classes were refactored in immutable and mutable
variants, the mutable variants are EditableAVA, EditableRDN and
EditableDN. By default we use the immutable variants preserving
important semantics. To edit a DN cast it to an EditableDN and
cast it back to DN when done editing. These issues are fully
described in other documentation.
- first_key_match was removed
- DN equalty comparison permits comparison to a basestring
* Fixed ldapupdate to work with DN's. This work included:
- Enhance test_updates.py to do more checking after applying
update. Add test for update_from_dict(). Convert code to use
unittest classes.
- Consolidated duplicate code.
- Moved code which should have been in the class into the class.
- Fix the handling of the 'deleteentry' update action. It's no longer
necessary to supply fake attributes to make it work. Detect case
where subsequent update applies a change to entry previously marked
for deletetion. General clean-up and simplification of the
'deleteentry' logic.
- Rewrote a couple of functions to be clearer and more Pythonic.
- Added documentation on the data structure being used.
- Simplfy the use of update_from_dict()
* Removed all usage of get_schema() which was being called prior to
accessing the .schema attribute of an object. If a class is using
internal lazy loading as an optimization it's not right to require
users of the interface to be aware of internal
optimization's. schema is now a property and when the schema
property is accessed it calls a private internal method to perform
the lazy loading.
* Added SchemaCache class to cache the schema's from individual
servers. This was done because of the observation we talk to
different LDAP servers, each of which may have it's own
schema. Previously we globally cached the schema from the first
server we connected to and returned that schema in all contexts. The
cache includes controls to invalidate it thus forcing a schema
refresh.
* Schema caching is now senstive to the run time context. During
install and upgrade the schema can change leading to errors due to
out-of-date cached schema. The schema cache is refreshed in these
contexts.
* We are aware of the LDAP syntax of all LDAP attributes. Every
attribute returned from an LDAP operation is passed through a
central table look-up based on it's LDAP syntax. The table key is
the LDAP syntax it's value is a Python callable that returns a
Python object matching the LDAP syntax. There are a handful of LDAP
attributes whose syntax is historically incorrect
(e.g. DistguishedNames that are defined as DirectoryStrings). The
table driven conversion mechanism is augmented with a table of
hard coded exceptions.
Currently only the following conversions occur via the table:
- dn's are converted to DN objects
- binary objects are converted to Python str objects (IPA
convention).
- everything else is converted to unicode using UTF-8 decoding (IPA
convention).
However, now that the table driven conversion mechanism is in place
it would be trivial to do things such as converting attributes
which have LDAP integer syntax into a Python integer, etc.
* Expected values in the unit tests which are a DN no longer need to
use lambda expressions to promote the returned value to a DN for
equality comparison. The return value is automatically promoted to
a DN. The lambda expressions have been removed making the code much
simpler and easier to read.
* Add class level logging to a number of classes which did not support
logging, less need for use of root_logger.
* Remove ipaserver/conn.py, it was unused.
* Consolidated duplicate code wherever it was found.
* Fixed many places that used string concatenation to form a new
string rather than string formatting operators. This is necessary
because string formatting converts it's arguments to a string prior
to building the result string. You can't concatenate a string and a
non-string.
* Simplify logic in rename_managed plugin. Use DN operators to edit
dn's.
* The live version of ipa-ldap-updater did not generate a log file.
The offline version did, now both do.
https://fedorahosted.org/freeipa/ticket/1670
https://fedorahosted.org/freeipa/ticket/1671
https://fedorahosted.org/freeipa/ticket/1672
https://fedorahosted.org/freeipa/ticket/1673
https://fedorahosted.org/freeipa/ticket/1674
https://fedorahosted.org/freeipa/ticket/1392
https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
|
|
|
self.debug("Indexing in progress")
|
2008-09-15 19:51:01 -05:00
|
|
|
time.sleep(1)
|
|
|
|
|
|
|
|
return
|
|
|
|
|
Use DN objects instead of strings
* Convert every string specifying a DN into a DN object
* Every place a dn was manipulated in some fashion it was replaced by
the use of DN operators
* Add new DNParam parameter type for parameters which are DN's
* DN objects are used 100% of the time throughout the entire data
pipeline whenever something is logically a dn.
* Many classes now enforce DN usage for their attributes which are
dn's. This is implmented via ipautil.dn_attribute_property(). The
only permitted types for a class attribute specified to be a DN are
either None or a DN object.
* Require that every place a dn is used it must be a DN object.
This translates into lot of::
assert isinstance(dn, DN)
sprinkled through out the code. Maintaining these asserts is
valuable to preserve DN type enforcement. The asserts can be
disabled in production.
The goal of 100% DN usage 100% of the time has been realized, these
asserts are meant to preserve that.
The asserts also proved valuable in detecting functions which did
not obey their function signatures, such as the baseldap pre and
post callbacks.
* Moved ipalib.dn to ipapython.dn because DN class is shared with all
components, not just the server which uses ipalib.
* All API's now accept DN's natively, no need to convert to str (or
unicode).
* Removed ipalib.encoder and encode/decode decorators. Type conversion
is now explicitly performed in each IPASimpleLDAPObject method which
emulates a ldap.SimpleLDAPObject method.
* Entity & Entry classes now utilize DN's
* Removed __getattr__ in Entity & Entity clases. There were two
problems with it. It presented synthetic Python object attributes
based on the current LDAP data it contained. There is no way to
validate synthetic attributes using code checkers, you can't search
the code to find LDAP attribute accesses (because synthetic
attriutes look like Python attributes instead of LDAP data) and
error handling is circumscribed. Secondly __getattr__ was hiding
Python internal methods which broke class semantics.
* Replace use of methods inherited from ldap.SimpleLDAPObject via
IPAdmin class with IPAdmin methods. Directly using inherited methods
was causing us to bypass IPA logic. Mostly this meant replacing the
use of search_s() with getEntry() or getList(). Similarly direct
access of the LDAP data in classes using IPAdmin were replaced with
calls to getValue() or getValues().
* Objects returned by ldap2.find_entries() are now compatible with
either the python-ldap access methodology or the Entity/Entry access
methodology.
* All ldap operations now funnel through the common
IPASimpleLDAPObject giving us a single location where we interface
to python-ldap and perform conversions.
* The above 4 modifications means we've greatly reduced the
proliferation of multiple inconsistent ways to perform LDAP
operations. We are well on the way to having a single API in IPA for
doing LDAP (a long range goal).
* All certificate subject bases are now DN's
* DN objects were enhanced thusly:
- find, rfind, index, rindex, replace and insert methods were added
- AVA, RDN and DN classes were refactored in immutable and mutable
variants, the mutable variants are EditableAVA, EditableRDN and
EditableDN. By default we use the immutable variants preserving
important semantics. To edit a DN cast it to an EditableDN and
cast it back to DN when done editing. These issues are fully
described in other documentation.
- first_key_match was removed
- DN equalty comparison permits comparison to a basestring
* Fixed ldapupdate to work with DN's. This work included:
- Enhance test_updates.py to do more checking after applying
update. Add test for update_from_dict(). Convert code to use
unittest classes.
- Consolidated duplicate code.
- Moved code which should have been in the class into the class.
- Fix the handling of the 'deleteentry' update action. It's no longer
necessary to supply fake attributes to make it work. Detect case
where subsequent update applies a change to entry previously marked
for deletetion. General clean-up and simplification of the
'deleteentry' logic.
- Rewrote a couple of functions to be clearer and more Pythonic.
- Added documentation on the data structure being used.
- Simplfy the use of update_from_dict()
* Removed all usage of get_schema() which was being called prior to
accessing the .schema attribute of an object. If a class is using
internal lazy loading as an optimization it's not right to require
users of the interface to be aware of internal
optimization's. schema is now a property and when the schema
property is accessed it calls a private internal method to perform
the lazy loading.
* Added SchemaCache class to cache the schema's from individual
servers. This was done because of the observation we talk to
different LDAP servers, each of which may have it's own
schema. Previously we globally cached the schema from the first
server we connected to and returned that schema in all contexts. The
cache includes controls to invalidate it thus forcing a schema
refresh.
* Schema caching is now senstive to the run time context. During
install and upgrade the schema can change leading to errors due to
out-of-date cached schema. The schema cache is refreshed in these
contexts.
* We are aware of the LDAP syntax of all LDAP attributes. Every
attribute returned from an LDAP operation is passed through a
central table look-up based on it's LDAP syntax. The table key is
the LDAP syntax it's value is a Python callable that returns a
Python object matching the LDAP syntax. There are a handful of LDAP
attributes whose syntax is historically incorrect
(e.g. DistguishedNames that are defined as DirectoryStrings). The
table driven conversion mechanism is augmented with a table of
hard coded exceptions.
Currently only the following conversions occur via the table:
- dn's are converted to DN objects
- binary objects are converted to Python str objects (IPA
convention).
- everything else is converted to unicode using UTF-8 decoding (IPA
convention).
However, now that the table driven conversion mechanism is in place
it would be trivial to do things such as converting attributes
which have LDAP integer syntax into a Python integer, etc.
* Expected values in the unit tests which are a DN no longer need to
use lambda expressions to promote the returned value to a DN for
equality comparison. The return value is automatically promoted to
a DN. The lambda expressions have been removed making the code much
simpler and easier to read.
* Add class level logging to a number of classes which did not support
logging, less need for use of root_logger.
* Remove ipaserver/conn.py, it was unused.
* Consolidated duplicate code wherever it was found.
* Fixed many places that used string concatenation to form a new
string rather than string formatting operators. This is necessary
because string formatting converts it's arguments to a string prior
to building the result string. You can't concatenate a string and a
non-string.
* Simplify logic in rename_managed plugin. Use DN operators to edit
dn's.
* The live version of ipa-ldap-updater did not generate a log file.
The offline version did, now both do.
https://fedorahosted.org/freeipa/ticket/1670
https://fedorahosted.org/freeipa/ticket/1671
https://fedorahosted.org/freeipa/ticket/1672
https://fedorahosted.org/freeipa/ticket/1673
https://fedorahosted.org/freeipa/ticket/1674
https://fedorahosted.org/freeipa/ticket/1392
https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
|
|
|
def _create_default_entry(self, dn, default):
|
2008-09-15 19:51:01 -05:00
|
|
|
"""Create the default entry from the values provided.
|
|
|
|
|
2013-01-22 08:03:12 -06:00
|
|
|
The return type is ipaldap.LDAPEntry
|
2008-09-15 19:51:01 -05:00
|
|
|
"""
|
Use DN objects instead of strings
* Convert every string specifying a DN into a DN object
* Every place a dn was manipulated in some fashion it was replaced by
the use of DN operators
* Add new DNParam parameter type for parameters which are DN's
* DN objects are used 100% of the time throughout the entire data
pipeline whenever something is logically a dn.
* Many classes now enforce DN usage for their attributes which are
dn's. This is implmented via ipautil.dn_attribute_property(). The
only permitted types for a class attribute specified to be a DN are
either None or a DN object.
* Require that every place a dn is used it must be a DN object.
This translates into lot of::
assert isinstance(dn, DN)
sprinkled through out the code. Maintaining these asserts is
valuable to preserve DN type enforcement. The asserts can be
disabled in production.
The goal of 100% DN usage 100% of the time has been realized, these
asserts are meant to preserve that.
The asserts also proved valuable in detecting functions which did
not obey their function signatures, such as the baseldap pre and
post callbacks.
* Moved ipalib.dn to ipapython.dn because DN class is shared with all
components, not just the server which uses ipalib.
* All API's now accept DN's natively, no need to convert to str (or
unicode).
* Removed ipalib.encoder and encode/decode decorators. Type conversion
is now explicitly performed in each IPASimpleLDAPObject method which
emulates a ldap.SimpleLDAPObject method.
* Entity & Entry classes now utilize DN's
* Removed __getattr__ in Entity & Entity clases. There were two
problems with it. It presented synthetic Python object attributes
based on the current LDAP data it contained. There is no way to
validate synthetic attributes using code checkers, you can't search
the code to find LDAP attribute accesses (because synthetic
attriutes look like Python attributes instead of LDAP data) and
error handling is circumscribed. Secondly __getattr__ was hiding
Python internal methods which broke class semantics.
* Replace use of methods inherited from ldap.SimpleLDAPObject via
IPAdmin class with IPAdmin methods. Directly using inherited methods
was causing us to bypass IPA logic. Mostly this meant replacing the
use of search_s() with getEntry() or getList(). Similarly direct
access of the LDAP data in classes using IPAdmin were replaced with
calls to getValue() or getValues().
* Objects returned by ldap2.find_entries() are now compatible with
either the python-ldap access methodology or the Entity/Entry access
methodology.
* All ldap operations now funnel through the common
IPASimpleLDAPObject giving us a single location where we interface
to python-ldap and perform conversions.
* The above 4 modifications means we've greatly reduced the
proliferation of multiple inconsistent ways to perform LDAP
operations. We are well on the way to having a single API in IPA for
doing LDAP (a long range goal).
* All certificate subject bases are now DN's
* DN objects were enhanced thusly:
- find, rfind, index, rindex, replace and insert methods were added
- AVA, RDN and DN classes were refactored in immutable and mutable
variants, the mutable variants are EditableAVA, EditableRDN and
EditableDN. By default we use the immutable variants preserving
important semantics. To edit a DN cast it to an EditableDN and
cast it back to DN when done editing. These issues are fully
described in other documentation.
- first_key_match was removed
- DN equalty comparison permits comparison to a basestring
* Fixed ldapupdate to work with DN's. This work included:
- Enhance test_updates.py to do more checking after applying
update. Add test for update_from_dict(). Convert code to use
unittest classes.
- Consolidated duplicate code.
- Moved code which should have been in the class into the class.
- Fix the handling of the 'deleteentry' update action. It's no longer
necessary to supply fake attributes to make it work. Detect case
where subsequent update applies a change to entry previously marked
for deletetion. General clean-up and simplification of the
'deleteentry' logic.
- Rewrote a couple of functions to be clearer and more Pythonic.
- Added documentation on the data structure being used.
- Simplfy the use of update_from_dict()
* Removed all usage of get_schema() which was being called prior to
accessing the .schema attribute of an object. If a class is using
internal lazy loading as an optimization it's not right to require
users of the interface to be aware of internal
optimization's. schema is now a property and when the schema
property is accessed it calls a private internal method to perform
the lazy loading.
* Added SchemaCache class to cache the schema's from individual
servers. This was done because of the observation we talk to
different LDAP servers, each of which may have it's own
schema. Previously we globally cached the schema from the first
server we connected to and returned that schema in all contexts. The
cache includes controls to invalidate it thus forcing a schema
refresh.
* Schema caching is now senstive to the run time context. During
install and upgrade the schema can change leading to errors due to
out-of-date cached schema. The schema cache is refreshed in these
contexts.
* We are aware of the LDAP syntax of all LDAP attributes. Every
attribute returned from an LDAP operation is passed through a
central table look-up based on it's LDAP syntax. The table key is
the LDAP syntax it's value is a Python callable that returns a
Python object matching the LDAP syntax. There are a handful of LDAP
attributes whose syntax is historically incorrect
(e.g. DistguishedNames that are defined as DirectoryStrings). The
table driven conversion mechanism is augmented with a table of
hard coded exceptions.
Currently only the following conversions occur via the table:
- dn's are converted to DN objects
- binary objects are converted to Python str objects (IPA
convention).
- everything else is converted to unicode using UTF-8 decoding (IPA
convention).
However, now that the table driven conversion mechanism is in place
it would be trivial to do things such as converting attributes
which have LDAP integer syntax into a Python integer, etc.
* Expected values in the unit tests which are a DN no longer need to
use lambda expressions to promote the returned value to a DN for
equality comparison. The return value is automatically promoted to
a DN. The lambda expressions have been removed making the code much
simpler and easier to read.
* Add class level logging to a number of classes which did not support
logging, less need for use of root_logger.
* Remove ipaserver/conn.py, it was unused.
* Consolidated duplicate code wherever it was found.
* Fixed many places that used string concatenation to form a new
string rather than string formatting operators. This is necessary
because string formatting converts it's arguments to a string prior
to building the result string. You can't concatenate a string and a
non-string.
* Simplify logic in rename_managed plugin. Use DN operators to edit
dn's.
* The live version of ipa-ldap-updater did not generate a log file.
The offline version did, now both do.
https://fedorahosted.org/freeipa/ticket/1670
https://fedorahosted.org/freeipa/ticket/1671
https://fedorahosted.org/freeipa/ticket/1672
https://fedorahosted.org/freeipa/ticket/1673
https://fedorahosted.org/freeipa/ticket/1674
https://fedorahosted.org/freeipa/ticket/1392
https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
|
|
|
assert isinstance(dn, DN)
|
2013-01-22 02:28:25 -06:00
|
|
|
entry = self.conn.make_entry(dn)
|
2008-09-15 19:51:01 -05:00
|
|
|
|
|
|
|
if not default:
|
|
|
|
# This means that the entire entry needs to be created with add
|
2013-12-10 04:42:35 -06:00
|
|
|
return entry
|
2008-09-15 19:51:01 -05:00
|
|
|
|
Use DN objects instead of strings
* Convert every string specifying a DN into a DN object
* Every place a dn was manipulated in some fashion it was replaced by
the use of DN operators
* Add new DNParam parameter type for parameters which are DN's
* DN objects are used 100% of the time throughout the entire data
pipeline whenever something is logically a dn.
* Many classes now enforce DN usage for their attributes which are
dn's. This is implmented via ipautil.dn_attribute_property(). The
only permitted types for a class attribute specified to be a DN are
either None or a DN object.
* Require that every place a dn is used it must be a DN object.
This translates into lot of::
assert isinstance(dn, DN)
sprinkled through out the code. Maintaining these asserts is
valuable to preserve DN type enforcement. The asserts can be
disabled in production.
The goal of 100% DN usage 100% of the time has been realized, these
asserts are meant to preserve that.
The asserts also proved valuable in detecting functions which did
not obey their function signatures, such as the baseldap pre and
post callbacks.
* Moved ipalib.dn to ipapython.dn because DN class is shared with all
components, not just the server which uses ipalib.
* All API's now accept DN's natively, no need to convert to str (or
unicode).
* Removed ipalib.encoder and encode/decode decorators. Type conversion
is now explicitly performed in each IPASimpleLDAPObject method which
emulates a ldap.SimpleLDAPObject method.
* Entity & Entry classes now utilize DN's
* Removed __getattr__ in Entity & Entity clases. There were two
problems with it. It presented synthetic Python object attributes
based on the current LDAP data it contained. There is no way to
validate synthetic attributes using code checkers, you can't search
the code to find LDAP attribute accesses (because synthetic
attriutes look like Python attributes instead of LDAP data) and
error handling is circumscribed. Secondly __getattr__ was hiding
Python internal methods which broke class semantics.
* Replace use of methods inherited from ldap.SimpleLDAPObject via
IPAdmin class with IPAdmin methods. Directly using inherited methods
was causing us to bypass IPA logic. Mostly this meant replacing the
use of search_s() with getEntry() or getList(). Similarly direct
access of the LDAP data in classes using IPAdmin were replaced with
calls to getValue() or getValues().
* Objects returned by ldap2.find_entries() are now compatible with
either the python-ldap access methodology or the Entity/Entry access
methodology.
* All ldap operations now funnel through the common
IPASimpleLDAPObject giving us a single location where we interface
to python-ldap and perform conversions.
* The above 4 modifications means we've greatly reduced the
proliferation of multiple inconsistent ways to perform LDAP
operations. We are well on the way to having a single API in IPA for
doing LDAP (a long range goal).
* All certificate subject bases are now DN's
* DN objects were enhanced thusly:
- find, rfind, index, rindex, replace and insert methods were added
- AVA, RDN and DN classes were refactored in immutable and mutable
variants, the mutable variants are EditableAVA, EditableRDN and
EditableDN. By default we use the immutable variants preserving
important semantics. To edit a DN cast it to an EditableDN and
cast it back to DN when done editing. These issues are fully
described in other documentation.
- first_key_match was removed
- DN equalty comparison permits comparison to a basestring
* Fixed ldapupdate to work with DN's. This work included:
- Enhance test_updates.py to do more checking after applying
update. Add test for update_from_dict(). Convert code to use
unittest classes.
- Consolidated duplicate code.
- Moved code which should have been in the class into the class.
- Fix the handling of the 'deleteentry' update action. It's no longer
necessary to supply fake attributes to make it work. Detect case
where subsequent update applies a change to entry previously marked
for deletetion. General clean-up and simplification of the
'deleteentry' logic.
- Rewrote a couple of functions to be clearer and more Pythonic.
- Added documentation on the data structure being used.
- Simplfy the use of update_from_dict()
* Removed all usage of get_schema() which was being called prior to
accessing the .schema attribute of an object. If a class is using
internal lazy loading as an optimization it's not right to require
users of the interface to be aware of internal
optimization's. schema is now a property and when the schema
property is accessed it calls a private internal method to perform
the lazy loading.
* Added SchemaCache class to cache the schema's from individual
servers. This was done because of the observation we talk to
different LDAP servers, each of which may have it's own
schema. Previously we globally cached the schema from the first
server we connected to and returned that schema in all contexts. The
cache includes controls to invalidate it thus forcing a schema
refresh.
* Schema caching is now senstive to the run time context. During
install and upgrade the schema can change leading to errors due to
out-of-date cached schema. The schema cache is refreshed in these
contexts.
* We are aware of the LDAP syntax of all LDAP attributes. Every
attribute returned from an LDAP operation is passed through a
central table look-up based on it's LDAP syntax. The table key is
the LDAP syntax it's value is a Python callable that returns a
Python object matching the LDAP syntax. There are a handful of LDAP
attributes whose syntax is historically incorrect
(e.g. DistguishedNames that are defined as DirectoryStrings). The
table driven conversion mechanism is augmented with a table of
hard coded exceptions.
Currently only the following conversions occur via the table:
- dn's are converted to DN objects
- binary objects are converted to Python str objects (IPA
convention).
- everything else is converted to unicode using UTF-8 decoding (IPA
convention).
However, now that the table driven conversion mechanism is in place
it would be trivial to do things such as converting attributes
which have LDAP integer syntax into a Python integer, etc.
* Expected values in the unit tests which are a DN no longer need to
use lambda expressions to promote the returned value to a DN for
equality comparison. The return value is automatically promoted to
a DN. The lambda expressions have been removed making the code much
simpler and easier to read.
* Add class level logging to a number of classes which did not support
logging, less need for use of root_logger.
* Remove ipaserver/conn.py, it was unused.
* Consolidated duplicate code wherever it was found.
* Fixed many places that used string concatenation to form a new
string rather than string formatting operators. This is necessary
because string formatting converts it's arguments to a string prior
to building the result string. You can't concatenate a string and a
non-string.
* Simplify logic in rename_managed plugin. Use DN operators to edit
dn's.
* The live version of ipa-ldap-updater did not generate a log file.
The offline version did, now both do.
https://fedorahosted.org/freeipa/ticket/1670
https://fedorahosted.org/freeipa/ticket/1671
https://fedorahosted.org/freeipa/ticket/1672
https://fedorahosted.org/freeipa/ticket/1673
https://fedorahosted.org/freeipa/ticket/1674
https://fedorahosted.org/freeipa/ticket/1392
https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
|
|
|
for item in default:
|
2008-09-15 19:51:01 -05:00
|
|
|
# We already do syntax-parsing so this is safe
|
2015-05-05 08:12:12 -05:00
|
|
|
attr = item['attr']
|
|
|
|
value = item['value']
|
|
|
|
|
2013-01-21 03:34:44 -06:00
|
|
|
e = entry.get(attr)
|
2008-09-15 19:51:01 -05:00
|
|
|
if e:
|
|
|
|
# multi-valued attribute
|
|
|
|
e = list(e)
|
Use DN objects instead of strings
* Convert every string specifying a DN into a DN object
* Every place a dn was manipulated in some fashion it was replaced by
the use of DN operators
* Add new DNParam parameter type for parameters which are DN's
* DN objects are used 100% of the time throughout the entire data
pipeline whenever something is logically a dn.
* Many classes now enforce DN usage for their attributes which are
dn's. This is implmented via ipautil.dn_attribute_property(). The
only permitted types for a class attribute specified to be a DN are
either None or a DN object.
* Require that every place a dn is used it must be a DN object.
This translates into lot of::
assert isinstance(dn, DN)
sprinkled through out the code. Maintaining these asserts is
valuable to preserve DN type enforcement. The asserts can be
disabled in production.
The goal of 100% DN usage 100% of the time has been realized, these
asserts are meant to preserve that.
The asserts also proved valuable in detecting functions which did
not obey their function signatures, such as the baseldap pre and
post callbacks.
* Moved ipalib.dn to ipapython.dn because DN class is shared with all
components, not just the server which uses ipalib.
* All API's now accept DN's natively, no need to convert to str (or
unicode).
* Removed ipalib.encoder and encode/decode decorators. Type conversion
is now explicitly performed in each IPASimpleLDAPObject method which
emulates a ldap.SimpleLDAPObject method.
* Entity & Entry classes now utilize DN's
* Removed __getattr__ in Entity & Entity clases. There were two
problems with it. It presented synthetic Python object attributes
based on the current LDAP data it contained. There is no way to
validate synthetic attributes using code checkers, you can't search
the code to find LDAP attribute accesses (because synthetic
attriutes look like Python attributes instead of LDAP data) and
error handling is circumscribed. Secondly __getattr__ was hiding
Python internal methods which broke class semantics.
* Replace use of methods inherited from ldap.SimpleLDAPObject via
IPAdmin class with IPAdmin methods. Directly using inherited methods
was causing us to bypass IPA logic. Mostly this meant replacing the
use of search_s() with getEntry() or getList(). Similarly direct
access of the LDAP data in classes using IPAdmin were replaced with
calls to getValue() or getValues().
* Objects returned by ldap2.find_entries() are now compatible with
either the python-ldap access methodology or the Entity/Entry access
methodology.
* All ldap operations now funnel through the common
IPASimpleLDAPObject giving us a single location where we interface
to python-ldap and perform conversions.
* The above 4 modifications means we've greatly reduced the
proliferation of multiple inconsistent ways to perform LDAP
operations. We are well on the way to having a single API in IPA for
doing LDAP (a long range goal).
* All certificate subject bases are now DN's
* DN objects were enhanced thusly:
- find, rfind, index, rindex, replace and insert methods were added
- AVA, RDN and DN classes were refactored in immutable and mutable
variants, the mutable variants are EditableAVA, EditableRDN and
EditableDN. By default we use the immutable variants preserving
important semantics. To edit a DN cast it to an EditableDN and
cast it back to DN when done editing. These issues are fully
described in other documentation.
- first_key_match was removed
- DN equalty comparison permits comparison to a basestring
* Fixed ldapupdate to work with DN's. This work included:
- Enhance test_updates.py to do more checking after applying
update. Add test for update_from_dict(). Convert code to use
unittest classes.
- Consolidated duplicate code.
- Moved code which should have been in the class into the class.
- Fix the handling of the 'deleteentry' update action. It's no longer
necessary to supply fake attributes to make it work. Detect case
where subsequent update applies a change to entry previously marked
for deletetion. General clean-up and simplification of the
'deleteentry' logic.
- Rewrote a couple of functions to be clearer and more Pythonic.
- Added documentation on the data structure being used.
- Simplfy the use of update_from_dict()
* Removed all usage of get_schema() which was being called prior to
accessing the .schema attribute of an object. If a class is using
internal lazy loading as an optimization it's not right to require
users of the interface to be aware of internal
optimization's. schema is now a property and when the schema
property is accessed it calls a private internal method to perform
the lazy loading.
* Added SchemaCache class to cache the schema's from individual
servers. This was done because of the observation we talk to
different LDAP servers, each of which may have it's own
schema. Previously we globally cached the schema from the first
server we connected to and returned that schema in all contexts. The
cache includes controls to invalidate it thus forcing a schema
refresh.
* Schema caching is now senstive to the run time context. During
install and upgrade the schema can change leading to errors due to
out-of-date cached schema. The schema cache is refreshed in these
contexts.
* We are aware of the LDAP syntax of all LDAP attributes. Every
attribute returned from an LDAP operation is passed through a
central table look-up based on it's LDAP syntax. The table key is
the LDAP syntax it's value is a Python callable that returns a
Python object matching the LDAP syntax. There are a handful of LDAP
attributes whose syntax is historically incorrect
(e.g. DistguishedNames that are defined as DirectoryStrings). The
table driven conversion mechanism is augmented with a table of
hard coded exceptions.
Currently only the following conversions occur via the table:
- dn's are converted to DN objects
- binary objects are converted to Python str objects (IPA
convention).
- everything else is converted to unicode using UTF-8 decoding (IPA
convention).
However, now that the table driven conversion mechanism is in place
it would be trivial to do things such as converting attributes
which have LDAP integer syntax into a Python integer, etc.
* Expected values in the unit tests which are a DN no longer need to
use lambda expressions to promote the returned value to a DN for
equality comparison. The return value is automatically promoted to
a DN. The lambda expressions have been removed making the code much
simpler and easier to read.
* Add class level logging to a number of classes which did not support
logging, less need for use of root_logger.
* Remove ipaserver/conn.py, it was unused.
* Consolidated duplicate code wherever it was found.
* Fixed many places that used string concatenation to form a new
string rather than string formatting operators. This is necessary
because string formatting converts it's arguments to a string prior
to building the result string. You can't concatenate a string and a
non-string.
* Simplify logic in rename_managed plugin. Use DN operators to edit
dn's.
* The live version of ipa-ldap-updater did not generate a log file.
The offline version did, now both do.
https://fedorahosted.org/freeipa/ticket/1670
https://fedorahosted.org/freeipa/ticket/1671
https://fedorahosted.org/freeipa/ticket/1672
https://fedorahosted.org/freeipa/ticket/1673
https://fedorahosted.org/freeipa/ticket/1674
https://fedorahosted.org/freeipa/ticket/1392
https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
|
|
|
e.append(value)
|
2008-09-15 19:51:01 -05:00
|
|
|
else:
|
2013-01-21 03:42:16 -06:00
|
|
|
e = [value]
|
|
|
|
entry[attr] = e
|
2013-12-10 04:42:35 -06:00
|
|
|
entry.reset_modlist()
|
2008-09-15 19:51:01 -05:00
|
|
|
|
2013-12-10 04:42:35 -06:00
|
|
|
return entry
|
2008-09-15 19:51:01 -05:00
|
|
|
|
Use DN objects instead of strings
* Convert every string specifying a DN into a DN object
* Every place a dn was manipulated in some fashion it was replaced by
the use of DN operators
* Add new DNParam parameter type for parameters which are DN's
* DN objects are used 100% of the time throughout the entire data
pipeline whenever something is logically a dn.
* Many classes now enforce DN usage for their attributes which are
dn's. This is implmented via ipautil.dn_attribute_property(). The
only permitted types for a class attribute specified to be a DN are
either None or a DN object.
* Require that every place a dn is used it must be a DN object.
This translates into lot of::
assert isinstance(dn, DN)
sprinkled through out the code. Maintaining these asserts is
valuable to preserve DN type enforcement. The asserts can be
disabled in production.
The goal of 100% DN usage 100% of the time has been realized, these
asserts are meant to preserve that.
The asserts also proved valuable in detecting functions which did
not obey their function signatures, such as the baseldap pre and
post callbacks.
* Moved ipalib.dn to ipapython.dn because DN class is shared with all
components, not just the server which uses ipalib.
* All API's now accept DN's natively, no need to convert to str (or
unicode).
* Removed ipalib.encoder and encode/decode decorators. Type conversion
is now explicitly performed in each IPASimpleLDAPObject method which
emulates a ldap.SimpleLDAPObject method.
* Entity & Entry classes now utilize DN's
* Removed __getattr__ in Entity & Entity clases. There were two
problems with it. It presented synthetic Python object attributes
based on the current LDAP data it contained. There is no way to
validate synthetic attributes using code checkers, you can't search
the code to find LDAP attribute accesses (because synthetic
attriutes look like Python attributes instead of LDAP data) and
error handling is circumscribed. Secondly __getattr__ was hiding
Python internal methods which broke class semantics.
* Replace use of methods inherited from ldap.SimpleLDAPObject via
IPAdmin class with IPAdmin methods. Directly using inherited methods
was causing us to bypass IPA logic. Mostly this meant replacing the
use of search_s() with getEntry() or getList(). Similarly direct
access of the LDAP data in classes using IPAdmin were replaced with
calls to getValue() or getValues().
* Objects returned by ldap2.find_entries() are now compatible with
either the python-ldap access methodology or the Entity/Entry access
methodology.
* All ldap operations now funnel through the common
IPASimpleLDAPObject giving us a single location where we interface
to python-ldap and perform conversions.
* The above 4 modifications means we've greatly reduced the
proliferation of multiple inconsistent ways to perform LDAP
operations. We are well on the way to having a single API in IPA for
doing LDAP (a long range goal).
* All certificate subject bases are now DN's
* DN objects were enhanced thusly:
- find, rfind, index, rindex, replace and insert methods were added
- AVA, RDN and DN classes were refactored in immutable and mutable
variants, the mutable variants are EditableAVA, EditableRDN and
EditableDN. By default we use the immutable variants preserving
important semantics. To edit a DN cast it to an EditableDN and
cast it back to DN when done editing. These issues are fully
described in other documentation.
- first_key_match was removed
- DN equalty comparison permits comparison to a basestring
* Fixed ldapupdate to work with DN's. This work included:
- Enhance test_updates.py to do more checking after applying
update. Add test for update_from_dict(). Convert code to use
unittest classes.
- Consolidated duplicate code.
- Moved code which should have been in the class into the class.
- Fix the handling of the 'deleteentry' update action. It's no longer
necessary to supply fake attributes to make it work. Detect case
where subsequent update applies a change to entry previously marked
for deletetion. General clean-up and simplification of the
'deleteentry' logic.
- Rewrote a couple of functions to be clearer and more Pythonic.
- Added documentation on the data structure being used.
- Simplfy the use of update_from_dict()
* Removed all usage of get_schema() which was being called prior to
accessing the .schema attribute of an object. If a class is using
internal lazy loading as an optimization it's not right to require
users of the interface to be aware of internal
optimization's. schema is now a property and when the schema
property is accessed it calls a private internal method to perform
the lazy loading.
* Added SchemaCache class to cache the schema's from individual
servers. This was done because of the observation we talk to
different LDAP servers, each of which may have it's own
schema. Previously we globally cached the schema from the first
server we connected to and returned that schema in all contexts. The
cache includes controls to invalidate it thus forcing a schema
refresh.
* Schema caching is now senstive to the run time context. During
install and upgrade the schema can change leading to errors due to
out-of-date cached schema. The schema cache is refreshed in these
contexts.
* We are aware of the LDAP syntax of all LDAP attributes. Every
attribute returned from an LDAP operation is passed through a
central table look-up based on it's LDAP syntax. The table key is
the LDAP syntax it's value is a Python callable that returns a
Python object matching the LDAP syntax. There are a handful of LDAP
attributes whose syntax is historically incorrect
(e.g. DistguishedNames that are defined as DirectoryStrings). The
table driven conversion mechanism is augmented with a table of
hard coded exceptions.
Currently only the following conversions occur via the table:
- dn's are converted to DN objects
- binary objects are converted to Python str objects (IPA
convention).
- everything else is converted to unicode using UTF-8 decoding (IPA
convention).
However, now that the table driven conversion mechanism is in place
it would be trivial to do things such as converting attributes
which have LDAP integer syntax into a Python integer, etc.
* Expected values in the unit tests which are a DN no longer need to
use lambda expressions to promote the returned value to a DN for
equality comparison. The return value is automatically promoted to
a DN. The lambda expressions have been removed making the code much
simpler and easier to read.
* Add class level logging to a number of classes which did not support
logging, less need for use of root_logger.
* Remove ipaserver/conn.py, it was unused.
* Consolidated duplicate code wherever it was found.
* Fixed many places that used string concatenation to form a new
string rather than string formatting operators. This is necessary
because string formatting converts it's arguments to a string prior
to building the result string. You can't concatenate a string and a
non-string.
* Simplify logic in rename_managed plugin. Use DN operators to edit
dn's.
* The live version of ipa-ldap-updater did not generate a log file.
The offline version did, now both do.
https://fedorahosted.org/freeipa/ticket/1670
https://fedorahosted.org/freeipa/ticket/1671
https://fedorahosted.org/freeipa/ticket/1672
https://fedorahosted.org/freeipa/ticket/1673
https://fedorahosted.org/freeipa/ticket/1674
https://fedorahosted.org/freeipa/ticket/1392
https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
|
|
|
def _get_entry(self, dn):
|
2008-09-15 19:51:01 -05:00
|
|
|
"""Retrieve an object from LDAP.
|
|
|
|
|
2013-01-22 08:03:12 -06:00
|
|
|
The return type is ipaldap.LDAPEntry
|
2008-09-15 19:51:01 -05:00
|
|
|
"""
|
Use DN objects instead of strings
* Convert every string specifying a DN into a DN object
* Every place a dn was manipulated in some fashion it was replaced by
the use of DN operators
* Add new DNParam parameter type for parameters which are DN's
* DN objects are used 100% of the time throughout the entire data
pipeline whenever something is logically a dn.
* Many classes now enforce DN usage for their attributes which are
dn's. This is implmented via ipautil.dn_attribute_property(). The
only permitted types for a class attribute specified to be a DN are
either None or a DN object.
* Require that every place a dn is used it must be a DN object.
This translates into lot of::
assert isinstance(dn, DN)
sprinkled through out the code. Maintaining these asserts is
valuable to preserve DN type enforcement. The asserts can be
disabled in production.
The goal of 100% DN usage 100% of the time has been realized, these
asserts are meant to preserve that.
The asserts also proved valuable in detecting functions which did
not obey their function signatures, such as the baseldap pre and
post callbacks.
* Moved ipalib.dn to ipapython.dn because DN class is shared with all
components, not just the server which uses ipalib.
* All API's now accept DN's natively, no need to convert to str (or
unicode).
* Removed ipalib.encoder and encode/decode decorators. Type conversion
is now explicitly performed in each IPASimpleLDAPObject method which
emulates a ldap.SimpleLDAPObject method.
* Entity & Entry classes now utilize DN's
* Removed __getattr__ in Entity & Entity clases. There were two
problems with it. It presented synthetic Python object attributes
based on the current LDAP data it contained. There is no way to
validate synthetic attributes using code checkers, you can't search
the code to find LDAP attribute accesses (because synthetic
attriutes look like Python attributes instead of LDAP data) and
error handling is circumscribed. Secondly __getattr__ was hiding
Python internal methods which broke class semantics.
* Replace use of methods inherited from ldap.SimpleLDAPObject via
IPAdmin class with IPAdmin methods. Directly using inherited methods
was causing us to bypass IPA logic. Mostly this meant replacing the
use of search_s() with getEntry() or getList(). Similarly direct
access of the LDAP data in classes using IPAdmin were replaced with
calls to getValue() or getValues().
* Objects returned by ldap2.find_entries() are now compatible with
either the python-ldap access methodology or the Entity/Entry access
methodology.
* All ldap operations now funnel through the common
IPASimpleLDAPObject giving us a single location where we interface
to python-ldap and perform conversions.
* The above 4 modifications means we've greatly reduced the
proliferation of multiple inconsistent ways to perform LDAP
operations. We are well on the way to having a single API in IPA for
doing LDAP (a long range goal).
* All certificate subject bases are now DN's
* DN objects were enhanced thusly:
- find, rfind, index, rindex, replace and insert methods were added
- AVA, RDN and DN classes were refactored in immutable and mutable
variants, the mutable variants are EditableAVA, EditableRDN and
EditableDN. By default we use the immutable variants preserving
important semantics. To edit a DN cast it to an EditableDN and
cast it back to DN when done editing. These issues are fully
described in other documentation.
- first_key_match was removed
- DN equalty comparison permits comparison to a basestring
* Fixed ldapupdate to work with DN's. This work included:
- Enhance test_updates.py to do more checking after applying
update. Add test for update_from_dict(). Convert code to use
unittest classes.
- Consolidated duplicate code.
- Moved code which should have been in the class into the class.
- Fix the handling of the 'deleteentry' update action. It's no longer
necessary to supply fake attributes to make it work. Detect case
where subsequent update applies a change to entry previously marked
for deletetion. General clean-up and simplification of the
'deleteentry' logic.
- Rewrote a couple of functions to be clearer and more Pythonic.
- Added documentation on the data structure being used.
- Simplfy the use of update_from_dict()
* Removed all usage of get_schema() which was being called prior to
accessing the .schema attribute of an object. If a class is using
internal lazy loading as an optimization it's not right to require
users of the interface to be aware of internal
optimization's. schema is now a property and when the schema
property is accessed it calls a private internal method to perform
the lazy loading.
* Added SchemaCache class to cache the schema's from individual
servers. This was done because of the observation we talk to
different LDAP servers, each of which may have it's own
schema. Previously we globally cached the schema from the first
server we connected to and returned that schema in all contexts. The
cache includes controls to invalidate it thus forcing a schema
refresh.
* Schema caching is now senstive to the run time context. During
install and upgrade the schema can change leading to errors due to
out-of-date cached schema. The schema cache is refreshed in these
contexts.
* We are aware of the LDAP syntax of all LDAP attributes. Every
attribute returned from an LDAP operation is passed through a
central table look-up based on it's LDAP syntax. The table key is
the LDAP syntax it's value is a Python callable that returns a
Python object matching the LDAP syntax. There are a handful of LDAP
attributes whose syntax is historically incorrect
(e.g. DistguishedNames that are defined as DirectoryStrings). The
table driven conversion mechanism is augmented with a table of
hard coded exceptions.
Currently only the following conversions occur via the table:
- dn's are converted to DN objects
- binary objects are converted to Python str objects (IPA
convention).
- everything else is converted to unicode using UTF-8 decoding (IPA
convention).
However, now that the table driven conversion mechanism is in place
it would be trivial to do things such as converting attributes
which have LDAP integer syntax into a Python integer, etc.
* Expected values in the unit tests which are a DN no longer need to
use lambda expressions to promote the returned value to a DN for
equality comparison. The return value is automatically promoted to
a DN. The lambda expressions have been removed making the code much
simpler and easier to read.
* Add class level logging to a number of classes which did not support
logging, less need for use of root_logger.
* Remove ipaserver/conn.py, it was unused.
* Consolidated duplicate code wherever it was found.
* Fixed many places that used string concatenation to form a new
string rather than string formatting operators. This is necessary
because string formatting converts it's arguments to a string prior
to building the result string. You can't concatenate a string and a
non-string.
* Simplify logic in rename_managed plugin. Use DN operators to edit
dn's.
* The live version of ipa-ldap-updater did not generate a log file.
The offline version did, now both do.
https://fedorahosted.org/freeipa/ticket/1670
https://fedorahosted.org/freeipa/ticket/1671
https://fedorahosted.org/freeipa/ticket/1672
https://fedorahosted.org/freeipa/ticket/1673
https://fedorahosted.org/freeipa/ticket/1674
https://fedorahosted.org/freeipa/ticket/1392
https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
|
|
|
assert isinstance(dn, DN)
|
2008-09-15 19:51:01 -05:00
|
|
|
searchfilter="objectclass=*"
|
2011-04-05 15:28:59 -05:00
|
|
|
sattrs = ["*", "aci", "attributeTypes", "objectClasses"]
|
2008-09-15 19:51:01 -05:00
|
|
|
scope = ldap.SCOPE_BASE
|
|
|
|
|
2013-01-21 07:39:09 -06:00
|
|
|
return self.conn.get_entries(dn, scope, searchfilter, sattrs)
|
2008-09-15 19:51:01 -05:00
|
|
|
|
Use DN objects instead of strings
* Convert every string specifying a DN into a DN object
* Every place a dn was manipulated in some fashion it was replaced by
the use of DN operators
* Add new DNParam parameter type for parameters which are DN's
* DN objects are used 100% of the time throughout the entire data
pipeline whenever something is logically a dn.
* Many classes now enforce DN usage for their attributes which are
dn's. This is implmented via ipautil.dn_attribute_property(). The
only permitted types for a class attribute specified to be a DN are
either None or a DN object.
* Require that every place a dn is used it must be a DN object.
This translates into lot of::
assert isinstance(dn, DN)
sprinkled through out the code. Maintaining these asserts is
valuable to preserve DN type enforcement. The asserts can be
disabled in production.
The goal of 100% DN usage 100% of the time has been realized, these
asserts are meant to preserve that.
The asserts also proved valuable in detecting functions which did
not obey their function signatures, such as the baseldap pre and
post callbacks.
* Moved ipalib.dn to ipapython.dn because DN class is shared with all
components, not just the server which uses ipalib.
* All API's now accept DN's natively, no need to convert to str (or
unicode).
* Removed ipalib.encoder and encode/decode decorators. Type conversion
is now explicitly performed in each IPASimpleLDAPObject method which
emulates a ldap.SimpleLDAPObject method.
* Entity & Entry classes now utilize DN's
* Removed __getattr__ in Entity & Entity clases. There were two
problems with it. It presented synthetic Python object attributes
based on the current LDAP data it contained. There is no way to
validate synthetic attributes using code checkers, you can't search
the code to find LDAP attribute accesses (because synthetic
attriutes look like Python attributes instead of LDAP data) and
error handling is circumscribed. Secondly __getattr__ was hiding
Python internal methods which broke class semantics.
* Replace use of methods inherited from ldap.SimpleLDAPObject via
IPAdmin class with IPAdmin methods. Directly using inherited methods
was causing us to bypass IPA logic. Mostly this meant replacing the
use of search_s() with getEntry() or getList(). Similarly direct
access of the LDAP data in classes using IPAdmin were replaced with
calls to getValue() or getValues().
* Objects returned by ldap2.find_entries() are now compatible with
either the python-ldap access methodology or the Entity/Entry access
methodology.
* All ldap operations now funnel through the common
IPASimpleLDAPObject giving us a single location where we interface
to python-ldap and perform conversions.
* The above 4 modifications means we've greatly reduced the
proliferation of multiple inconsistent ways to perform LDAP
operations. We are well on the way to having a single API in IPA for
doing LDAP (a long range goal).
* All certificate subject bases are now DN's
* DN objects were enhanced thusly:
- find, rfind, index, rindex, replace and insert methods were added
- AVA, RDN and DN classes were refactored in immutable and mutable
variants, the mutable variants are EditableAVA, EditableRDN and
EditableDN. By default we use the immutable variants preserving
important semantics. To edit a DN cast it to an EditableDN and
cast it back to DN when done editing. These issues are fully
described in other documentation.
- first_key_match was removed
- DN equalty comparison permits comparison to a basestring
* Fixed ldapupdate to work with DN's. This work included:
- Enhance test_updates.py to do more checking after applying
update. Add test for update_from_dict(). Convert code to use
unittest classes.
- Consolidated duplicate code.
- Moved code which should have been in the class into the class.
- Fix the handling of the 'deleteentry' update action. It's no longer
necessary to supply fake attributes to make it work. Detect case
where subsequent update applies a change to entry previously marked
for deletetion. General clean-up and simplification of the
'deleteentry' logic.
- Rewrote a couple of functions to be clearer and more Pythonic.
- Added documentation on the data structure being used.
- Simplfy the use of update_from_dict()
* Removed all usage of get_schema() which was being called prior to
accessing the .schema attribute of an object. If a class is using
internal lazy loading as an optimization it's not right to require
users of the interface to be aware of internal
optimization's. schema is now a property and when the schema
property is accessed it calls a private internal method to perform
the lazy loading.
* Added SchemaCache class to cache the schema's from individual
servers. This was done because of the observation we talk to
different LDAP servers, each of which may have it's own
schema. Previously we globally cached the schema from the first
server we connected to and returned that schema in all contexts. The
cache includes controls to invalidate it thus forcing a schema
refresh.
* Schema caching is now senstive to the run time context. During
install and upgrade the schema can change leading to errors due to
out-of-date cached schema. The schema cache is refreshed in these
contexts.
* We are aware of the LDAP syntax of all LDAP attributes. Every
attribute returned from an LDAP operation is passed through a
central table look-up based on it's LDAP syntax. The table key is
the LDAP syntax it's value is a Python callable that returns a
Python object matching the LDAP syntax. There are a handful of LDAP
attributes whose syntax is historically incorrect
(e.g. DistguishedNames that are defined as DirectoryStrings). The
table driven conversion mechanism is augmented with a table of
hard coded exceptions.
Currently only the following conversions occur via the table:
- dn's are converted to DN objects
- binary objects are converted to Python str objects (IPA
convention).
- everything else is converted to unicode using UTF-8 decoding (IPA
convention).
However, now that the table driven conversion mechanism is in place
it would be trivial to do things such as converting attributes
which have LDAP integer syntax into a Python integer, etc.
* Expected values in the unit tests which are a DN no longer need to
use lambda expressions to promote the returned value to a DN for
equality comparison. The return value is automatically promoted to
a DN. The lambda expressions have been removed making the code much
simpler and easier to read.
* Add class level logging to a number of classes which did not support
logging, less need for use of root_logger.
* Remove ipaserver/conn.py, it was unused.
* Consolidated duplicate code wherever it was found.
* Fixed many places that used string concatenation to form a new
string rather than string formatting operators. This is necessary
because string formatting converts it's arguments to a string prior
to building the result string. You can't concatenate a string and a
non-string.
* Simplify logic in rename_managed plugin. Use DN operators to edit
dn's.
* The live version of ipa-ldap-updater did not generate a log file.
The offline version did, now both do.
https://fedorahosted.org/freeipa/ticket/1670
https://fedorahosted.org/freeipa/ticket/1671
https://fedorahosted.org/freeipa/ticket/1672
https://fedorahosted.org/freeipa/ticket/1673
https://fedorahosted.org/freeipa/ticket/1674
https://fedorahosted.org/freeipa/ticket/1392
https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
|
|
|
def _apply_update_disposition(self, updates, entry):
|
|
|
|
"""
|
|
|
|
updates is a list of changes to apply
|
|
|
|
entry is the thing to apply them to
|
2008-09-15 19:51:01 -05:00
|
|
|
|
Use DN objects instead of strings
* Convert every string specifying a DN into a DN object
* Every place a dn was manipulated in some fashion it was replaced by
the use of DN operators
* Add new DNParam parameter type for parameters which are DN's
* DN objects are used 100% of the time throughout the entire data
pipeline whenever something is logically a dn.
* Many classes now enforce DN usage for their attributes which are
dn's. This is implmented via ipautil.dn_attribute_property(). The
only permitted types for a class attribute specified to be a DN are
either None or a DN object.
* Require that every place a dn is used it must be a DN object.
This translates into lot of::
assert isinstance(dn, DN)
sprinkled through out the code. Maintaining these asserts is
valuable to preserve DN type enforcement. The asserts can be
disabled in production.
The goal of 100% DN usage 100% of the time has been realized, these
asserts are meant to preserve that.
The asserts also proved valuable in detecting functions which did
not obey their function signatures, such as the baseldap pre and
post callbacks.
* Moved ipalib.dn to ipapython.dn because DN class is shared with all
components, not just the server which uses ipalib.
* All API's now accept DN's natively, no need to convert to str (or
unicode).
* Removed ipalib.encoder and encode/decode decorators. Type conversion
is now explicitly performed in each IPASimpleLDAPObject method which
emulates a ldap.SimpleLDAPObject method.
* Entity & Entry classes now utilize DN's
* Removed __getattr__ in Entity & Entity clases. There were two
problems with it. It presented synthetic Python object attributes
based on the current LDAP data it contained. There is no way to
validate synthetic attributes using code checkers, you can't search
the code to find LDAP attribute accesses (because synthetic
attriutes look like Python attributes instead of LDAP data) and
error handling is circumscribed. Secondly __getattr__ was hiding
Python internal methods which broke class semantics.
* Replace use of methods inherited from ldap.SimpleLDAPObject via
IPAdmin class with IPAdmin methods. Directly using inherited methods
was causing us to bypass IPA logic. Mostly this meant replacing the
use of search_s() with getEntry() or getList(). Similarly direct
access of the LDAP data in classes using IPAdmin were replaced with
calls to getValue() or getValues().
* Objects returned by ldap2.find_entries() are now compatible with
either the python-ldap access methodology or the Entity/Entry access
methodology.
* All ldap operations now funnel through the common
IPASimpleLDAPObject giving us a single location where we interface
to python-ldap and perform conversions.
* The above 4 modifications means we've greatly reduced the
proliferation of multiple inconsistent ways to perform LDAP
operations. We are well on the way to having a single API in IPA for
doing LDAP (a long range goal).
* All certificate subject bases are now DN's
* DN objects were enhanced thusly:
- find, rfind, index, rindex, replace and insert methods were added
- AVA, RDN and DN classes were refactored in immutable and mutable
variants, the mutable variants are EditableAVA, EditableRDN and
EditableDN. By default we use the immutable variants preserving
important semantics. To edit a DN cast it to an EditableDN and
cast it back to DN when done editing. These issues are fully
described in other documentation.
- first_key_match was removed
- DN equalty comparison permits comparison to a basestring
* Fixed ldapupdate to work with DN's. This work included:
- Enhance test_updates.py to do more checking after applying
update. Add test for update_from_dict(). Convert code to use
unittest classes.
- Consolidated duplicate code.
- Moved code which should have been in the class into the class.
- Fix the handling of the 'deleteentry' update action. It's no longer
necessary to supply fake attributes to make it work. Detect case
where subsequent update applies a change to entry previously marked
for deletetion. General clean-up and simplification of the
'deleteentry' logic.
- Rewrote a couple of functions to be clearer and more Pythonic.
- Added documentation on the data structure being used.
- Simplfy the use of update_from_dict()
* Removed all usage of get_schema() which was being called prior to
accessing the .schema attribute of an object. If a class is using
internal lazy loading as an optimization it's not right to require
users of the interface to be aware of internal
optimization's. schema is now a property and when the schema
property is accessed it calls a private internal method to perform
the lazy loading.
* Added SchemaCache class to cache the schema's from individual
servers. This was done because of the observation we talk to
different LDAP servers, each of which may have it's own
schema. Previously we globally cached the schema from the first
server we connected to and returned that schema in all contexts. The
cache includes controls to invalidate it thus forcing a schema
refresh.
* Schema caching is now senstive to the run time context. During
install and upgrade the schema can change leading to errors due to
out-of-date cached schema. The schema cache is refreshed in these
contexts.
* We are aware of the LDAP syntax of all LDAP attributes. Every
attribute returned from an LDAP operation is passed through a
central table look-up based on it's LDAP syntax. The table key is
the LDAP syntax it's value is a Python callable that returns a
Python object matching the LDAP syntax. There are a handful of LDAP
attributes whose syntax is historically incorrect
(e.g. DistguishedNames that are defined as DirectoryStrings). The
table driven conversion mechanism is augmented with a table of
hard coded exceptions.
Currently only the following conversions occur via the table:
- dn's are converted to DN objects
- binary objects are converted to Python str objects (IPA
convention).
- everything else is converted to unicode using UTF-8 decoding (IPA
convention).
However, now that the table driven conversion mechanism is in place
it would be trivial to do things such as converting attributes
which have LDAP integer syntax into a Python integer, etc.
* Expected values in the unit tests which are a DN no longer need to
use lambda expressions to promote the returned value to a DN for
equality comparison. The return value is automatically promoted to
a DN. The lambda expressions have been removed making the code much
simpler and easier to read.
* Add class level logging to a number of classes which did not support
logging, less need for use of root_logger.
* Remove ipaserver/conn.py, it was unused.
* Consolidated duplicate code wherever it was found.
* Fixed many places that used string concatenation to form a new
string rather than string formatting operators. This is necessary
because string formatting converts it's arguments to a string prior
to building the result string. You can't concatenate a string and a
non-string.
* Simplify logic in rename_managed plugin. Use DN operators to edit
dn's.
* The live version of ipa-ldap-updater did not generate a log file.
The offline version did, now both do.
https://fedorahosted.org/freeipa/ticket/1670
https://fedorahosted.org/freeipa/ticket/1671
https://fedorahosted.org/freeipa/ticket/1672
https://fedorahosted.org/freeipa/ticket/1673
https://fedorahosted.org/freeipa/ticket/1674
https://fedorahosted.org/freeipa/ticket/1392
https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
|
|
|
Returns the modified entry
|
2008-09-15 19:51:01 -05:00
|
|
|
"""
|
|
|
|
if not updates:
|
|
|
|
return entry
|
|
|
|
|
|
|
|
only = {}
|
Use DN objects instead of strings
* Convert every string specifying a DN into a DN object
* Every place a dn was manipulated in some fashion it was replaced by
the use of DN operators
* Add new DNParam parameter type for parameters which are DN's
* DN objects are used 100% of the time throughout the entire data
pipeline whenever something is logically a dn.
* Many classes now enforce DN usage for their attributes which are
dn's. This is implmented via ipautil.dn_attribute_property(). The
only permitted types for a class attribute specified to be a DN are
either None or a DN object.
* Require that every place a dn is used it must be a DN object.
This translates into lot of::
assert isinstance(dn, DN)
sprinkled through out the code. Maintaining these asserts is
valuable to preserve DN type enforcement. The asserts can be
disabled in production.
The goal of 100% DN usage 100% of the time has been realized, these
asserts are meant to preserve that.
The asserts also proved valuable in detecting functions which did
not obey their function signatures, such as the baseldap pre and
post callbacks.
* Moved ipalib.dn to ipapython.dn because DN class is shared with all
components, not just the server which uses ipalib.
* All API's now accept DN's natively, no need to convert to str (or
unicode).
* Removed ipalib.encoder and encode/decode decorators. Type conversion
is now explicitly performed in each IPASimpleLDAPObject method which
emulates a ldap.SimpleLDAPObject method.
* Entity & Entry classes now utilize DN's
* Removed __getattr__ in Entity & Entity clases. There were two
problems with it. It presented synthetic Python object attributes
based on the current LDAP data it contained. There is no way to
validate synthetic attributes using code checkers, you can't search
the code to find LDAP attribute accesses (because synthetic
attriutes look like Python attributes instead of LDAP data) and
error handling is circumscribed. Secondly __getattr__ was hiding
Python internal methods which broke class semantics.
* Replace use of methods inherited from ldap.SimpleLDAPObject via
IPAdmin class with IPAdmin methods. Directly using inherited methods
was causing us to bypass IPA logic. Mostly this meant replacing the
use of search_s() with getEntry() or getList(). Similarly direct
access of the LDAP data in classes using IPAdmin were replaced with
calls to getValue() or getValues().
* Objects returned by ldap2.find_entries() are now compatible with
either the python-ldap access methodology or the Entity/Entry access
methodology.
* All ldap operations now funnel through the common
IPASimpleLDAPObject giving us a single location where we interface
to python-ldap and perform conversions.
* The above 4 modifications means we've greatly reduced the
proliferation of multiple inconsistent ways to perform LDAP
operations. We are well on the way to having a single API in IPA for
doing LDAP (a long range goal).
* All certificate subject bases are now DN's
* DN objects were enhanced thusly:
- find, rfind, index, rindex, replace and insert methods were added
- AVA, RDN and DN classes were refactored in immutable and mutable
variants, the mutable variants are EditableAVA, EditableRDN and
EditableDN. By default we use the immutable variants preserving
important semantics. To edit a DN cast it to an EditableDN and
cast it back to DN when done editing. These issues are fully
described in other documentation.
- first_key_match was removed
- DN equalty comparison permits comparison to a basestring
* Fixed ldapupdate to work with DN's. This work included:
- Enhance test_updates.py to do more checking after applying
update. Add test for update_from_dict(). Convert code to use
unittest classes.
- Consolidated duplicate code.
- Moved code which should have been in the class into the class.
- Fix the handling of the 'deleteentry' update action. It's no longer
necessary to supply fake attributes to make it work. Detect case
where subsequent update applies a change to entry previously marked
for deletetion. General clean-up and simplification of the
'deleteentry' logic.
- Rewrote a couple of functions to be clearer and more Pythonic.
- Added documentation on the data structure being used.
- Simplfy the use of update_from_dict()
* Removed all usage of get_schema() which was being called prior to
accessing the .schema attribute of an object. If a class is using
internal lazy loading as an optimization it's not right to require
users of the interface to be aware of internal
optimization's. schema is now a property and when the schema
property is accessed it calls a private internal method to perform
the lazy loading.
* Added SchemaCache class to cache the schema's from individual
servers. This was done because of the observation we talk to
different LDAP servers, each of which may have it's own
schema. Previously we globally cached the schema from the first
server we connected to and returned that schema in all contexts. The
cache includes controls to invalidate it thus forcing a schema
refresh.
* Schema caching is now senstive to the run time context. During
install and upgrade the schema can change leading to errors due to
out-of-date cached schema. The schema cache is refreshed in these
contexts.
* We are aware of the LDAP syntax of all LDAP attributes. Every
attribute returned from an LDAP operation is passed through a
central table look-up based on it's LDAP syntax. The table key is
the LDAP syntax it's value is a Python callable that returns a
Python object matching the LDAP syntax. There are a handful of LDAP
attributes whose syntax is historically incorrect
(e.g. DistguishedNames that are defined as DirectoryStrings). The
table driven conversion mechanism is augmented with a table of
hard coded exceptions.
Currently only the following conversions occur via the table:
- dn's are converted to DN objects
- binary objects are converted to Python str objects (IPA
convention).
- everything else is converted to unicode using UTF-8 decoding (IPA
convention).
However, now that the table driven conversion mechanism is in place
it would be trivial to do things such as converting attributes
which have LDAP integer syntax into a Python integer, etc.
* Expected values in the unit tests which are a DN no longer need to
use lambda expressions to promote the returned value to a DN for
equality comparison. The return value is automatically promoted to
a DN. The lambda expressions have been removed making the code much
simpler and easier to read.
* Add class level logging to a number of classes which did not support
logging, less need for use of root_logger.
* Remove ipaserver/conn.py, it was unused.
* Consolidated duplicate code wherever it was found.
* Fixed many places that used string concatenation to form a new
string rather than string formatting operators. This is necessary
because string formatting converts it's arguments to a string prior
to building the result string. You can't concatenate a string and a
non-string.
* Simplify logic in rename_managed plugin. Use DN operators to edit
dn's.
* The live version of ipa-ldap-updater did not generate a log file.
The offline version did, now both do.
https://fedorahosted.org/freeipa/ticket/1670
https://fedorahosted.org/freeipa/ticket/1671
https://fedorahosted.org/freeipa/ticket/1672
https://fedorahosted.org/freeipa/ticket/1673
https://fedorahosted.org/freeipa/ticket/1674
https://fedorahosted.org/freeipa/ticket/1392
https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
|
|
|
for update in updates:
|
2008-09-15 19:51:01 -05:00
|
|
|
# We already do syntax-parsing so this is safe
|
2015-05-05 08:12:12 -05:00
|
|
|
action = update['action']
|
|
|
|
attr = update['attr']
|
|
|
|
update_value = update['value']
|
|
|
|
|
|
|
|
entry_values = entry.raw.get(attr, [])
|
2015-04-16 08:27:12 -05:00
|
|
|
if action == 'remove':
|
|
|
|
self.debug("remove: '%s' from %s, current value %s", safe_output(attr, update_value), attr, safe_output(attr,entry_values))
|
|
|
|
try:
|
|
|
|
entry_values.remove(update_value)
|
|
|
|
except ValueError:
|
2015-06-08 10:33:11 -05:00
|
|
|
self.debug("remove: '%s' not in %s", update_value, attr)
|
2015-05-25 07:57:04 -05:00
|
|
|
else:
|
|
|
|
entry[attr] = entry_values
|
|
|
|
self.debug('remove: updated value %s', safe_output(
|
|
|
|
attr, entry_values))
|
2015-04-16 08:27:12 -05:00
|
|
|
elif action == 'add':
|
|
|
|
self.debug("add: '%s' to %s, current value %s", safe_output(attr, update_value), attr, safe_output(attr, entry_values))
|
|
|
|
# Remove it, ignoring errors so we can blindly add it later
|
|
|
|
try:
|
|
|
|
entry_values.remove(update_value)
|
|
|
|
except ValueError:
|
|
|
|
pass
|
|
|
|
entry_values.append(update_value)
|
|
|
|
self.debug('add: updated value %s', safe_output(attr, entry_values))
|
|
|
|
entry[attr] = entry_values
|
|
|
|
elif action == 'addifnew':
|
|
|
|
self.debug("addifnew: '%s' to %s, current value %s", safe_output(attr, update_value), attr, safe_output(attr, entry_values))
|
|
|
|
# Only add the attribute if it doesn't exist. Only works
|
2015-07-21 11:13:44 -05:00
|
|
|
# with single-value attributes. Entry must exist.
|
|
|
|
if entry.get('objectclass') and len(entry_values) == 0:
|
2015-04-16 08:27:12 -05:00
|
|
|
entry_values.append(update_value)
|
|
|
|
self.debug('addifnew: set %s to %s', attr, safe_output(attr, entry_values))
|
2013-01-21 03:42:16 -06:00
|
|
|
entry[attr] = entry_values
|
2015-04-16 08:27:12 -05:00
|
|
|
elif action == 'addifexist':
|
|
|
|
self.debug("addifexist: '%s' to %s, current value %s", safe_output(attr, update_value), attr, safe_output(attr, entry_values))
|
|
|
|
# Only add the attribute if the entry doesn't exist. We
|
|
|
|
# determine this based on whether it has an objectclass
|
|
|
|
if entry.get('objectclass'):
|
Use DN objects instead of strings
* Convert every string specifying a DN into a DN object
* Every place a dn was manipulated in some fashion it was replaced by
the use of DN operators
* Add new DNParam parameter type for parameters which are DN's
* DN objects are used 100% of the time throughout the entire data
pipeline whenever something is logically a dn.
* Many classes now enforce DN usage for their attributes which are
dn's. This is implmented via ipautil.dn_attribute_property(). The
only permitted types for a class attribute specified to be a DN are
either None or a DN object.
* Require that every place a dn is used it must be a DN object.
This translates into lot of::
assert isinstance(dn, DN)
sprinkled through out the code. Maintaining these asserts is
valuable to preserve DN type enforcement. The asserts can be
disabled in production.
The goal of 100% DN usage 100% of the time has been realized, these
asserts are meant to preserve that.
The asserts also proved valuable in detecting functions which did
not obey their function signatures, such as the baseldap pre and
post callbacks.
* Moved ipalib.dn to ipapython.dn because DN class is shared with all
components, not just the server which uses ipalib.
* All API's now accept DN's natively, no need to convert to str (or
unicode).
* Removed ipalib.encoder and encode/decode decorators. Type conversion
is now explicitly performed in each IPASimpleLDAPObject method which
emulates a ldap.SimpleLDAPObject method.
* Entity & Entry classes now utilize DN's
* Removed __getattr__ in Entity & Entity clases. There were two
problems with it. It presented synthetic Python object attributes
based on the current LDAP data it contained. There is no way to
validate synthetic attributes using code checkers, you can't search
the code to find LDAP attribute accesses (because synthetic
attriutes look like Python attributes instead of LDAP data) and
error handling is circumscribed. Secondly __getattr__ was hiding
Python internal methods which broke class semantics.
* Replace use of methods inherited from ldap.SimpleLDAPObject via
IPAdmin class with IPAdmin methods. Directly using inherited methods
was causing us to bypass IPA logic. Mostly this meant replacing the
use of search_s() with getEntry() or getList(). Similarly direct
access of the LDAP data in classes using IPAdmin were replaced with
calls to getValue() or getValues().
* Objects returned by ldap2.find_entries() are now compatible with
either the python-ldap access methodology or the Entity/Entry access
methodology.
* All ldap operations now funnel through the common
IPASimpleLDAPObject giving us a single location where we interface
to python-ldap and perform conversions.
* The above 4 modifications means we've greatly reduced the
proliferation of multiple inconsistent ways to perform LDAP
operations. We are well on the way to having a single API in IPA for
doing LDAP (a long range goal).
* All certificate subject bases are now DN's
* DN objects were enhanced thusly:
- find, rfind, index, rindex, replace and insert methods were added
- AVA, RDN and DN classes were refactored in immutable and mutable
variants, the mutable variants are EditableAVA, EditableRDN and
EditableDN. By default we use the immutable variants preserving
important semantics. To edit a DN cast it to an EditableDN and
cast it back to DN when done editing. These issues are fully
described in other documentation.
- first_key_match was removed
- DN equalty comparison permits comparison to a basestring
* Fixed ldapupdate to work with DN's. This work included:
- Enhance test_updates.py to do more checking after applying
update. Add test for update_from_dict(). Convert code to use
unittest classes.
- Consolidated duplicate code.
- Moved code which should have been in the class into the class.
- Fix the handling of the 'deleteentry' update action. It's no longer
necessary to supply fake attributes to make it work. Detect case
where subsequent update applies a change to entry previously marked
for deletetion. General clean-up and simplification of the
'deleteentry' logic.
- Rewrote a couple of functions to be clearer and more Pythonic.
- Added documentation on the data structure being used.
- Simplfy the use of update_from_dict()
* Removed all usage of get_schema() which was being called prior to
accessing the .schema attribute of an object. If a class is using
internal lazy loading as an optimization it's not right to require
users of the interface to be aware of internal
optimization's. schema is now a property and when the schema
property is accessed it calls a private internal method to perform
the lazy loading.
* Added SchemaCache class to cache the schema's from individual
servers. This was done because of the observation we talk to
different LDAP servers, each of which may have it's own
schema. Previously we globally cached the schema from the first
server we connected to and returned that schema in all contexts. The
cache includes controls to invalidate it thus forcing a schema
refresh.
* Schema caching is now senstive to the run time context. During
install and upgrade the schema can change leading to errors due to
out-of-date cached schema. The schema cache is refreshed in these
contexts.
* We are aware of the LDAP syntax of all LDAP attributes. Every
attribute returned from an LDAP operation is passed through a
central table look-up based on it's LDAP syntax. The table key is
the LDAP syntax it's value is a Python callable that returns a
Python object matching the LDAP syntax. There are a handful of LDAP
attributes whose syntax is historically incorrect
(e.g. DistguishedNames that are defined as DirectoryStrings). The
table driven conversion mechanism is augmented with a table of
hard coded exceptions.
Currently only the following conversions occur via the table:
- dn's are converted to DN objects
- binary objects are converted to Python str objects (IPA
convention).
- everything else is converted to unicode using UTF-8 decoding (IPA
convention).
However, now that the table driven conversion mechanism is in place
it would be trivial to do things such as converting attributes
which have LDAP integer syntax into a Python integer, etc.
* Expected values in the unit tests which are a DN no longer need to
use lambda expressions to promote the returned value to a DN for
equality comparison. The return value is automatically promoted to
a DN. The lambda expressions have been removed making the code much
simpler and easier to read.
* Add class level logging to a number of classes which did not support
logging, less need for use of root_logger.
* Remove ipaserver/conn.py, it was unused.
* Consolidated duplicate code wherever it was found.
* Fixed many places that used string concatenation to form a new
string rather than string formatting operators. This is necessary
because string formatting converts it's arguments to a string prior
to building the result string. You can't concatenate a string and a
non-string.
* Simplify logic in rename_managed plugin. Use DN operators to edit
dn's.
* The live version of ipa-ldap-updater did not generate a log file.
The offline version did, now both do.
https://fedorahosted.org/freeipa/ticket/1670
https://fedorahosted.org/freeipa/ticket/1671
https://fedorahosted.org/freeipa/ticket/1672
https://fedorahosted.org/freeipa/ticket/1673
https://fedorahosted.org/freeipa/ticket/1674
https://fedorahosted.org/freeipa/ticket/1392
https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
|
|
|
entry_values.append(update_value)
|
2015-04-16 08:27:12 -05:00
|
|
|
self.debug('addifexist: set %s to %s', attr, safe_output(attr, entry_values))
|
2013-01-21 03:42:16 -06:00
|
|
|
entry[attr] = entry_values
|
2015-04-16 08:27:12 -05:00
|
|
|
elif action == 'only':
|
|
|
|
self.debug("only: set %s to '%s', current value %s", attr, safe_output(attr, update_value), safe_output(attr, entry_values))
|
|
|
|
if only.get(attr):
|
|
|
|
entry_values.append(update_value)
|
|
|
|
else:
|
|
|
|
entry_values = [update_value]
|
|
|
|
only[attr] = True
|
|
|
|
entry[attr] = entry_values
|
|
|
|
self.debug('only: updated value %s', safe_output(attr, entry_values))
|
|
|
|
elif action == 'onlyifexist':
|
|
|
|
self.debug("onlyifexist: '%s' to %s, current value %s", safe_output(attr, update_value), attr, safe_output(attr, entry_values))
|
|
|
|
# Only set the attribute if the entry exist's. We
|
|
|
|
# determine this based on whether it has an objectclass
|
|
|
|
if entry.get('objectclass'):
|
Use DN objects instead of strings
* Convert every string specifying a DN into a DN object
* Every place a dn was manipulated in some fashion it was replaced by
the use of DN operators
* Add new DNParam parameter type for parameters which are DN's
* DN objects are used 100% of the time throughout the entire data
pipeline whenever something is logically a dn.
* Many classes now enforce DN usage for their attributes which are
dn's. This is implmented via ipautil.dn_attribute_property(). The
only permitted types for a class attribute specified to be a DN are
either None or a DN object.
* Require that every place a dn is used it must be a DN object.
This translates into lot of::
assert isinstance(dn, DN)
sprinkled through out the code. Maintaining these asserts is
valuable to preserve DN type enforcement. The asserts can be
disabled in production.
The goal of 100% DN usage 100% of the time has been realized, these
asserts are meant to preserve that.
The asserts also proved valuable in detecting functions which did
not obey their function signatures, such as the baseldap pre and
post callbacks.
* Moved ipalib.dn to ipapython.dn because DN class is shared with all
components, not just the server which uses ipalib.
* All API's now accept DN's natively, no need to convert to str (or
unicode).
* Removed ipalib.encoder and encode/decode decorators. Type conversion
is now explicitly performed in each IPASimpleLDAPObject method which
emulates a ldap.SimpleLDAPObject method.
* Entity & Entry classes now utilize DN's
* Removed __getattr__ in Entity & Entity clases. There were two
problems with it. It presented synthetic Python object attributes
based on the current LDAP data it contained. There is no way to
validate synthetic attributes using code checkers, you can't search
the code to find LDAP attribute accesses (because synthetic
attriutes look like Python attributes instead of LDAP data) and
error handling is circumscribed. Secondly __getattr__ was hiding
Python internal methods which broke class semantics.
* Replace use of methods inherited from ldap.SimpleLDAPObject via
IPAdmin class with IPAdmin methods. Directly using inherited methods
was causing us to bypass IPA logic. Mostly this meant replacing the
use of search_s() with getEntry() or getList(). Similarly direct
access of the LDAP data in classes using IPAdmin were replaced with
calls to getValue() or getValues().
* Objects returned by ldap2.find_entries() are now compatible with
either the python-ldap access methodology or the Entity/Entry access
methodology.
* All ldap operations now funnel through the common
IPASimpleLDAPObject giving us a single location where we interface
to python-ldap and perform conversions.
* The above 4 modifications means we've greatly reduced the
proliferation of multiple inconsistent ways to perform LDAP
operations. We are well on the way to having a single API in IPA for
doing LDAP (a long range goal).
* All certificate subject bases are now DN's
* DN objects were enhanced thusly:
- find, rfind, index, rindex, replace and insert methods were added
- AVA, RDN and DN classes were refactored in immutable and mutable
variants, the mutable variants are EditableAVA, EditableRDN and
EditableDN. By default we use the immutable variants preserving
important semantics. To edit a DN cast it to an EditableDN and
cast it back to DN when done editing. These issues are fully
described in other documentation.
- first_key_match was removed
- DN equalty comparison permits comparison to a basestring
* Fixed ldapupdate to work with DN's. This work included:
- Enhance test_updates.py to do more checking after applying
update. Add test for update_from_dict(). Convert code to use
unittest classes.
- Consolidated duplicate code.
- Moved code which should have been in the class into the class.
- Fix the handling of the 'deleteentry' update action. It's no longer
necessary to supply fake attributes to make it work. Detect case
where subsequent update applies a change to entry previously marked
for deletetion. General clean-up and simplification of the
'deleteentry' logic.
- Rewrote a couple of functions to be clearer and more Pythonic.
- Added documentation on the data structure being used.
- Simplfy the use of update_from_dict()
* Removed all usage of get_schema() which was being called prior to
accessing the .schema attribute of an object. If a class is using
internal lazy loading as an optimization it's not right to require
users of the interface to be aware of internal
optimization's. schema is now a property and when the schema
property is accessed it calls a private internal method to perform
the lazy loading.
* Added SchemaCache class to cache the schema's from individual
servers. This was done because of the observation we talk to
different LDAP servers, each of which may have it's own
schema. Previously we globally cached the schema from the first
server we connected to and returned that schema in all contexts. The
cache includes controls to invalidate it thus forcing a schema
refresh.
* Schema caching is now senstive to the run time context. During
install and upgrade the schema can change leading to errors due to
out-of-date cached schema. The schema cache is refreshed in these
contexts.
* We are aware of the LDAP syntax of all LDAP attributes. Every
attribute returned from an LDAP operation is passed through a
central table look-up based on it's LDAP syntax. The table key is
the LDAP syntax it's value is a Python callable that returns a
Python object matching the LDAP syntax. There are a handful of LDAP
attributes whose syntax is historically incorrect
(e.g. DistguishedNames that are defined as DirectoryStrings). The
table driven conversion mechanism is augmented with a table of
hard coded exceptions.
Currently only the following conversions occur via the table:
- dn's are converted to DN objects
- binary objects are converted to Python str objects (IPA
convention).
- everything else is converted to unicode using UTF-8 decoding (IPA
convention).
However, now that the table driven conversion mechanism is in place
it would be trivial to do things such as converting attributes
which have LDAP integer syntax into a Python integer, etc.
* Expected values in the unit tests which are a DN no longer need to
use lambda expressions to promote the returned value to a DN for
equality comparison. The return value is automatically promoted to
a DN. The lambda expressions have been removed making the code much
simpler and easier to read.
* Add class level logging to a number of classes which did not support
logging, less need for use of root_logger.
* Remove ipaserver/conn.py, it was unused.
* Consolidated duplicate code wherever it was found.
* Fixed many places that used string concatenation to form a new
string rather than string formatting operators. This is necessary
because string formatting converts it's arguments to a string prior
to building the result string. You can't concatenate a string and a
non-string.
* Simplify logic in rename_managed plugin. Use DN operators to edit
dn's.
* The live version of ipa-ldap-updater did not generate a log file.
The offline version did, now both do.
https://fedorahosted.org/freeipa/ticket/1670
https://fedorahosted.org/freeipa/ticket/1671
https://fedorahosted.org/freeipa/ticket/1672
https://fedorahosted.org/freeipa/ticket/1673
https://fedorahosted.org/freeipa/ticket/1674
https://fedorahosted.org/freeipa/ticket/1392
https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
|
|
|
if only.get(attr):
|
|
|
|
entry_values.append(update_value)
|
2008-09-15 19:51:01 -05:00
|
|
|
else:
|
Use DN objects instead of strings
* Convert every string specifying a DN into a DN object
* Every place a dn was manipulated in some fashion it was replaced by
the use of DN operators
* Add new DNParam parameter type for parameters which are DN's
* DN objects are used 100% of the time throughout the entire data
pipeline whenever something is logically a dn.
* Many classes now enforce DN usage for their attributes which are
dn's. This is implmented via ipautil.dn_attribute_property(). The
only permitted types for a class attribute specified to be a DN are
either None or a DN object.
* Require that every place a dn is used it must be a DN object.
This translates into lot of::
assert isinstance(dn, DN)
sprinkled through out the code. Maintaining these asserts is
valuable to preserve DN type enforcement. The asserts can be
disabled in production.
The goal of 100% DN usage 100% of the time has been realized, these
asserts are meant to preserve that.
The asserts also proved valuable in detecting functions which did
not obey their function signatures, such as the baseldap pre and
post callbacks.
* Moved ipalib.dn to ipapython.dn because DN class is shared with all
components, not just the server which uses ipalib.
* All API's now accept DN's natively, no need to convert to str (or
unicode).
* Removed ipalib.encoder and encode/decode decorators. Type conversion
is now explicitly performed in each IPASimpleLDAPObject method which
emulates a ldap.SimpleLDAPObject method.
* Entity & Entry classes now utilize DN's
* Removed __getattr__ in Entity & Entity clases. There were two
problems with it. It presented synthetic Python object attributes
based on the current LDAP data it contained. There is no way to
validate synthetic attributes using code checkers, you can't search
the code to find LDAP attribute accesses (because synthetic
attriutes look like Python attributes instead of LDAP data) and
error handling is circumscribed. Secondly __getattr__ was hiding
Python internal methods which broke class semantics.
* Replace use of methods inherited from ldap.SimpleLDAPObject via
IPAdmin class with IPAdmin methods. Directly using inherited methods
was causing us to bypass IPA logic. Mostly this meant replacing the
use of search_s() with getEntry() or getList(). Similarly direct
access of the LDAP data in classes using IPAdmin were replaced with
calls to getValue() or getValues().
* Objects returned by ldap2.find_entries() are now compatible with
either the python-ldap access methodology or the Entity/Entry access
methodology.
* All ldap operations now funnel through the common
IPASimpleLDAPObject giving us a single location where we interface
to python-ldap and perform conversions.
* The above 4 modifications means we've greatly reduced the
proliferation of multiple inconsistent ways to perform LDAP
operations. We are well on the way to having a single API in IPA for
doing LDAP (a long range goal).
* All certificate subject bases are now DN's
* DN objects were enhanced thusly:
- find, rfind, index, rindex, replace and insert methods were added
- AVA, RDN and DN classes were refactored in immutable and mutable
variants, the mutable variants are EditableAVA, EditableRDN and
EditableDN. By default we use the immutable variants preserving
important semantics. To edit a DN cast it to an EditableDN and
cast it back to DN when done editing. These issues are fully
described in other documentation.
- first_key_match was removed
- DN equalty comparison permits comparison to a basestring
* Fixed ldapupdate to work with DN's. This work included:
- Enhance test_updates.py to do more checking after applying
update. Add test for update_from_dict(). Convert code to use
unittest classes.
- Consolidated duplicate code.
- Moved code which should have been in the class into the class.
- Fix the handling of the 'deleteentry' update action. It's no longer
necessary to supply fake attributes to make it work. Detect case
where subsequent update applies a change to entry previously marked
for deletetion. General clean-up and simplification of the
'deleteentry' logic.
- Rewrote a couple of functions to be clearer and more Pythonic.
- Added documentation on the data structure being used.
- Simplfy the use of update_from_dict()
* Removed all usage of get_schema() which was being called prior to
accessing the .schema attribute of an object. If a class is using
internal lazy loading as an optimization it's not right to require
users of the interface to be aware of internal
optimization's. schema is now a property and when the schema
property is accessed it calls a private internal method to perform
the lazy loading.
* Added SchemaCache class to cache the schema's from individual
servers. This was done because of the observation we talk to
different LDAP servers, each of which may have it's own
schema. Previously we globally cached the schema from the first
server we connected to and returned that schema in all contexts. The
cache includes controls to invalidate it thus forcing a schema
refresh.
* Schema caching is now senstive to the run time context. During
install and upgrade the schema can change leading to errors due to
out-of-date cached schema. The schema cache is refreshed in these
contexts.
* We are aware of the LDAP syntax of all LDAP attributes. Every
attribute returned from an LDAP operation is passed through a
central table look-up based on it's LDAP syntax. The table key is
the LDAP syntax it's value is a Python callable that returns a
Python object matching the LDAP syntax. There are a handful of LDAP
attributes whose syntax is historically incorrect
(e.g. DistguishedNames that are defined as DirectoryStrings). The
table driven conversion mechanism is augmented with a table of
hard coded exceptions.
Currently only the following conversions occur via the table:
- dn's are converted to DN objects
- binary objects are converted to Python str objects (IPA
convention).
- everything else is converted to unicode using UTF-8 decoding (IPA
convention).
However, now that the table driven conversion mechanism is in place
it would be trivial to do things such as converting attributes
which have LDAP integer syntax into a Python integer, etc.
* Expected values in the unit tests which are a DN no longer need to
use lambda expressions to promote the returned value to a DN for
equality comparison. The return value is automatically promoted to
a DN. The lambda expressions have been removed making the code much
simpler and easier to read.
* Add class level logging to a number of classes which did not support
logging, less need for use of root_logger.
* Remove ipaserver/conn.py, it was unused.
* Consolidated duplicate code wherever it was found.
* Fixed many places that used string concatenation to form a new
string rather than string formatting operators. This is necessary
because string formatting converts it's arguments to a string prior
to building the result string. You can't concatenate a string and a
non-string.
* Simplify logic in rename_managed plugin. Use DN operators to edit
dn's.
* The live version of ipa-ldap-updater did not generate a log file.
The offline version did, now both do.
https://fedorahosted.org/freeipa/ticket/1670
https://fedorahosted.org/freeipa/ticket/1671
https://fedorahosted.org/freeipa/ticket/1672
https://fedorahosted.org/freeipa/ticket/1673
https://fedorahosted.org/freeipa/ticket/1674
https://fedorahosted.org/freeipa/ticket/1392
https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
|
|
|
entry_values = [update_value]
|
|
|
|
only[attr] = True
|
2015-04-16 08:27:12 -05:00
|
|
|
self.debug('onlyifexist: set %s to %s', attr, safe_output(attr, entry_values))
|
|
|
|
entry[attr] = entry_values
|
|
|
|
elif action == 'deleteentry':
|
|
|
|
# skip this update type, it occurs in __delete_entries()
|
|
|
|
return None
|
|
|
|
elif action == 'replace':
|
2015-05-05 08:12:12 -05:00
|
|
|
# replace values were store as list
|
|
|
|
old, new = update_value
|
|
|
|
|
2015-04-16 08:27:12 -05:00
|
|
|
try:
|
|
|
|
entry_values.remove(old)
|
|
|
|
except ValueError:
|
|
|
|
self.debug('replace: %s not found, skipping', safe_output(attr, old))
|
|
|
|
else:
|
|
|
|
entry_values.append(new)
|
|
|
|
self.debug('replace: updated value %s', safe_output(attr, entry_values))
|
2013-01-21 03:42:16 -06:00
|
|
|
entry[attr] = entry_values
|
2009-02-04 09:53:34 -06:00
|
|
|
|
2008-09-15 19:51:01 -05:00
|
|
|
return entry
|
2009-02-04 09:53:34 -06:00
|
|
|
|
2008-09-15 19:51:01 -05:00
|
|
|
def print_entity(self, e, message=None):
|
|
|
|
"""The entity object currently lacks a str() method"""
|
Use DN objects instead of strings
* Convert every string specifying a DN into a DN object
* Every place a dn was manipulated in some fashion it was replaced by
the use of DN operators
* Add new DNParam parameter type for parameters which are DN's
* DN objects are used 100% of the time throughout the entire data
pipeline whenever something is logically a dn.
* Many classes now enforce DN usage for their attributes which are
dn's. This is implmented via ipautil.dn_attribute_property(). The
only permitted types for a class attribute specified to be a DN are
either None or a DN object.
* Require that every place a dn is used it must be a DN object.
This translates into lot of::
assert isinstance(dn, DN)
sprinkled through out the code. Maintaining these asserts is
valuable to preserve DN type enforcement. The asserts can be
disabled in production.
The goal of 100% DN usage 100% of the time has been realized, these
asserts are meant to preserve that.
The asserts also proved valuable in detecting functions which did
not obey their function signatures, such as the baseldap pre and
post callbacks.
* Moved ipalib.dn to ipapython.dn because DN class is shared with all
components, not just the server which uses ipalib.
* All API's now accept DN's natively, no need to convert to str (or
unicode).
* Removed ipalib.encoder and encode/decode decorators. Type conversion
is now explicitly performed in each IPASimpleLDAPObject method which
emulates a ldap.SimpleLDAPObject method.
* Entity & Entry classes now utilize DN's
* Removed __getattr__ in Entity & Entity clases. There were two
problems with it. It presented synthetic Python object attributes
based on the current LDAP data it contained. There is no way to
validate synthetic attributes using code checkers, you can't search
the code to find LDAP attribute accesses (because synthetic
attriutes look like Python attributes instead of LDAP data) and
error handling is circumscribed. Secondly __getattr__ was hiding
Python internal methods which broke class semantics.
* Replace use of methods inherited from ldap.SimpleLDAPObject via
IPAdmin class with IPAdmin methods. Directly using inherited methods
was causing us to bypass IPA logic. Mostly this meant replacing the
use of search_s() with getEntry() or getList(). Similarly direct
access of the LDAP data in classes using IPAdmin were replaced with
calls to getValue() or getValues().
* Objects returned by ldap2.find_entries() are now compatible with
either the python-ldap access methodology or the Entity/Entry access
methodology.
* All ldap operations now funnel through the common
IPASimpleLDAPObject giving us a single location where we interface
to python-ldap and perform conversions.
* The above 4 modifications means we've greatly reduced the
proliferation of multiple inconsistent ways to perform LDAP
operations. We are well on the way to having a single API in IPA for
doing LDAP (a long range goal).
* All certificate subject bases are now DN's
* DN objects were enhanced thusly:
- find, rfind, index, rindex, replace and insert methods were added
- AVA, RDN and DN classes were refactored in immutable and mutable
variants, the mutable variants are EditableAVA, EditableRDN and
EditableDN. By default we use the immutable variants preserving
important semantics. To edit a DN cast it to an EditableDN and
cast it back to DN when done editing. These issues are fully
described in other documentation.
- first_key_match was removed
- DN equalty comparison permits comparison to a basestring
* Fixed ldapupdate to work with DN's. This work included:
- Enhance test_updates.py to do more checking after applying
update. Add test for update_from_dict(). Convert code to use
unittest classes.
- Consolidated duplicate code.
- Moved code which should have been in the class into the class.
- Fix the handling of the 'deleteentry' update action. It's no longer
necessary to supply fake attributes to make it work. Detect case
where subsequent update applies a change to entry previously marked
for deletetion. General clean-up and simplification of the
'deleteentry' logic.
- Rewrote a couple of functions to be clearer and more Pythonic.
- Added documentation on the data structure being used.
- Simplfy the use of update_from_dict()
* Removed all usage of get_schema() which was being called prior to
accessing the .schema attribute of an object. If a class is using
internal lazy loading as an optimization it's not right to require
users of the interface to be aware of internal
optimization's. schema is now a property and when the schema
property is accessed it calls a private internal method to perform
the lazy loading.
* Added SchemaCache class to cache the schema's from individual
servers. This was done because of the observation we talk to
different LDAP servers, each of which may have it's own
schema. Previously we globally cached the schema from the first
server we connected to and returned that schema in all contexts. The
cache includes controls to invalidate it thus forcing a schema
refresh.
* Schema caching is now senstive to the run time context. During
install and upgrade the schema can change leading to errors due to
out-of-date cached schema. The schema cache is refreshed in these
contexts.
* We are aware of the LDAP syntax of all LDAP attributes. Every
attribute returned from an LDAP operation is passed through a
central table look-up based on it's LDAP syntax. The table key is
the LDAP syntax it's value is a Python callable that returns a
Python object matching the LDAP syntax. There are a handful of LDAP
attributes whose syntax is historically incorrect
(e.g. DistguishedNames that are defined as DirectoryStrings). The
table driven conversion mechanism is augmented with a table of
hard coded exceptions.
Currently only the following conversions occur via the table:
- dn's are converted to DN objects
- binary objects are converted to Python str objects (IPA
convention).
- everything else is converted to unicode using UTF-8 decoding (IPA
convention).
However, now that the table driven conversion mechanism is in place
it would be trivial to do things such as converting attributes
which have LDAP integer syntax into a Python integer, etc.
* Expected values in the unit tests which are a DN no longer need to
use lambda expressions to promote the returned value to a DN for
equality comparison. The return value is automatically promoted to
a DN. The lambda expressions have been removed making the code much
simpler and easier to read.
* Add class level logging to a number of classes which did not support
logging, less need for use of root_logger.
* Remove ipaserver/conn.py, it was unused.
* Consolidated duplicate code wherever it was found.
* Fixed many places that used string concatenation to form a new
string rather than string formatting operators. This is necessary
because string formatting converts it's arguments to a string prior
to building the result string. You can't concatenate a string and a
non-string.
* Simplify logic in rename_managed plugin. Use DN operators to edit
dn's.
* The live version of ipa-ldap-updater did not generate a log file.
The offline version did, now both do.
https://fedorahosted.org/freeipa/ticket/1670
https://fedorahosted.org/freeipa/ticket/1671
https://fedorahosted.org/freeipa/ticket/1672
https://fedorahosted.org/freeipa/ticket/1673
https://fedorahosted.org/freeipa/ticket/1674
https://fedorahosted.org/freeipa/ticket/1392
https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
|
|
|
self.debug("---------------------------------------------")
|
2008-09-15 19:51:01 -05:00
|
|
|
if message:
|
Use DN objects instead of strings
* Convert every string specifying a DN into a DN object
* Every place a dn was manipulated in some fashion it was replaced by
the use of DN operators
* Add new DNParam parameter type for parameters which are DN's
* DN objects are used 100% of the time throughout the entire data
pipeline whenever something is logically a dn.
* Many classes now enforce DN usage for their attributes which are
dn's. This is implmented via ipautil.dn_attribute_property(). The
only permitted types for a class attribute specified to be a DN are
either None or a DN object.
* Require that every place a dn is used it must be a DN object.
This translates into lot of::
assert isinstance(dn, DN)
sprinkled through out the code. Maintaining these asserts is
valuable to preserve DN type enforcement. The asserts can be
disabled in production.
The goal of 100% DN usage 100% of the time has been realized, these
asserts are meant to preserve that.
The asserts also proved valuable in detecting functions which did
not obey their function signatures, such as the baseldap pre and
post callbacks.
* Moved ipalib.dn to ipapython.dn because DN class is shared with all
components, not just the server which uses ipalib.
* All API's now accept DN's natively, no need to convert to str (or
unicode).
* Removed ipalib.encoder and encode/decode decorators. Type conversion
is now explicitly performed in each IPASimpleLDAPObject method which
emulates a ldap.SimpleLDAPObject method.
* Entity & Entry classes now utilize DN's
* Removed __getattr__ in Entity & Entity clases. There were two
problems with it. It presented synthetic Python object attributes
based on the current LDAP data it contained. There is no way to
validate synthetic attributes using code checkers, you can't search
the code to find LDAP attribute accesses (because synthetic
attriutes look like Python attributes instead of LDAP data) and
error handling is circumscribed. Secondly __getattr__ was hiding
Python internal methods which broke class semantics.
* Replace use of methods inherited from ldap.SimpleLDAPObject via
IPAdmin class with IPAdmin methods. Directly using inherited methods
was causing us to bypass IPA logic. Mostly this meant replacing the
use of search_s() with getEntry() or getList(). Similarly direct
access of the LDAP data in classes using IPAdmin were replaced with
calls to getValue() or getValues().
* Objects returned by ldap2.find_entries() are now compatible with
either the python-ldap access methodology or the Entity/Entry access
methodology.
* All ldap operations now funnel through the common
IPASimpleLDAPObject giving us a single location where we interface
to python-ldap and perform conversions.
* The above 4 modifications means we've greatly reduced the
proliferation of multiple inconsistent ways to perform LDAP
operations. We are well on the way to having a single API in IPA for
doing LDAP (a long range goal).
* All certificate subject bases are now DN's
* DN objects were enhanced thusly:
- find, rfind, index, rindex, replace and insert methods were added
- AVA, RDN and DN classes were refactored in immutable and mutable
variants, the mutable variants are EditableAVA, EditableRDN and
EditableDN. By default we use the immutable variants preserving
important semantics. To edit a DN cast it to an EditableDN and
cast it back to DN when done editing. These issues are fully
described in other documentation.
- first_key_match was removed
- DN equalty comparison permits comparison to a basestring
* Fixed ldapupdate to work with DN's. This work included:
- Enhance test_updates.py to do more checking after applying
update. Add test for update_from_dict(). Convert code to use
unittest classes.
- Consolidated duplicate code.
- Moved code which should have been in the class into the class.
- Fix the handling of the 'deleteentry' update action. It's no longer
necessary to supply fake attributes to make it work. Detect case
where subsequent update applies a change to entry previously marked
for deletetion. General clean-up and simplification of the
'deleteentry' logic.
- Rewrote a couple of functions to be clearer and more Pythonic.
- Added documentation on the data structure being used.
- Simplfy the use of update_from_dict()
* Removed all usage of get_schema() which was being called prior to
accessing the .schema attribute of an object. If a class is using
internal lazy loading as an optimization it's not right to require
users of the interface to be aware of internal
optimization's. schema is now a property and when the schema
property is accessed it calls a private internal method to perform
the lazy loading.
* Added SchemaCache class to cache the schema's from individual
servers. This was done because of the observation we talk to
different LDAP servers, each of which may have it's own
schema. Previously we globally cached the schema from the first
server we connected to and returned that schema in all contexts. The
cache includes controls to invalidate it thus forcing a schema
refresh.
* Schema caching is now senstive to the run time context. During
install and upgrade the schema can change leading to errors due to
out-of-date cached schema. The schema cache is refreshed in these
contexts.
* We are aware of the LDAP syntax of all LDAP attributes. Every
attribute returned from an LDAP operation is passed through a
central table look-up based on it's LDAP syntax. The table key is
the LDAP syntax it's value is a Python callable that returns a
Python object matching the LDAP syntax. There are a handful of LDAP
attributes whose syntax is historically incorrect
(e.g. DistguishedNames that are defined as DirectoryStrings). The
table driven conversion mechanism is augmented with a table of
hard coded exceptions.
Currently only the following conversions occur via the table:
- dn's are converted to DN objects
- binary objects are converted to Python str objects (IPA
convention).
- everything else is converted to unicode using UTF-8 decoding (IPA
convention).
However, now that the table driven conversion mechanism is in place
it would be trivial to do things such as converting attributes
which have LDAP integer syntax into a Python integer, etc.
* Expected values in the unit tests which are a DN no longer need to
use lambda expressions to promote the returned value to a DN for
equality comparison. The return value is automatically promoted to
a DN. The lambda expressions have been removed making the code much
simpler and easier to read.
* Add class level logging to a number of classes which did not support
logging, less need for use of root_logger.
* Remove ipaserver/conn.py, it was unused.
* Consolidated duplicate code wherever it was found.
* Fixed many places that used string concatenation to form a new
string rather than string formatting operators. This is necessary
because string formatting converts it's arguments to a string prior
to building the result string. You can't concatenate a string and a
non-string.
* Simplify logic in rename_managed plugin. Use DN operators to edit
dn's.
* The live version of ipa-ldap-updater did not generate a log file.
The offline version did, now both do.
https://fedorahosted.org/freeipa/ticket/1670
https://fedorahosted.org/freeipa/ticket/1671
https://fedorahosted.org/freeipa/ticket/1672
https://fedorahosted.org/freeipa/ticket/1673
https://fedorahosted.org/freeipa/ticket/1674
https://fedorahosted.org/freeipa/ticket/1392
https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
|
|
|
self.debug("%s", message)
|
|
|
|
self.debug("dn: %s", e.dn)
|
2015-05-05 08:12:12 -05:00
|
|
|
for a, value in e.raw.items():
|
2013-12-10 04:56:35 -06:00
|
|
|
self.debug('%s:', a)
|
|
|
|
for l in value:
|
|
|
|
self.debug("\t%s", safe_output(a, l))
|
2009-09-14 15:12:58 -05:00
|
|
|
|
Use DN objects instead of strings
* Convert every string specifying a DN into a DN object
* Every place a dn was manipulated in some fashion it was replaced by
the use of DN operators
* Add new DNParam parameter type for parameters which are DN's
* DN objects are used 100% of the time throughout the entire data
pipeline whenever something is logically a dn.
* Many classes now enforce DN usage for their attributes which are
dn's. This is implmented via ipautil.dn_attribute_property(). The
only permitted types for a class attribute specified to be a DN are
either None or a DN object.
* Require that every place a dn is used it must be a DN object.
This translates into lot of::
assert isinstance(dn, DN)
sprinkled through out the code. Maintaining these asserts is
valuable to preserve DN type enforcement. The asserts can be
disabled in production.
The goal of 100% DN usage 100% of the time has been realized, these
asserts are meant to preserve that.
The asserts also proved valuable in detecting functions which did
not obey their function signatures, such as the baseldap pre and
post callbacks.
* Moved ipalib.dn to ipapython.dn because DN class is shared with all
components, not just the server which uses ipalib.
* All API's now accept DN's natively, no need to convert to str (or
unicode).
* Removed ipalib.encoder and encode/decode decorators. Type conversion
is now explicitly performed in each IPASimpleLDAPObject method which
emulates a ldap.SimpleLDAPObject method.
* Entity & Entry classes now utilize DN's
* Removed __getattr__ in Entity & Entity clases. There were two
problems with it. It presented synthetic Python object attributes
based on the current LDAP data it contained. There is no way to
validate synthetic attributes using code checkers, you can't search
the code to find LDAP attribute accesses (because synthetic
attriutes look like Python attributes instead of LDAP data) and
error handling is circumscribed. Secondly __getattr__ was hiding
Python internal methods which broke class semantics.
* Replace use of methods inherited from ldap.SimpleLDAPObject via
IPAdmin class with IPAdmin methods. Directly using inherited methods
was causing us to bypass IPA logic. Mostly this meant replacing the
use of search_s() with getEntry() or getList(). Similarly direct
access of the LDAP data in classes using IPAdmin were replaced with
calls to getValue() or getValues().
* Objects returned by ldap2.find_entries() are now compatible with
either the python-ldap access methodology or the Entity/Entry access
methodology.
* All ldap operations now funnel through the common
IPASimpleLDAPObject giving us a single location where we interface
to python-ldap and perform conversions.
* The above 4 modifications means we've greatly reduced the
proliferation of multiple inconsistent ways to perform LDAP
operations. We are well on the way to having a single API in IPA for
doing LDAP (a long range goal).
* All certificate subject bases are now DN's
* DN objects were enhanced thusly:
- find, rfind, index, rindex, replace and insert methods were added
- AVA, RDN and DN classes were refactored in immutable and mutable
variants, the mutable variants are EditableAVA, EditableRDN and
EditableDN. By default we use the immutable variants preserving
important semantics. To edit a DN cast it to an EditableDN and
cast it back to DN when done editing. These issues are fully
described in other documentation.
- first_key_match was removed
- DN equalty comparison permits comparison to a basestring
* Fixed ldapupdate to work with DN's. This work included:
- Enhance test_updates.py to do more checking after applying
update. Add test for update_from_dict(). Convert code to use
unittest classes.
- Consolidated duplicate code.
- Moved code which should have been in the class into the class.
- Fix the handling of the 'deleteentry' update action. It's no longer
necessary to supply fake attributes to make it work. Detect case
where subsequent update applies a change to entry previously marked
for deletetion. General clean-up and simplification of the
'deleteentry' logic.
- Rewrote a couple of functions to be clearer and more Pythonic.
- Added documentation on the data structure being used.
- Simplfy the use of update_from_dict()
* Removed all usage of get_schema() which was being called prior to
accessing the .schema attribute of an object. If a class is using
internal lazy loading as an optimization it's not right to require
users of the interface to be aware of internal
optimization's. schema is now a property and when the schema
property is accessed it calls a private internal method to perform
the lazy loading.
* Added SchemaCache class to cache the schema's from individual
servers. This was done because of the observation we talk to
different LDAP servers, each of which may have it's own
schema. Previously we globally cached the schema from the first
server we connected to and returned that schema in all contexts. The
cache includes controls to invalidate it thus forcing a schema
refresh.
* Schema caching is now senstive to the run time context. During
install and upgrade the schema can change leading to errors due to
out-of-date cached schema. The schema cache is refreshed in these
contexts.
* We are aware of the LDAP syntax of all LDAP attributes. Every
attribute returned from an LDAP operation is passed through a
central table look-up based on it's LDAP syntax. The table key is
the LDAP syntax it's value is a Python callable that returns a
Python object matching the LDAP syntax. There are a handful of LDAP
attributes whose syntax is historically incorrect
(e.g. DistguishedNames that are defined as DirectoryStrings). The
table driven conversion mechanism is augmented with a table of
hard coded exceptions.
Currently only the following conversions occur via the table:
- dn's are converted to DN objects
- binary objects are converted to Python str objects (IPA
convention).
- everything else is converted to unicode using UTF-8 decoding (IPA
convention).
However, now that the table driven conversion mechanism is in place
it would be trivial to do things such as converting attributes
which have LDAP integer syntax into a Python integer, etc.
* Expected values in the unit tests which are a DN no longer need to
use lambda expressions to promote the returned value to a DN for
equality comparison. The return value is automatically promoted to
a DN. The lambda expressions have been removed making the code much
simpler and easier to read.
* Add class level logging to a number of classes which did not support
logging, less need for use of root_logger.
* Remove ipaserver/conn.py, it was unused.
* Consolidated duplicate code wherever it was found.
* Fixed many places that used string concatenation to form a new
string rather than string formatting operators. This is necessary
because string formatting converts it's arguments to a string prior
to building the result string. You can't concatenate a string and a
non-string.
* Simplify logic in rename_managed plugin. Use DN operators to edit
dn's.
* The live version of ipa-ldap-updater did not generate a log file.
The offline version did, now both do.
https://fedorahosted.org/freeipa/ticket/1670
https://fedorahosted.org/freeipa/ticket/1671
https://fedorahosted.org/freeipa/ticket/1672
https://fedorahosted.org/freeipa/ticket/1673
https://fedorahosted.org/freeipa/ticket/1674
https://fedorahosted.org/freeipa/ticket/1392
https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
|
|
|
def _update_record(self, update):
|
2008-09-15 19:51:01 -05:00
|
|
|
found = False
|
2009-02-04 09:53:34 -06:00
|
|
|
|
Use DN objects instead of strings
* Convert every string specifying a DN into a DN object
* Every place a dn was manipulated in some fashion it was replaced by
the use of DN operators
* Add new DNParam parameter type for parameters which are DN's
* DN objects are used 100% of the time throughout the entire data
pipeline whenever something is logically a dn.
* Many classes now enforce DN usage for their attributes which are
dn's. This is implmented via ipautil.dn_attribute_property(). The
only permitted types for a class attribute specified to be a DN are
either None or a DN object.
* Require that every place a dn is used it must be a DN object.
This translates into lot of::
assert isinstance(dn, DN)
sprinkled through out the code. Maintaining these asserts is
valuable to preserve DN type enforcement. The asserts can be
disabled in production.
The goal of 100% DN usage 100% of the time has been realized, these
asserts are meant to preserve that.
The asserts also proved valuable in detecting functions which did
not obey their function signatures, such as the baseldap pre and
post callbacks.
* Moved ipalib.dn to ipapython.dn because DN class is shared with all
components, not just the server which uses ipalib.
* All API's now accept DN's natively, no need to convert to str (or
unicode).
* Removed ipalib.encoder and encode/decode decorators. Type conversion
is now explicitly performed in each IPASimpleLDAPObject method which
emulates a ldap.SimpleLDAPObject method.
* Entity & Entry classes now utilize DN's
* Removed __getattr__ in Entity & Entity clases. There were two
problems with it. It presented synthetic Python object attributes
based on the current LDAP data it contained. There is no way to
validate synthetic attributes using code checkers, you can't search
the code to find LDAP attribute accesses (because synthetic
attriutes look like Python attributes instead of LDAP data) and
error handling is circumscribed. Secondly __getattr__ was hiding
Python internal methods which broke class semantics.
* Replace use of methods inherited from ldap.SimpleLDAPObject via
IPAdmin class with IPAdmin methods. Directly using inherited methods
was causing us to bypass IPA logic. Mostly this meant replacing the
use of search_s() with getEntry() or getList(). Similarly direct
access of the LDAP data in classes using IPAdmin were replaced with
calls to getValue() or getValues().
* Objects returned by ldap2.find_entries() are now compatible with
either the python-ldap access methodology or the Entity/Entry access
methodology.
* All ldap operations now funnel through the common
IPASimpleLDAPObject giving us a single location where we interface
to python-ldap and perform conversions.
* The above 4 modifications means we've greatly reduced the
proliferation of multiple inconsistent ways to perform LDAP
operations. We are well on the way to having a single API in IPA for
doing LDAP (a long range goal).
* All certificate subject bases are now DN's
* DN objects were enhanced thusly:
- find, rfind, index, rindex, replace and insert methods were added
- AVA, RDN and DN classes were refactored in immutable and mutable
variants, the mutable variants are EditableAVA, EditableRDN and
EditableDN. By default we use the immutable variants preserving
important semantics. To edit a DN cast it to an EditableDN and
cast it back to DN when done editing. These issues are fully
described in other documentation.
- first_key_match was removed
- DN equalty comparison permits comparison to a basestring
* Fixed ldapupdate to work with DN's. This work included:
- Enhance test_updates.py to do more checking after applying
update. Add test for update_from_dict(). Convert code to use
unittest classes.
- Consolidated duplicate code.
- Moved code which should have been in the class into the class.
- Fix the handling of the 'deleteentry' update action. It's no longer
necessary to supply fake attributes to make it work. Detect case
where subsequent update applies a change to entry previously marked
for deletetion. General clean-up and simplification of the
'deleteentry' logic.
- Rewrote a couple of functions to be clearer and more Pythonic.
- Added documentation on the data structure being used.
- Simplfy the use of update_from_dict()
* Removed all usage of get_schema() which was being called prior to
accessing the .schema attribute of an object. If a class is using
internal lazy loading as an optimization it's not right to require
users of the interface to be aware of internal
optimization's. schema is now a property and when the schema
property is accessed it calls a private internal method to perform
the lazy loading.
* Added SchemaCache class to cache the schema's from individual
servers. This was done because of the observation we talk to
different LDAP servers, each of which may have it's own
schema. Previously we globally cached the schema from the first
server we connected to and returned that schema in all contexts. The
cache includes controls to invalidate it thus forcing a schema
refresh.
* Schema caching is now senstive to the run time context. During
install and upgrade the schema can change leading to errors due to
out-of-date cached schema. The schema cache is refreshed in these
contexts.
* We are aware of the LDAP syntax of all LDAP attributes. Every
attribute returned from an LDAP operation is passed through a
central table look-up based on it's LDAP syntax. The table key is
the LDAP syntax it's value is a Python callable that returns a
Python object matching the LDAP syntax. There are a handful of LDAP
attributes whose syntax is historically incorrect
(e.g. DistguishedNames that are defined as DirectoryStrings). The
table driven conversion mechanism is augmented with a table of
hard coded exceptions.
Currently only the following conversions occur via the table:
- dn's are converted to DN objects
- binary objects are converted to Python str objects (IPA
convention).
- everything else is converted to unicode using UTF-8 decoding (IPA
convention).
However, now that the table driven conversion mechanism is in place
it would be trivial to do things such as converting attributes
which have LDAP integer syntax into a Python integer, etc.
* Expected values in the unit tests which are a DN no longer need to
use lambda expressions to promote the returned value to a DN for
equality comparison. The return value is automatically promoted to
a DN. The lambda expressions have been removed making the code much
simpler and easier to read.
* Add class level logging to a number of classes which did not support
logging, less need for use of root_logger.
* Remove ipaserver/conn.py, it was unused.
* Consolidated duplicate code wherever it was found.
* Fixed many places that used string concatenation to form a new
string rather than string formatting operators. This is necessary
because string formatting converts it's arguments to a string prior
to building the result string. You can't concatenate a string and a
non-string.
* Simplify logic in rename_managed plugin. Use DN operators to edit
dn's.
* The live version of ipa-ldap-updater did not generate a log file.
The offline version did, now both do.
https://fedorahosted.org/freeipa/ticket/1670
https://fedorahosted.org/freeipa/ticket/1671
https://fedorahosted.org/freeipa/ticket/1672
https://fedorahosted.org/freeipa/ticket/1673
https://fedorahosted.org/freeipa/ticket/1674
https://fedorahosted.org/freeipa/ticket/1392
https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
|
|
|
new_entry = self._create_default_entry(update.get('dn'),
|
|
|
|
update.get('default'))
|
2009-02-04 09:53:34 -06:00
|
|
|
|
2008-09-15 19:51:01 -05:00
|
|
|
try:
|
Use DN objects instead of strings
* Convert every string specifying a DN into a DN object
* Every place a dn was manipulated in some fashion it was replaced by
the use of DN operators
* Add new DNParam parameter type for parameters which are DN's
* DN objects are used 100% of the time throughout the entire data
pipeline whenever something is logically a dn.
* Many classes now enforce DN usage for their attributes which are
dn's. This is implmented via ipautil.dn_attribute_property(). The
only permitted types for a class attribute specified to be a DN are
either None or a DN object.
* Require that every place a dn is used it must be a DN object.
This translates into lot of::
assert isinstance(dn, DN)
sprinkled through out the code. Maintaining these asserts is
valuable to preserve DN type enforcement. The asserts can be
disabled in production.
The goal of 100% DN usage 100% of the time has been realized, these
asserts are meant to preserve that.
The asserts also proved valuable in detecting functions which did
not obey their function signatures, such as the baseldap pre and
post callbacks.
* Moved ipalib.dn to ipapython.dn because DN class is shared with all
components, not just the server which uses ipalib.
* All API's now accept DN's natively, no need to convert to str (or
unicode).
* Removed ipalib.encoder and encode/decode decorators. Type conversion
is now explicitly performed in each IPASimpleLDAPObject method which
emulates a ldap.SimpleLDAPObject method.
* Entity & Entry classes now utilize DN's
* Removed __getattr__ in Entity & Entity clases. There were two
problems with it. It presented synthetic Python object attributes
based on the current LDAP data it contained. There is no way to
validate synthetic attributes using code checkers, you can't search
the code to find LDAP attribute accesses (because synthetic
attriutes look like Python attributes instead of LDAP data) and
error handling is circumscribed. Secondly __getattr__ was hiding
Python internal methods which broke class semantics.
* Replace use of methods inherited from ldap.SimpleLDAPObject via
IPAdmin class with IPAdmin methods. Directly using inherited methods
was causing us to bypass IPA logic. Mostly this meant replacing the
use of search_s() with getEntry() or getList(). Similarly direct
access of the LDAP data in classes using IPAdmin were replaced with
calls to getValue() or getValues().
* Objects returned by ldap2.find_entries() are now compatible with
either the python-ldap access methodology or the Entity/Entry access
methodology.
* All ldap operations now funnel through the common
IPASimpleLDAPObject giving us a single location where we interface
to python-ldap and perform conversions.
* The above 4 modifications means we've greatly reduced the
proliferation of multiple inconsistent ways to perform LDAP
operations. We are well on the way to having a single API in IPA for
doing LDAP (a long range goal).
* All certificate subject bases are now DN's
* DN objects were enhanced thusly:
- find, rfind, index, rindex, replace and insert methods were added
- AVA, RDN and DN classes were refactored in immutable and mutable
variants, the mutable variants are EditableAVA, EditableRDN and
EditableDN. By default we use the immutable variants preserving
important semantics. To edit a DN cast it to an EditableDN and
cast it back to DN when done editing. These issues are fully
described in other documentation.
- first_key_match was removed
- DN equalty comparison permits comparison to a basestring
* Fixed ldapupdate to work with DN's. This work included:
- Enhance test_updates.py to do more checking after applying
update. Add test for update_from_dict(). Convert code to use
unittest classes.
- Consolidated duplicate code.
- Moved code which should have been in the class into the class.
- Fix the handling of the 'deleteentry' update action. It's no longer
necessary to supply fake attributes to make it work. Detect case
where subsequent update applies a change to entry previously marked
for deletetion. General clean-up and simplification of the
'deleteentry' logic.
- Rewrote a couple of functions to be clearer and more Pythonic.
- Added documentation on the data structure being used.
- Simplfy the use of update_from_dict()
* Removed all usage of get_schema() which was being called prior to
accessing the .schema attribute of an object. If a class is using
internal lazy loading as an optimization it's not right to require
users of the interface to be aware of internal
optimization's. schema is now a property and when the schema
property is accessed it calls a private internal method to perform
the lazy loading.
* Added SchemaCache class to cache the schema's from individual
servers. This was done because of the observation we talk to
different LDAP servers, each of which may have it's own
schema. Previously we globally cached the schema from the first
server we connected to and returned that schema in all contexts. The
cache includes controls to invalidate it thus forcing a schema
refresh.
* Schema caching is now senstive to the run time context. During
install and upgrade the schema can change leading to errors due to
out-of-date cached schema. The schema cache is refreshed in these
contexts.
* We are aware of the LDAP syntax of all LDAP attributes. Every
attribute returned from an LDAP operation is passed through a
central table look-up based on it's LDAP syntax. The table key is
the LDAP syntax it's value is a Python callable that returns a
Python object matching the LDAP syntax. There are a handful of LDAP
attributes whose syntax is historically incorrect
(e.g. DistguishedNames that are defined as DirectoryStrings). The
table driven conversion mechanism is augmented with a table of
hard coded exceptions.
Currently only the following conversions occur via the table:
- dn's are converted to DN objects
- binary objects are converted to Python str objects (IPA
convention).
- everything else is converted to unicode using UTF-8 decoding (IPA
convention).
However, now that the table driven conversion mechanism is in place
it would be trivial to do things such as converting attributes
which have LDAP integer syntax into a Python integer, etc.
* Expected values in the unit tests which are a DN no longer need to
use lambda expressions to promote the returned value to a DN for
equality comparison. The return value is automatically promoted to
a DN. The lambda expressions have been removed making the code much
simpler and easier to read.
* Add class level logging to a number of classes which did not support
logging, less need for use of root_logger.
* Remove ipaserver/conn.py, it was unused.
* Consolidated duplicate code wherever it was found.
* Fixed many places that used string concatenation to form a new
string rather than string formatting operators. This is necessary
because string formatting converts it's arguments to a string prior
to building the result string. You can't concatenate a string and a
non-string.
* Simplify logic in rename_managed plugin. Use DN operators to edit
dn's.
* The live version of ipa-ldap-updater did not generate a log file.
The offline version did, now both do.
https://fedorahosted.org/freeipa/ticket/1670
https://fedorahosted.org/freeipa/ticket/1671
https://fedorahosted.org/freeipa/ticket/1672
https://fedorahosted.org/freeipa/ticket/1673
https://fedorahosted.org/freeipa/ticket/1674
https://fedorahosted.org/freeipa/ticket/1392
https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
|
|
|
e = self._get_entry(new_entry.dn)
|
2008-09-15 19:51:01 -05:00
|
|
|
if len(e) > 1:
|
|
|
|
# we should only ever get back one entry
|
2015-08-12 06:49:54 -05:00
|
|
|
raise BadSyntax("More than 1 entry returned on a dn search!? %s" % new_entry.dn)
|
2013-12-10 04:42:35 -06:00
|
|
|
entry = e[0]
|
2008-09-15 19:51:01 -05:00
|
|
|
found = True
|
2015-06-08 10:33:11 -05:00
|
|
|
self.debug("Updating existing entry: %s", entry.dn)
|
2009-04-23 07:51:59 -05:00
|
|
|
except errors.NotFound:
|
2008-09-15 19:51:01 -05:00
|
|
|
# Doesn't exist, start with the default entry
|
|
|
|
entry = new_entry
|
2015-06-08 10:33:11 -05:00
|
|
|
self.debug("New entry: %s", entry.dn)
|
2009-04-23 07:51:59 -05:00
|
|
|
except errors.DatabaseError:
|
2008-09-15 19:51:01 -05:00
|
|
|
# Doesn't exist, start with the default entry
|
|
|
|
entry = new_entry
|
2015-06-08 10:33:11 -05:00
|
|
|
self.debug("New entry, using default value: %s", entry.dn)
|
2009-02-04 09:53:34 -06:00
|
|
|
|
Use DN objects instead of strings
* Convert every string specifying a DN into a DN object
* Every place a dn was manipulated in some fashion it was replaced by
the use of DN operators
* Add new DNParam parameter type for parameters which are DN's
* DN objects are used 100% of the time throughout the entire data
pipeline whenever something is logically a dn.
* Many classes now enforce DN usage for their attributes which are
dn's. This is implmented via ipautil.dn_attribute_property(). The
only permitted types for a class attribute specified to be a DN are
either None or a DN object.
* Require that every place a dn is used it must be a DN object.
This translates into lot of::
assert isinstance(dn, DN)
sprinkled through out the code. Maintaining these asserts is
valuable to preserve DN type enforcement. The asserts can be
disabled in production.
The goal of 100% DN usage 100% of the time has been realized, these
asserts are meant to preserve that.
The asserts also proved valuable in detecting functions which did
not obey their function signatures, such as the baseldap pre and
post callbacks.
* Moved ipalib.dn to ipapython.dn because DN class is shared with all
components, not just the server which uses ipalib.
* All API's now accept DN's natively, no need to convert to str (or
unicode).
* Removed ipalib.encoder and encode/decode decorators. Type conversion
is now explicitly performed in each IPASimpleLDAPObject method which
emulates a ldap.SimpleLDAPObject method.
* Entity & Entry classes now utilize DN's
* Removed __getattr__ in Entity & Entity clases. There were two
problems with it. It presented synthetic Python object attributes
based on the current LDAP data it contained. There is no way to
validate synthetic attributes using code checkers, you can't search
the code to find LDAP attribute accesses (because synthetic
attriutes look like Python attributes instead of LDAP data) and
error handling is circumscribed. Secondly __getattr__ was hiding
Python internal methods which broke class semantics.
* Replace use of methods inherited from ldap.SimpleLDAPObject via
IPAdmin class with IPAdmin methods. Directly using inherited methods
was causing us to bypass IPA logic. Mostly this meant replacing the
use of search_s() with getEntry() or getList(). Similarly direct
access of the LDAP data in classes using IPAdmin were replaced with
calls to getValue() or getValues().
* Objects returned by ldap2.find_entries() are now compatible with
either the python-ldap access methodology or the Entity/Entry access
methodology.
* All ldap operations now funnel through the common
IPASimpleLDAPObject giving us a single location where we interface
to python-ldap and perform conversions.
* The above 4 modifications means we've greatly reduced the
proliferation of multiple inconsistent ways to perform LDAP
operations. We are well on the way to having a single API in IPA for
doing LDAP (a long range goal).
* All certificate subject bases are now DN's
* DN objects were enhanced thusly:
- find, rfind, index, rindex, replace and insert methods were added
- AVA, RDN and DN classes were refactored in immutable and mutable
variants, the mutable variants are EditableAVA, EditableRDN and
EditableDN. By default we use the immutable variants preserving
important semantics. To edit a DN cast it to an EditableDN and
cast it back to DN when done editing. These issues are fully
described in other documentation.
- first_key_match was removed
- DN equalty comparison permits comparison to a basestring
* Fixed ldapupdate to work with DN's. This work included:
- Enhance test_updates.py to do more checking after applying
update. Add test for update_from_dict(). Convert code to use
unittest classes.
- Consolidated duplicate code.
- Moved code which should have been in the class into the class.
- Fix the handling of the 'deleteentry' update action. It's no longer
necessary to supply fake attributes to make it work. Detect case
where subsequent update applies a change to entry previously marked
for deletetion. General clean-up and simplification of the
'deleteentry' logic.
- Rewrote a couple of functions to be clearer and more Pythonic.
- Added documentation on the data structure being used.
- Simplfy the use of update_from_dict()
* Removed all usage of get_schema() which was being called prior to
accessing the .schema attribute of an object. If a class is using
internal lazy loading as an optimization it's not right to require
users of the interface to be aware of internal
optimization's. schema is now a property and when the schema
property is accessed it calls a private internal method to perform
the lazy loading.
* Added SchemaCache class to cache the schema's from individual
servers. This was done because of the observation we talk to
different LDAP servers, each of which may have it's own
schema. Previously we globally cached the schema from the first
server we connected to and returned that schema in all contexts. The
cache includes controls to invalidate it thus forcing a schema
refresh.
* Schema caching is now senstive to the run time context. During
install and upgrade the schema can change leading to errors due to
out-of-date cached schema. The schema cache is refreshed in these
contexts.
* We are aware of the LDAP syntax of all LDAP attributes. Every
attribute returned from an LDAP operation is passed through a
central table look-up based on it's LDAP syntax. The table key is
the LDAP syntax it's value is a Python callable that returns a
Python object matching the LDAP syntax. There are a handful of LDAP
attributes whose syntax is historically incorrect
(e.g. DistguishedNames that are defined as DirectoryStrings). The
table driven conversion mechanism is augmented with a table of
hard coded exceptions.
Currently only the following conversions occur via the table:
- dn's are converted to DN objects
- binary objects are converted to Python str objects (IPA
convention).
- everything else is converted to unicode using UTF-8 decoding (IPA
convention).
However, now that the table driven conversion mechanism is in place
it would be trivial to do things such as converting attributes
which have LDAP integer syntax into a Python integer, etc.
* Expected values in the unit tests which are a DN no longer need to
use lambda expressions to promote the returned value to a DN for
equality comparison. The return value is automatically promoted to
a DN. The lambda expressions have been removed making the code much
simpler and easier to read.
* Add class level logging to a number of classes which did not support
logging, less need for use of root_logger.
* Remove ipaserver/conn.py, it was unused.
* Consolidated duplicate code wherever it was found.
* Fixed many places that used string concatenation to form a new
string rather than string formatting operators. This is necessary
because string formatting converts it's arguments to a string prior
to building the result string. You can't concatenate a string and a
non-string.
* Simplify logic in rename_managed plugin. Use DN operators to edit
dn's.
* The live version of ipa-ldap-updater did not generate a log file.
The offline version did, now both do.
https://fedorahosted.org/freeipa/ticket/1670
https://fedorahosted.org/freeipa/ticket/1671
https://fedorahosted.org/freeipa/ticket/1672
https://fedorahosted.org/freeipa/ticket/1673
https://fedorahosted.org/freeipa/ticket/1674
https://fedorahosted.org/freeipa/ticket/1392
https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
|
|
|
self.print_entity(entry, "Initial value")
|
2009-02-04 09:53:34 -06:00
|
|
|
|
2008-09-15 19:51:01 -05:00
|
|
|
# Bring this entry up to date
|
Use DN objects instead of strings
* Convert every string specifying a DN into a DN object
* Every place a dn was manipulated in some fashion it was replaced by
the use of DN operators
* Add new DNParam parameter type for parameters which are DN's
* DN objects are used 100% of the time throughout the entire data
pipeline whenever something is logically a dn.
* Many classes now enforce DN usage for their attributes which are
dn's. This is implmented via ipautil.dn_attribute_property(). The
only permitted types for a class attribute specified to be a DN are
either None or a DN object.
* Require that every place a dn is used it must be a DN object.
This translates into lot of::
assert isinstance(dn, DN)
sprinkled through out the code. Maintaining these asserts is
valuable to preserve DN type enforcement. The asserts can be
disabled in production.
The goal of 100% DN usage 100% of the time has been realized, these
asserts are meant to preserve that.
The asserts also proved valuable in detecting functions which did
not obey their function signatures, such as the baseldap pre and
post callbacks.
* Moved ipalib.dn to ipapython.dn because DN class is shared with all
components, not just the server which uses ipalib.
* All API's now accept DN's natively, no need to convert to str (or
unicode).
* Removed ipalib.encoder and encode/decode decorators. Type conversion
is now explicitly performed in each IPASimpleLDAPObject method which
emulates a ldap.SimpleLDAPObject method.
* Entity & Entry classes now utilize DN's
* Removed __getattr__ in Entity & Entity clases. There were two
problems with it. It presented synthetic Python object attributes
based on the current LDAP data it contained. There is no way to
validate synthetic attributes using code checkers, you can't search
the code to find LDAP attribute accesses (because synthetic
attriutes look like Python attributes instead of LDAP data) and
error handling is circumscribed. Secondly __getattr__ was hiding
Python internal methods which broke class semantics.
* Replace use of methods inherited from ldap.SimpleLDAPObject via
IPAdmin class with IPAdmin methods. Directly using inherited methods
was causing us to bypass IPA logic. Mostly this meant replacing the
use of search_s() with getEntry() or getList(). Similarly direct
access of the LDAP data in classes using IPAdmin were replaced with
calls to getValue() or getValues().
* Objects returned by ldap2.find_entries() are now compatible with
either the python-ldap access methodology or the Entity/Entry access
methodology.
* All ldap operations now funnel through the common
IPASimpleLDAPObject giving us a single location where we interface
to python-ldap and perform conversions.
* The above 4 modifications means we've greatly reduced the
proliferation of multiple inconsistent ways to perform LDAP
operations. We are well on the way to having a single API in IPA for
doing LDAP (a long range goal).
* All certificate subject bases are now DN's
* DN objects were enhanced thusly:
- find, rfind, index, rindex, replace and insert methods were added
- AVA, RDN and DN classes were refactored in immutable and mutable
variants, the mutable variants are EditableAVA, EditableRDN and
EditableDN. By default we use the immutable variants preserving
important semantics. To edit a DN cast it to an EditableDN and
cast it back to DN when done editing. These issues are fully
described in other documentation.
- first_key_match was removed
- DN equalty comparison permits comparison to a basestring
* Fixed ldapupdate to work with DN's. This work included:
- Enhance test_updates.py to do more checking after applying
update. Add test for update_from_dict(). Convert code to use
unittest classes.
- Consolidated duplicate code.
- Moved code which should have been in the class into the class.
- Fix the handling of the 'deleteentry' update action. It's no longer
necessary to supply fake attributes to make it work. Detect case
where subsequent update applies a change to entry previously marked
for deletetion. General clean-up and simplification of the
'deleteentry' logic.
- Rewrote a couple of functions to be clearer and more Pythonic.
- Added documentation on the data structure being used.
- Simplfy the use of update_from_dict()
* Removed all usage of get_schema() which was being called prior to
accessing the .schema attribute of an object. If a class is using
internal lazy loading as an optimization it's not right to require
users of the interface to be aware of internal
optimization's. schema is now a property and when the schema
property is accessed it calls a private internal method to perform
the lazy loading.
* Added SchemaCache class to cache the schema's from individual
servers. This was done because of the observation we talk to
different LDAP servers, each of which may have it's own
schema. Previously we globally cached the schema from the first
server we connected to and returned that schema in all contexts. The
cache includes controls to invalidate it thus forcing a schema
refresh.
* Schema caching is now senstive to the run time context. During
install and upgrade the schema can change leading to errors due to
out-of-date cached schema. The schema cache is refreshed in these
contexts.
* We are aware of the LDAP syntax of all LDAP attributes. Every
attribute returned from an LDAP operation is passed through a
central table look-up based on it's LDAP syntax. The table key is
the LDAP syntax it's value is a Python callable that returns a
Python object matching the LDAP syntax. There are a handful of LDAP
attributes whose syntax is historically incorrect
(e.g. DistguishedNames that are defined as DirectoryStrings). The
table driven conversion mechanism is augmented with a table of
hard coded exceptions.
Currently only the following conversions occur via the table:
- dn's are converted to DN objects
- binary objects are converted to Python str objects (IPA
convention).
- everything else is converted to unicode using UTF-8 decoding (IPA
convention).
However, now that the table driven conversion mechanism is in place
it would be trivial to do things such as converting attributes
which have LDAP integer syntax into a Python integer, etc.
* Expected values in the unit tests which are a DN no longer need to
use lambda expressions to promote the returned value to a DN for
equality comparison. The return value is automatically promoted to
a DN. The lambda expressions have been removed making the code much
simpler and easier to read.
* Add class level logging to a number of classes which did not support
logging, less need for use of root_logger.
* Remove ipaserver/conn.py, it was unused.
* Consolidated duplicate code wherever it was found.
* Fixed many places that used string concatenation to form a new
string rather than string formatting operators. This is necessary
because string formatting converts it's arguments to a string prior
to building the result string. You can't concatenate a string and a
non-string.
* Simplify logic in rename_managed plugin. Use DN operators to edit
dn's.
* The live version of ipa-ldap-updater did not generate a log file.
The offline version did, now both do.
https://fedorahosted.org/freeipa/ticket/1670
https://fedorahosted.org/freeipa/ticket/1671
https://fedorahosted.org/freeipa/ticket/1672
https://fedorahosted.org/freeipa/ticket/1673
https://fedorahosted.org/freeipa/ticket/1674
https://fedorahosted.org/freeipa/ticket/1392
https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
|
|
|
entry = self._apply_update_disposition(update.get('updates'), entry)
|
2009-09-14 15:12:58 -05:00
|
|
|
if entry is None:
|
|
|
|
# It might be None if it is just deleting an entry
|
|
|
|
return
|
2009-02-04 09:53:34 -06:00
|
|
|
|
Use DN objects instead of strings
* Convert every string specifying a DN into a DN object
* Every place a dn was manipulated in some fashion it was replaced by
the use of DN operators
* Add new DNParam parameter type for parameters which are DN's
* DN objects are used 100% of the time throughout the entire data
pipeline whenever something is logically a dn.
* Many classes now enforce DN usage for their attributes which are
dn's. This is implmented via ipautil.dn_attribute_property(). The
only permitted types for a class attribute specified to be a DN are
either None or a DN object.
* Require that every place a dn is used it must be a DN object.
This translates into lot of::
assert isinstance(dn, DN)
sprinkled through out the code. Maintaining these asserts is
valuable to preserve DN type enforcement. The asserts can be
disabled in production.
The goal of 100% DN usage 100% of the time has been realized, these
asserts are meant to preserve that.
The asserts also proved valuable in detecting functions which did
not obey their function signatures, such as the baseldap pre and
post callbacks.
* Moved ipalib.dn to ipapython.dn because DN class is shared with all
components, not just the server which uses ipalib.
* All API's now accept DN's natively, no need to convert to str (or
unicode).
* Removed ipalib.encoder and encode/decode decorators. Type conversion
is now explicitly performed in each IPASimpleLDAPObject method which
emulates a ldap.SimpleLDAPObject method.
* Entity & Entry classes now utilize DN's
* Removed __getattr__ in Entity & Entity clases. There were two
problems with it. It presented synthetic Python object attributes
based on the current LDAP data it contained. There is no way to
validate synthetic attributes using code checkers, you can't search
the code to find LDAP attribute accesses (because synthetic
attriutes look like Python attributes instead of LDAP data) and
error handling is circumscribed. Secondly __getattr__ was hiding
Python internal methods which broke class semantics.
* Replace use of methods inherited from ldap.SimpleLDAPObject via
IPAdmin class with IPAdmin methods. Directly using inherited methods
was causing us to bypass IPA logic. Mostly this meant replacing the
use of search_s() with getEntry() or getList(). Similarly direct
access of the LDAP data in classes using IPAdmin were replaced with
calls to getValue() or getValues().
* Objects returned by ldap2.find_entries() are now compatible with
either the python-ldap access methodology or the Entity/Entry access
methodology.
* All ldap operations now funnel through the common
IPASimpleLDAPObject giving us a single location where we interface
to python-ldap and perform conversions.
* The above 4 modifications means we've greatly reduced the
proliferation of multiple inconsistent ways to perform LDAP
operations. We are well on the way to having a single API in IPA for
doing LDAP (a long range goal).
* All certificate subject bases are now DN's
* DN objects were enhanced thusly:
- find, rfind, index, rindex, replace and insert methods were added
- AVA, RDN and DN classes were refactored in immutable and mutable
variants, the mutable variants are EditableAVA, EditableRDN and
EditableDN. By default we use the immutable variants preserving
important semantics. To edit a DN cast it to an EditableDN and
cast it back to DN when done editing. These issues are fully
described in other documentation.
- first_key_match was removed
- DN equalty comparison permits comparison to a basestring
* Fixed ldapupdate to work with DN's. This work included:
- Enhance test_updates.py to do more checking after applying
update. Add test for update_from_dict(). Convert code to use
unittest classes.
- Consolidated duplicate code.
- Moved code which should have been in the class into the class.
- Fix the handling of the 'deleteentry' update action. It's no longer
necessary to supply fake attributes to make it work. Detect case
where subsequent update applies a change to entry previously marked
for deletetion. General clean-up and simplification of the
'deleteentry' logic.
- Rewrote a couple of functions to be clearer and more Pythonic.
- Added documentation on the data structure being used.
- Simplfy the use of update_from_dict()
* Removed all usage of get_schema() which was being called prior to
accessing the .schema attribute of an object. If a class is using
internal lazy loading as an optimization it's not right to require
users of the interface to be aware of internal
optimization's. schema is now a property and when the schema
property is accessed it calls a private internal method to perform
the lazy loading.
* Added SchemaCache class to cache the schema's from individual
servers. This was done because of the observation we talk to
different LDAP servers, each of which may have it's own
schema. Previously we globally cached the schema from the first
server we connected to and returned that schema in all contexts. The
cache includes controls to invalidate it thus forcing a schema
refresh.
* Schema caching is now senstive to the run time context. During
install and upgrade the schema can change leading to errors due to
out-of-date cached schema. The schema cache is refreshed in these
contexts.
* We are aware of the LDAP syntax of all LDAP attributes. Every
attribute returned from an LDAP operation is passed through a
central table look-up based on it's LDAP syntax. The table key is
the LDAP syntax it's value is a Python callable that returns a
Python object matching the LDAP syntax. There are a handful of LDAP
attributes whose syntax is historically incorrect
(e.g. DistguishedNames that are defined as DirectoryStrings). The
table driven conversion mechanism is augmented with a table of
hard coded exceptions.
Currently only the following conversions occur via the table:
- dn's are converted to DN objects
- binary objects are converted to Python str objects (IPA
convention).
- everything else is converted to unicode using UTF-8 decoding (IPA
convention).
However, now that the table driven conversion mechanism is in place
it would be trivial to do things such as converting attributes
which have LDAP integer syntax into a Python integer, etc.
* Expected values in the unit tests which are a DN no longer need to
use lambda expressions to promote the returned value to a DN for
equality comparison. The return value is automatically promoted to
a DN. The lambda expressions have been removed making the code much
simpler and easier to read.
* Add class level logging to a number of classes which did not support
logging, less need for use of root_logger.
* Remove ipaserver/conn.py, it was unused.
* Consolidated duplicate code wherever it was found.
* Fixed many places that used string concatenation to form a new
string rather than string formatting operators. This is necessary
because string formatting converts it's arguments to a string prior
to building the result string. You can't concatenate a string and a
non-string.
* Simplify logic in rename_managed plugin. Use DN operators to edit
dn's.
* The live version of ipa-ldap-updater did not generate a log file.
The offline version did, now both do.
https://fedorahosted.org/freeipa/ticket/1670
https://fedorahosted.org/freeipa/ticket/1671
https://fedorahosted.org/freeipa/ticket/1672
https://fedorahosted.org/freeipa/ticket/1673
https://fedorahosted.org/freeipa/ticket/1674
https://fedorahosted.org/freeipa/ticket/1392
https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
|
|
|
self.print_entity(entry, "Final value after applying updates")
|
2009-02-04 09:53:34 -06:00
|
|
|
|
2012-09-12 02:40:06 -05:00
|
|
|
added = False
|
|
|
|
updated = False
|
2008-09-15 19:51:01 -05:00
|
|
|
if not found:
|
|
|
|
try:
|
2015-03-17 06:23:06 -05:00
|
|
|
if len(entry):
|
|
|
|
# addifexist may result in an entry with only a
|
|
|
|
# dn defined. In that case there is nothing to do.
|
|
|
|
# It means the entry doesn't exist, so skip it.
|
|
|
|
try:
|
|
|
|
self.conn.add_entry(entry)
|
|
|
|
except errors.NotFound:
|
|
|
|
# parent entry of the added entry does not exist
|
|
|
|
# this may not be an error (e.g. entries in NIS container)
|
2015-06-08 10:33:11 -05:00
|
|
|
self.error("Parent DN of %s may not exist, cannot "
|
|
|
|
"create the entry", entry.dn)
|
2015-03-17 06:23:06 -05:00
|
|
|
return
|
2012-09-12 02:40:06 -05:00
|
|
|
added = True
|
2009-09-14 15:12:58 -05:00
|
|
|
self.modified = True
|
2015-07-30 09:49:29 -05:00
|
|
|
except Exception as e:
|
Use DN objects instead of strings
* Convert every string specifying a DN into a DN object
* Every place a dn was manipulated in some fashion it was replaced by
the use of DN operators
* Add new DNParam parameter type for parameters which are DN's
* DN objects are used 100% of the time throughout the entire data
pipeline whenever something is logically a dn.
* Many classes now enforce DN usage for their attributes which are
dn's. This is implmented via ipautil.dn_attribute_property(). The
only permitted types for a class attribute specified to be a DN are
either None or a DN object.
* Require that every place a dn is used it must be a DN object.
This translates into lot of::
assert isinstance(dn, DN)
sprinkled through out the code. Maintaining these asserts is
valuable to preserve DN type enforcement. The asserts can be
disabled in production.
The goal of 100% DN usage 100% of the time has been realized, these
asserts are meant to preserve that.
The asserts also proved valuable in detecting functions which did
not obey their function signatures, such as the baseldap pre and
post callbacks.
* Moved ipalib.dn to ipapython.dn because DN class is shared with all
components, not just the server which uses ipalib.
* All API's now accept DN's natively, no need to convert to str (or
unicode).
* Removed ipalib.encoder and encode/decode decorators. Type conversion
is now explicitly performed in each IPASimpleLDAPObject method which
emulates a ldap.SimpleLDAPObject method.
* Entity & Entry classes now utilize DN's
* Removed __getattr__ in Entity & Entity clases. There were two
problems with it. It presented synthetic Python object attributes
based on the current LDAP data it contained. There is no way to
validate synthetic attributes using code checkers, you can't search
the code to find LDAP attribute accesses (because synthetic
attriutes look like Python attributes instead of LDAP data) and
error handling is circumscribed. Secondly __getattr__ was hiding
Python internal methods which broke class semantics.
* Replace use of methods inherited from ldap.SimpleLDAPObject via
IPAdmin class with IPAdmin methods. Directly using inherited methods
was causing us to bypass IPA logic. Mostly this meant replacing the
use of search_s() with getEntry() or getList(). Similarly direct
access of the LDAP data in classes using IPAdmin were replaced with
calls to getValue() or getValues().
* Objects returned by ldap2.find_entries() are now compatible with
either the python-ldap access methodology or the Entity/Entry access
methodology.
* All ldap operations now funnel through the common
IPASimpleLDAPObject giving us a single location where we interface
to python-ldap and perform conversions.
* The above 4 modifications means we've greatly reduced the
proliferation of multiple inconsistent ways to perform LDAP
operations. We are well on the way to having a single API in IPA for
doing LDAP (a long range goal).
* All certificate subject bases are now DN's
* DN objects were enhanced thusly:
- find, rfind, index, rindex, replace and insert methods were added
- AVA, RDN and DN classes were refactored in immutable and mutable
variants, the mutable variants are EditableAVA, EditableRDN and
EditableDN. By default we use the immutable variants preserving
important semantics. To edit a DN cast it to an EditableDN and
cast it back to DN when done editing. These issues are fully
described in other documentation.
- first_key_match was removed
- DN equalty comparison permits comparison to a basestring
* Fixed ldapupdate to work with DN's. This work included:
- Enhance test_updates.py to do more checking after applying
update. Add test for update_from_dict(). Convert code to use
unittest classes.
- Consolidated duplicate code.
- Moved code which should have been in the class into the class.
- Fix the handling of the 'deleteentry' update action. It's no longer
necessary to supply fake attributes to make it work. Detect case
where subsequent update applies a change to entry previously marked
for deletetion. General clean-up and simplification of the
'deleteentry' logic.
- Rewrote a couple of functions to be clearer and more Pythonic.
- Added documentation on the data structure being used.
- Simplfy the use of update_from_dict()
* Removed all usage of get_schema() which was being called prior to
accessing the .schema attribute of an object. If a class is using
internal lazy loading as an optimization it's not right to require
users of the interface to be aware of internal
optimization's. schema is now a property and when the schema
property is accessed it calls a private internal method to perform
the lazy loading.
* Added SchemaCache class to cache the schema's from individual
servers. This was done because of the observation we talk to
different LDAP servers, each of which may have it's own
schema. Previously we globally cached the schema from the first
server we connected to and returned that schema in all contexts. The
cache includes controls to invalidate it thus forcing a schema
refresh.
* Schema caching is now senstive to the run time context. During
install and upgrade the schema can change leading to errors due to
out-of-date cached schema. The schema cache is refreshed in these
contexts.
* We are aware of the LDAP syntax of all LDAP attributes. Every
attribute returned from an LDAP operation is passed through a
central table look-up based on it's LDAP syntax. The table key is
the LDAP syntax it's value is a Python callable that returns a
Python object matching the LDAP syntax. There are a handful of LDAP
attributes whose syntax is historically incorrect
(e.g. DistguishedNames that are defined as DirectoryStrings). The
table driven conversion mechanism is augmented with a table of
hard coded exceptions.
Currently only the following conversions occur via the table:
- dn's are converted to DN objects
- binary objects are converted to Python str objects (IPA
convention).
- everything else is converted to unicode using UTF-8 decoding (IPA
convention).
However, now that the table driven conversion mechanism is in place
it would be trivial to do things such as converting attributes
which have LDAP integer syntax into a Python integer, etc.
* Expected values in the unit tests which are a DN no longer need to
use lambda expressions to promote the returned value to a DN for
equality comparison. The return value is automatically promoted to
a DN. The lambda expressions have been removed making the code much
simpler and easier to read.
* Add class level logging to a number of classes which did not support
logging, less need for use of root_logger.
* Remove ipaserver/conn.py, it was unused.
* Consolidated duplicate code wherever it was found.
* Fixed many places that used string concatenation to form a new
string rather than string formatting operators. This is necessary
because string formatting converts it's arguments to a string prior
to building the result string. You can't concatenate a string and a
non-string.
* Simplify logic in rename_managed plugin. Use DN operators to edit
dn's.
* The live version of ipa-ldap-updater did not generate a log file.
The offline version did, now both do.
https://fedorahosted.org/freeipa/ticket/1670
https://fedorahosted.org/freeipa/ticket/1671
https://fedorahosted.org/freeipa/ticket/1672
https://fedorahosted.org/freeipa/ticket/1673
https://fedorahosted.org/freeipa/ticket/1674
https://fedorahosted.org/freeipa/ticket/1392
https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
|
|
|
self.error("Add failure %s", e)
|
2008-09-15 19:51:01 -05:00
|
|
|
else:
|
|
|
|
# Update LDAP
|
|
|
|
try:
|
2013-12-10 04:45:10 -06:00
|
|
|
changes = entry.generate_modlist()
|
2013-04-26 08:38:38 -05:00
|
|
|
if len(changes) >= 1:
|
|
|
|
updated = True
|
2013-07-12 10:28:43 -05:00
|
|
|
safe_changes = []
|
|
|
|
for (type, attr, values) in changes:
|
|
|
|
safe_changes.append((type, attr, safe_output(attr, values)))
|
|
|
|
self.debug("%s" % safe_changes)
|
2015-03-17 06:23:06 -05:00
|
|
|
self.debug("Updated %d" % updated)
|
|
|
|
if updated:
|
2013-12-10 04:41:17 -06:00
|
|
|
self.conn.update_entry(entry)
|
2015-06-08 10:33:11 -05:00
|
|
|
self.debug("Done")
|
2009-04-23 07:51:59 -05:00
|
|
|
except errors.EmptyModlist:
|
2015-06-08 10:33:11 -05:00
|
|
|
self.debug("Entry already up-to-date")
|
2008-09-17 22:18:09 -05:00
|
|
|
updated = False
|
2015-07-30 09:49:29 -05:00
|
|
|
except errors.DatabaseError as e:
|
Use DN objects instead of strings
* Convert every string specifying a DN into a DN object
* Every place a dn was manipulated in some fashion it was replaced by
the use of DN operators
* Add new DNParam parameter type for parameters which are DN's
* DN objects are used 100% of the time throughout the entire data
pipeline whenever something is logically a dn.
* Many classes now enforce DN usage for their attributes which are
dn's. This is implmented via ipautil.dn_attribute_property(). The
only permitted types for a class attribute specified to be a DN are
either None or a DN object.
* Require that every place a dn is used it must be a DN object.
This translates into lot of::
assert isinstance(dn, DN)
sprinkled through out the code. Maintaining these asserts is
valuable to preserve DN type enforcement. The asserts can be
disabled in production.
The goal of 100% DN usage 100% of the time has been realized, these
asserts are meant to preserve that.
The asserts also proved valuable in detecting functions which did
not obey their function signatures, such as the baseldap pre and
post callbacks.
* Moved ipalib.dn to ipapython.dn because DN class is shared with all
components, not just the server which uses ipalib.
* All API's now accept DN's natively, no need to convert to str (or
unicode).
* Removed ipalib.encoder and encode/decode decorators. Type conversion
is now explicitly performed in each IPASimpleLDAPObject method which
emulates a ldap.SimpleLDAPObject method.
* Entity & Entry classes now utilize DN's
* Removed __getattr__ in Entity & Entity clases. There were two
problems with it. It presented synthetic Python object attributes
based on the current LDAP data it contained. There is no way to
validate synthetic attributes using code checkers, you can't search
the code to find LDAP attribute accesses (because synthetic
attriutes look like Python attributes instead of LDAP data) and
error handling is circumscribed. Secondly __getattr__ was hiding
Python internal methods which broke class semantics.
* Replace use of methods inherited from ldap.SimpleLDAPObject via
IPAdmin class with IPAdmin methods. Directly using inherited methods
was causing us to bypass IPA logic. Mostly this meant replacing the
use of search_s() with getEntry() or getList(). Similarly direct
access of the LDAP data in classes using IPAdmin were replaced with
calls to getValue() or getValues().
* Objects returned by ldap2.find_entries() are now compatible with
either the python-ldap access methodology or the Entity/Entry access
methodology.
* All ldap operations now funnel through the common
IPASimpleLDAPObject giving us a single location where we interface
to python-ldap and perform conversions.
* The above 4 modifications means we've greatly reduced the
proliferation of multiple inconsistent ways to perform LDAP
operations. We are well on the way to having a single API in IPA for
doing LDAP (a long range goal).
* All certificate subject bases are now DN's
* DN objects were enhanced thusly:
- find, rfind, index, rindex, replace and insert methods were added
- AVA, RDN and DN classes were refactored in immutable and mutable
variants, the mutable variants are EditableAVA, EditableRDN and
EditableDN. By default we use the immutable variants preserving
important semantics. To edit a DN cast it to an EditableDN and
cast it back to DN when done editing. These issues are fully
described in other documentation.
- first_key_match was removed
- DN equalty comparison permits comparison to a basestring
* Fixed ldapupdate to work with DN's. This work included:
- Enhance test_updates.py to do more checking after applying
update. Add test for update_from_dict(). Convert code to use
unittest classes.
- Consolidated duplicate code.
- Moved code which should have been in the class into the class.
- Fix the handling of the 'deleteentry' update action. It's no longer
necessary to supply fake attributes to make it work. Detect case
where subsequent update applies a change to entry previously marked
for deletetion. General clean-up and simplification of the
'deleteentry' logic.
- Rewrote a couple of functions to be clearer and more Pythonic.
- Added documentation on the data structure being used.
- Simplfy the use of update_from_dict()
* Removed all usage of get_schema() which was being called prior to
accessing the .schema attribute of an object. If a class is using
internal lazy loading as an optimization it's not right to require
users of the interface to be aware of internal
optimization's. schema is now a property and when the schema
property is accessed it calls a private internal method to perform
the lazy loading.
* Added SchemaCache class to cache the schema's from individual
servers. This was done because of the observation we talk to
different LDAP servers, each of which may have it's own
schema. Previously we globally cached the schema from the first
server we connected to and returned that schema in all contexts. The
cache includes controls to invalidate it thus forcing a schema
refresh.
* Schema caching is now senstive to the run time context. During
install and upgrade the schema can change leading to errors due to
out-of-date cached schema. The schema cache is refreshed in these
contexts.
* We are aware of the LDAP syntax of all LDAP attributes. Every
attribute returned from an LDAP operation is passed through a
central table look-up based on it's LDAP syntax. The table key is
the LDAP syntax it's value is a Python callable that returns a
Python object matching the LDAP syntax. There are a handful of LDAP
attributes whose syntax is historically incorrect
(e.g. DistguishedNames that are defined as DirectoryStrings). The
table driven conversion mechanism is augmented with a table of
hard coded exceptions.
Currently only the following conversions occur via the table:
- dn's are converted to DN objects
- binary objects are converted to Python str objects (IPA
convention).
- everything else is converted to unicode using UTF-8 decoding (IPA
convention).
However, now that the table driven conversion mechanism is in place
it would be trivial to do things such as converting attributes
which have LDAP integer syntax into a Python integer, etc.
* Expected values in the unit tests which are a DN no longer need to
use lambda expressions to promote the returned value to a DN for
equality comparison. The return value is automatically promoted to
a DN. The lambda expressions have been removed making the code much
simpler and easier to read.
* Add class level logging to a number of classes which did not support
logging, less need for use of root_logger.
* Remove ipaserver/conn.py, it was unused.
* Consolidated duplicate code wherever it was found.
* Fixed many places that used string concatenation to form a new
string rather than string formatting operators. This is necessary
because string formatting converts it's arguments to a string prior
to building the result string. You can't concatenate a string and a
non-string.
* Simplify logic in rename_managed plugin. Use DN operators to edit
dn's.
* The live version of ipa-ldap-updater did not generate a log file.
The offline version did, now both do.
https://fedorahosted.org/freeipa/ticket/1670
https://fedorahosted.org/freeipa/ticket/1671
https://fedorahosted.org/freeipa/ticket/1672
https://fedorahosted.org/freeipa/ticket/1673
https://fedorahosted.org/freeipa/ticket/1674
https://fedorahosted.org/freeipa/ticket/1392
https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
|
|
|
self.error("Update failed: %s", e)
|
2008-09-17 22:18:09 -05:00
|
|
|
updated = False
|
2015-07-30 09:49:29 -05:00
|
|
|
except errors.ACIError as e:
|
Use DN objects instead of strings
* Convert every string specifying a DN into a DN object
* Every place a dn was manipulated in some fashion it was replaced by
the use of DN operators
* Add new DNParam parameter type for parameters which are DN's
* DN objects are used 100% of the time throughout the entire data
pipeline whenever something is logically a dn.
* Many classes now enforce DN usage for their attributes which are
dn's. This is implmented via ipautil.dn_attribute_property(). The
only permitted types for a class attribute specified to be a DN are
either None or a DN object.
* Require that every place a dn is used it must be a DN object.
This translates into lot of::
assert isinstance(dn, DN)
sprinkled through out the code. Maintaining these asserts is
valuable to preserve DN type enforcement. The asserts can be
disabled in production.
The goal of 100% DN usage 100% of the time has been realized, these
asserts are meant to preserve that.
The asserts also proved valuable in detecting functions which did
not obey their function signatures, such as the baseldap pre and
post callbacks.
* Moved ipalib.dn to ipapython.dn because DN class is shared with all
components, not just the server which uses ipalib.
* All API's now accept DN's natively, no need to convert to str (or
unicode).
* Removed ipalib.encoder and encode/decode decorators. Type conversion
is now explicitly performed in each IPASimpleLDAPObject method which
emulates a ldap.SimpleLDAPObject method.
* Entity & Entry classes now utilize DN's
* Removed __getattr__ in Entity & Entity clases. There were two
problems with it. It presented synthetic Python object attributes
based on the current LDAP data it contained. There is no way to
validate synthetic attributes using code checkers, you can't search
the code to find LDAP attribute accesses (because synthetic
attriutes look like Python attributes instead of LDAP data) and
error handling is circumscribed. Secondly __getattr__ was hiding
Python internal methods which broke class semantics.
* Replace use of methods inherited from ldap.SimpleLDAPObject via
IPAdmin class with IPAdmin methods. Directly using inherited methods
was causing us to bypass IPA logic. Mostly this meant replacing the
use of search_s() with getEntry() or getList(). Similarly direct
access of the LDAP data in classes using IPAdmin were replaced with
calls to getValue() or getValues().
* Objects returned by ldap2.find_entries() are now compatible with
either the python-ldap access methodology or the Entity/Entry access
methodology.
* All ldap operations now funnel through the common
IPASimpleLDAPObject giving us a single location where we interface
to python-ldap and perform conversions.
* The above 4 modifications means we've greatly reduced the
proliferation of multiple inconsistent ways to perform LDAP
operations. We are well on the way to having a single API in IPA for
doing LDAP (a long range goal).
* All certificate subject bases are now DN's
* DN objects were enhanced thusly:
- find, rfind, index, rindex, replace and insert methods were added
- AVA, RDN and DN classes were refactored in immutable and mutable
variants, the mutable variants are EditableAVA, EditableRDN and
EditableDN. By default we use the immutable variants preserving
important semantics. To edit a DN cast it to an EditableDN and
cast it back to DN when done editing. These issues are fully
described in other documentation.
- first_key_match was removed
- DN equalty comparison permits comparison to a basestring
* Fixed ldapupdate to work with DN's. This work included:
- Enhance test_updates.py to do more checking after applying
update. Add test for update_from_dict(). Convert code to use
unittest classes.
- Consolidated duplicate code.
- Moved code which should have been in the class into the class.
- Fix the handling of the 'deleteentry' update action. It's no longer
necessary to supply fake attributes to make it work. Detect case
where subsequent update applies a change to entry previously marked
for deletetion. General clean-up and simplification of the
'deleteentry' logic.
- Rewrote a couple of functions to be clearer and more Pythonic.
- Added documentation on the data structure being used.
- Simplfy the use of update_from_dict()
* Removed all usage of get_schema() which was being called prior to
accessing the .schema attribute of an object. If a class is using
internal lazy loading as an optimization it's not right to require
users of the interface to be aware of internal
optimization's. schema is now a property and when the schema
property is accessed it calls a private internal method to perform
the lazy loading.
* Added SchemaCache class to cache the schema's from individual
servers. This was done because of the observation we talk to
different LDAP servers, each of which may have it's own
schema. Previously we globally cached the schema from the first
server we connected to and returned that schema in all contexts. The
cache includes controls to invalidate it thus forcing a schema
refresh.
* Schema caching is now senstive to the run time context. During
install and upgrade the schema can change leading to errors due to
out-of-date cached schema. The schema cache is refreshed in these
contexts.
* We are aware of the LDAP syntax of all LDAP attributes. Every
attribute returned from an LDAP operation is passed through a
central table look-up based on it's LDAP syntax. The table key is
the LDAP syntax it's value is a Python callable that returns a
Python object matching the LDAP syntax. There are a handful of LDAP
attributes whose syntax is historically incorrect
(e.g. DistguishedNames that are defined as DirectoryStrings). The
table driven conversion mechanism is augmented with a table of
hard coded exceptions.
Currently only the following conversions occur via the table:
- dn's are converted to DN objects
- binary objects are converted to Python str objects (IPA
convention).
- everything else is converted to unicode using UTF-8 decoding (IPA
convention).
However, now that the table driven conversion mechanism is in place
it would be trivial to do things such as converting attributes
which have LDAP integer syntax into a Python integer, etc.
* Expected values in the unit tests which are a DN no longer need to
use lambda expressions to promote the returned value to a DN for
equality comparison. The return value is automatically promoted to
a DN. The lambda expressions have been removed making the code much
simpler and easier to read.
* Add class level logging to a number of classes which did not support
logging, less need for use of root_logger.
* Remove ipaserver/conn.py, it was unused.
* Consolidated duplicate code wherever it was found.
* Fixed many places that used string concatenation to form a new
string rather than string formatting operators. This is necessary
because string formatting converts it's arguments to a string prior
to building the result string. You can't concatenate a string and a
non-string.
* Simplify logic in rename_managed plugin. Use DN operators to edit
dn's.
* The live version of ipa-ldap-updater did not generate a log file.
The offline version did, now both do.
https://fedorahosted.org/freeipa/ticket/1670
https://fedorahosted.org/freeipa/ticket/1671
https://fedorahosted.org/freeipa/ticket/1672
https://fedorahosted.org/freeipa/ticket/1673
https://fedorahosted.org/freeipa/ticket/1674
https://fedorahosted.org/freeipa/ticket/1392
https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
|
|
|
self.error("Update failed: %s", e)
|
2011-03-18 10:19:53 -05:00
|
|
|
updated = False
|
2009-02-04 09:53:34 -06:00
|
|
|
|
2008-09-17 22:18:09 -05:00
|
|
|
if updated:
|
|
|
|
self.modified = True
|
2012-09-12 02:40:06 -05:00
|
|
|
|
|
|
|
if entry.dn.endswith(DN(('cn', 'index'), ('cn', 'userRoot'),
|
|
|
|
('cn', 'ldbm database'), ('cn', 'plugins'),
|
|
|
|
('cn', 'config'))) and (added or updated):
|
2013-09-10 05:20:24 -05:00
|
|
|
taskid = self.create_index_task(entry.single_value['cn'])
|
2012-09-12 02:40:06 -05:00
|
|
|
self.monitor_index_task(taskid)
|
2008-09-15 19:51:01 -05:00
|
|
|
return
|
|
|
|
|
Use DN objects instead of strings
* Convert every string specifying a DN into a DN object
* Every place a dn was manipulated in some fashion it was replaced by
the use of DN operators
* Add new DNParam parameter type for parameters which are DN's
* DN objects are used 100% of the time throughout the entire data
pipeline whenever something is logically a dn.
* Many classes now enforce DN usage for their attributes which are
dn's. This is implmented via ipautil.dn_attribute_property(). The
only permitted types for a class attribute specified to be a DN are
either None or a DN object.
* Require that every place a dn is used it must be a DN object.
This translates into lot of::
assert isinstance(dn, DN)
sprinkled through out the code. Maintaining these asserts is
valuable to preserve DN type enforcement. The asserts can be
disabled in production.
The goal of 100% DN usage 100% of the time has been realized, these
asserts are meant to preserve that.
The asserts also proved valuable in detecting functions which did
not obey their function signatures, such as the baseldap pre and
post callbacks.
* Moved ipalib.dn to ipapython.dn because DN class is shared with all
components, not just the server which uses ipalib.
* All API's now accept DN's natively, no need to convert to str (or
unicode).
* Removed ipalib.encoder and encode/decode decorators. Type conversion
is now explicitly performed in each IPASimpleLDAPObject method which
emulates a ldap.SimpleLDAPObject method.
* Entity & Entry classes now utilize DN's
* Removed __getattr__ in Entity & Entity clases. There were two
problems with it. It presented synthetic Python object attributes
based on the current LDAP data it contained. There is no way to
validate synthetic attributes using code checkers, you can't search
the code to find LDAP attribute accesses (because synthetic
attriutes look like Python attributes instead of LDAP data) and
error handling is circumscribed. Secondly __getattr__ was hiding
Python internal methods which broke class semantics.
* Replace use of methods inherited from ldap.SimpleLDAPObject via
IPAdmin class with IPAdmin methods. Directly using inherited methods
was causing us to bypass IPA logic. Mostly this meant replacing the
use of search_s() with getEntry() or getList(). Similarly direct
access of the LDAP data in classes using IPAdmin were replaced with
calls to getValue() or getValues().
* Objects returned by ldap2.find_entries() are now compatible with
either the python-ldap access methodology or the Entity/Entry access
methodology.
* All ldap operations now funnel through the common
IPASimpleLDAPObject giving us a single location where we interface
to python-ldap and perform conversions.
* The above 4 modifications means we've greatly reduced the
proliferation of multiple inconsistent ways to perform LDAP
operations. We are well on the way to having a single API in IPA for
doing LDAP (a long range goal).
* All certificate subject bases are now DN's
* DN objects were enhanced thusly:
- find, rfind, index, rindex, replace and insert methods were added
- AVA, RDN and DN classes were refactored in immutable and mutable
variants, the mutable variants are EditableAVA, EditableRDN and
EditableDN. By default we use the immutable variants preserving
important semantics. To edit a DN cast it to an EditableDN and
cast it back to DN when done editing. These issues are fully
described in other documentation.
- first_key_match was removed
- DN equalty comparison permits comparison to a basestring
* Fixed ldapupdate to work with DN's. This work included:
- Enhance test_updates.py to do more checking after applying
update. Add test for update_from_dict(). Convert code to use
unittest classes.
- Consolidated duplicate code.
- Moved code which should have been in the class into the class.
- Fix the handling of the 'deleteentry' update action. It's no longer
necessary to supply fake attributes to make it work. Detect case
where subsequent update applies a change to entry previously marked
for deletetion. General clean-up and simplification of the
'deleteentry' logic.
- Rewrote a couple of functions to be clearer and more Pythonic.
- Added documentation on the data structure being used.
- Simplfy the use of update_from_dict()
* Removed all usage of get_schema() which was being called prior to
accessing the .schema attribute of an object. If a class is using
internal lazy loading as an optimization it's not right to require
users of the interface to be aware of internal
optimization's. schema is now a property and when the schema
property is accessed it calls a private internal method to perform
the lazy loading.
* Added SchemaCache class to cache the schema's from individual
servers. This was done because of the observation we talk to
different LDAP servers, each of which may have it's own
schema. Previously we globally cached the schema from the first
server we connected to and returned that schema in all contexts. The
cache includes controls to invalidate it thus forcing a schema
refresh.
* Schema caching is now senstive to the run time context. During
install and upgrade the schema can change leading to errors due to
out-of-date cached schema. The schema cache is refreshed in these
contexts.
* We are aware of the LDAP syntax of all LDAP attributes. Every
attribute returned from an LDAP operation is passed through a
central table look-up based on it's LDAP syntax. The table key is
the LDAP syntax it's value is a Python callable that returns a
Python object matching the LDAP syntax. There are a handful of LDAP
attributes whose syntax is historically incorrect
(e.g. DistguishedNames that are defined as DirectoryStrings). The
table driven conversion mechanism is augmented with a table of
hard coded exceptions.
Currently only the following conversions occur via the table:
- dn's are converted to DN objects
- binary objects are converted to Python str objects (IPA
convention).
- everything else is converted to unicode using UTF-8 decoding (IPA
convention).
However, now that the table driven conversion mechanism is in place
it would be trivial to do things such as converting attributes
which have LDAP integer syntax into a Python integer, etc.
* Expected values in the unit tests which are a DN no longer need to
use lambda expressions to promote the returned value to a DN for
equality comparison. The return value is automatically promoted to
a DN. The lambda expressions have been removed making the code much
simpler and easier to read.
* Add class level logging to a number of classes which did not support
logging, less need for use of root_logger.
* Remove ipaserver/conn.py, it was unused.
* Consolidated duplicate code wherever it was found.
* Fixed many places that used string concatenation to form a new
string rather than string formatting operators. This is necessary
because string formatting converts it's arguments to a string prior
to building the result string. You can't concatenate a string and a
non-string.
* Simplify logic in rename_managed plugin. Use DN operators to edit
dn's.
* The live version of ipa-ldap-updater did not generate a log file.
The offline version did, now both do.
https://fedorahosted.org/freeipa/ticket/1670
https://fedorahosted.org/freeipa/ticket/1671
https://fedorahosted.org/freeipa/ticket/1672
https://fedorahosted.org/freeipa/ticket/1673
https://fedorahosted.org/freeipa/ticket/1674
https://fedorahosted.org/freeipa/ticket/1392
https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
|
|
|
def _delete_record(self, updates):
|
2009-09-14 15:12:58 -05:00
|
|
|
"""
|
2015-04-16 08:32:01 -05:00
|
|
|
Delete record
|
2009-09-14 15:12:58 -05:00
|
|
|
"""
|
|
|
|
|
Use DN objects instead of strings
* Convert every string specifying a DN into a DN object
* Every place a dn was manipulated in some fashion it was replaced by
the use of DN operators
* Add new DNParam parameter type for parameters which are DN's
* DN objects are used 100% of the time throughout the entire data
pipeline whenever something is logically a dn.
* Many classes now enforce DN usage for their attributes which are
dn's. This is implmented via ipautil.dn_attribute_property(). The
only permitted types for a class attribute specified to be a DN are
either None or a DN object.
* Require that every place a dn is used it must be a DN object.
This translates into lot of::
assert isinstance(dn, DN)
sprinkled through out the code. Maintaining these asserts is
valuable to preserve DN type enforcement. The asserts can be
disabled in production.
The goal of 100% DN usage 100% of the time has been realized, these
asserts are meant to preserve that.
The asserts also proved valuable in detecting functions which did
not obey their function signatures, such as the baseldap pre and
post callbacks.
* Moved ipalib.dn to ipapython.dn because DN class is shared with all
components, not just the server which uses ipalib.
* All API's now accept DN's natively, no need to convert to str (or
unicode).
* Removed ipalib.encoder and encode/decode decorators. Type conversion
is now explicitly performed in each IPASimpleLDAPObject method which
emulates a ldap.SimpleLDAPObject method.
* Entity & Entry classes now utilize DN's
* Removed __getattr__ in Entity & Entity clases. There were two
problems with it. It presented synthetic Python object attributes
based on the current LDAP data it contained. There is no way to
validate synthetic attributes using code checkers, you can't search
the code to find LDAP attribute accesses (because synthetic
attriutes look like Python attributes instead of LDAP data) and
error handling is circumscribed. Secondly __getattr__ was hiding
Python internal methods which broke class semantics.
* Replace use of methods inherited from ldap.SimpleLDAPObject via
IPAdmin class with IPAdmin methods. Directly using inherited methods
was causing us to bypass IPA logic. Mostly this meant replacing the
use of search_s() with getEntry() or getList(). Similarly direct
access of the LDAP data in classes using IPAdmin were replaced with
calls to getValue() or getValues().
* Objects returned by ldap2.find_entries() are now compatible with
either the python-ldap access methodology or the Entity/Entry access
methodology.
* All ldap operations now funnel through the common
IPASimpleLDAPObject giving us a single location where we interface
to python-ldap and perform conversions.
* The above 4 modifications means we've greatly reduced the
proliferation of multiple inconsistent ways to perform LDAP
operations. We are well on the way to having a single API in IPA for
doing LDAP (a long range goal).
* All certificate subject bases are now DN's
* DN objects were enhanced thusly:
- find, rfind, index, rindex, replace and insert methods were added
- AVA, RDN and DN classes were refactored in immutable and mutable
variants, the mutable variants are EditableAVA, EditableRDN and
EditableDN. By default we use the immutable variants preserving
important semantics. To edit a DN cast it to an EditableDN and
cast it back to DN when done editing. These issues are fully
described in other documentation.
- first_key_match was removed
- DN equalty comparison permits comparison to a basestring
* Fixed ldapupdate to work with DN's. This work included:
- Enhance test_updates.py to do more checking after applying
update. Add test for update_from_dict(). Convert code to use
unittest classes.
- Consolidated duplicate code.
- Moved code which should have been in the class into the class.
- Fix the handling of the 'deleteentry' update action. It's no longer
necessary to supply fake attributes to make it work. Detect case
where subsequent update applies a change to entry previously marked
for deletetion. General clean-up and simplification of the
'deleteentry' logic.
- Rewrote a couple of functions to be clearer and more Pythonic.
- Added documentation on the data structure being used.
- Simplfy the use of update_from_dict()
* Removed all usage of get_schema() which was being called prior to
accessing the .schema attribute of an object. If a class is using
internal lazy loading as an optimization it's not right to require
users of the interface to be aware of internal
optimization's. schema is now a property and when the schema
property is accessed it calls a private internal method to perform
the lazy loading.
* Added SchemaCache class to cache the schema's from individual
servers. This was done because of the observation we talk to
different LDAP servers, each of which may have it's own
schema. Previously we globally cached the schema from the first
server we connected to and returned that schema in all contexts. The
cache includes controls to invalidate it thus forcing a schema
refresh.
* Schema caching is now senstive to the run time context. During
install and upgrade the schema can change leading to errors due to
out-of-date cached schema. The schema cache is refreshed in these
contexts.
* We are aware of the LDAP syntax of all LDAP attributes. Every
attribute returned from an LDAP operation is passed through a
central table look-up based on it's LDAP syntax. The table key is
the LDAP syntax it's value is a Python callable that returns a
Python object matching the LDAP syntax. There are a handful of LDAP
attributes whose syntax is historically incorrect
(e.g. DistguishedNames that are defined as DirectoryStrings). The
table driven conversion mechanism is augmented with a table of
hard coded exceptions.
Currently only the following conversions occur via the table:
- dn's are converted to DN objects
- binary objects are converted to Python str objects (IPA
convention).
- everything else is converted to unicode using UTF-8 decoding (IPA
convention).
However, now that the table driven conversion mechanism is in place
it would be trivial to do things such as converting attributes
which have LDAP integer syntax into a Python integer, etc.
* Expected values in the unit tests which are a DN no longer need to
use lambda expressions to promote the returned value to a DN for
equality comparison. The return value is automatically promoted to
a DN. The lambda expressions have been removed making the code much
simpler and easier to read.
* Add class level logging to a number of classes which did not support
logging, less need for use of root_logger.
* Remove ipaserver/conn.py, it was unused.
* Consolidated duplicate code wherever it was found.
* Fixed many places that used string concatenation to form a new
string rather than string formatting operators. This is necessary
because string formatting converts it's arguments to a string prior
to building the result string. You can't concatenate a string and a
non-string.
* Simplify logic in rename_managed plugin. Use DN operators to edit
dn's.
* The live version of ipa-ldap-updater did not generate a log file.
The offline version did, now both do.
https://fedorahosted.org/freeipa/ticket/1670
https://fedorahosted.org/freeipa/ticket/1671
https://fedorahosted.org/freeipa/ticket/1672
https://fedorahosted.org/freeipa/ticket/1673
https://fedorahosted.org/freeipa/ticket/1674
https://fedorahosted.org/freeipa/ticket/1392
https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
|
|
|
dn = updates['dn']
|
|
|
|
try:
|
2015-06-08 10:33:11 -05:00
|
|
|
self.debug("Deleting entry %s", dn)
|
2015-03-17 06:23:06 -05:00
|
|
|
self.conn.delete_entry(dn)
|
Use DN objects instead of strings
* Convert every string specifying a DN into a DN object
* Every place a dn was manipulated in some fashion it was replaced by
the use of DN operators
* Add new DNParam parameter type for parameters which are DN's
* DN objects are used 100% of the time throughout the entire data
pipeline whenever something is logically a dn.
* Many classes now enforce DN usage for their attributes which are
dn's. This is implmented via ipautil.dn_attribute_property(). The
only permitted types for a class attribute specified to be a DN are
either None or a DN object.
* Require that every place a dn is used it must be a DN object.
This translates into lot of::
assert isinstance(dn, DN)
sprinkled through out the code. Maintaining these asserts is
valuable to preserve DN type enforcement. The asserts can be
disabled in production.
The goal of 100% DN usage 100% of the time has been realized, these
asserts are meant to preserve that.
The asserts also proved valuable in detecting functions which did
not obey their function signatures, such as the baseldap pre and
post callbacks.
* Moved ipalib.dn to ipapython.dn because DN class is shared with all
components, not just the server which uses ipalib.
* All API's now accept DN's natively, no need to convert to str (or
unicode).
* Removed ipalib.encoder and encode/decode decorators. Type conversion
is now explicitly performed in each IPASimpleLDAPObject method which
emulates a ldap.SimpleLDAPObject method.
* Entity & Entry classes now utilize DN's
* Removed __getattr__ in Entity & Entity clases. There were two
problems with it. It presented synthetic Python object attributes
based on the current LDAP data it contained. There is no way to
validate synthetic attributes using code checkers, you can't search
the code to find LDAP attribute accesses (because synthetic
attriutes look like Python attributes instead of LDAP data) and
error handling is circumscribed. Secondly __getattr__ was hiding
Python internal methods which broke class semantics.
* Replace use of methods inherited from ldap.SimpleLDAPObject via
IPAdmin class with IPAdmin methods. Directly using inherited methods
was causing us to bypass IPA logic. Mostly this meant replacing the
use of search_s() with getEntry() or getList(). Similarly direct
access of the LDAP data in classes using IPAdmin were replaced with
calls to getValue() or getValues().
* Objects returned by ldap2.find_entries() are now compatible with
either the python-ldap access methodology or the Entity/Entry access
methodology.
* All ldap operations now funnel through the common
IPASimpleLDAPObject giving us a single location where we interface
to python-ldap and perform conversions.
* The above 4 modifications means we've greatly reduced the
proliferation of multiple inconsistent ways to perform LDAP
operations. We are well on the way to having a single API in IPA for
doing LDAP (a long range goal).
* All certificate subject bases are now DN's
* DN objects were enhanced thusly:
- find, rfind, index, rindex, replace and insert methods were added
- AVA, RDN and DN classes were refactored in immutable and mutable
variants, the mutable variants are EditableAVA, EditableRDN and
EditableDN. By default we use the immutable variants preserving
important semantics. To edit a DN cast it to an EditableDN and
cast it back to DN when done editing. These issues are fully
described in other documentation.
- first_key_match was removed
- DN equalty comparison permits comparison to a basestring
* Fixed ldapupdate to work with DN's. This work included:
- Enhance test_updates.py to do more checking after applying
update. Add test for update_from_dict(). Convert code to use
unittest classes.
- Consolidated duplicate code.
- Moved code which should have been in the class into the class.
- Fix the handling of the 'deleteentry' update action. It's no longer
necessary to supply fake attributes to make it work. Detect case
where subsequent update applies a change to entry previously marked
for deletetion. General clean-up and simplification of the
'deleteentry' logic.
- Rewrote a couple of functions to be clearer and more Pythonic.
- Added documentation on the data structure being used.
- Simplfy the use of update_from_dict()
* Removed all usage of get_schema() which was being called prior to
accessing the .schema attribute of an object. If a class is using
internal lazy loading as an optimization it's not right to require
users of the interface to be aware of internal
optimization's. schema is now a property and when the schema
property is accessed it calls a private internal method to perform
the lazy loading.
* Added SchemaCache class to cache the schema's from individual
servers. This was done because of the observation we talk to
different LDAP servers, each of which may have it's own
schema. Previously we globally cached the schema from the first
server we connected to and returned that schema in all contexts. The
cache includes controls to invalidate it thus forcing a schema
refresh.
* Schema caching is now senstive to the run time context. During
install and upgrade the schema can change leading to errors due to
out-of-date cached schema. The schema cache is refreshed in these
contexts.
* We are aware of the LDAP syntax of all LDAP attributes. Every
attribute returned from an LDAP operation is passed through a
central table look-up based on it's LDAP syntax. The table key is
the LDAP syntax it's value is a Python callable that returns a
Python object matching the LDAP syntax. There are a handful of LDAP
attributes whose syntax is historically incorrect
(e.g. DistguishedNames that are defined as DirectoryStrings). The
table driven conversion mechanism is augmented with a table of
hard coded exceptions.
Currently only the following conversions occur via the table:
- dn's are converted to DN objects
- binary objects are converted to Python str objects (IPA
convention).
- everything else is converted to unicode using UTF-8 decoding (IPA
convention).
However, now that the table driven conversion mechanism is in place
it would be trivial to do things such as converting attributes
which have LDAP integer syntax into a Python integer, etc.
* Expected values in the unit tests which are a DN no longer need to
use lambda expressions to promote the returned value to a DN for
equality comparison. The return value is automatically promoted to
a DN. The lambda expressions have been removed making the code much
simpler and easier to read.
* Add class level logging to a number of classes which did not support
logging, less need for use of root_logger.
* Remove ipaserver/conn.py, it was unused.
* Consolidated duplicate code wherever it was found.
* Fixed many places that used string concatenation to form a new
string rather than string formatting operators. This is necessary
because string formatting converts it's arguments to a string prior
to building the result string. You can't concatenate a string and a
non-string.
* Simplify logic in rename_managed plugin. Use DN operators to edit
dn's.
* The live version of ipa-ldap-updater did not generate a log file.
The offline version did, now both do.
https://fedorahosted.org/freeipa/ticket/1670
https://fedorahosted.org/freeipa/ticket/1671
https://fedorahosted.org/freeipa/ticket/1672
https://fedorahosted.org/freeipa/ticket/1673
https://fedorahosted.org/freeipa/ticket/1674
https://fedorahosted.org/freeipa/ticket/1392
https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
|
|
|
self.modified = True
|
2015-07-30 09:49:29 -05:00
|
|
|
except errors.NotFound as e:
|
2015-06-08 10:33:11 -05:00
|
|
|
self.debug("%s did not exist:%s", dn, e)
|
Use DN objects instead of strings
* Convert every string specifying a DN into a DN object
* Every place a dn was manipulated in some fashion it was replaced by
the use of DN operators
* Add new DNParam parameter type for parameters which are DN's
* DN objects are used 100% of the time throughout the entire data
pipeline whenever something is logically a dn.
* Many classes now enforce DN usage for their attributes which are
dn's. This is implmented via ipautil.dn_attribute_property(). The
only permitted types for a class attribute specified to be a DN are
either None or a DN object.
* Require that every place a dn is used it must be a DN object.
This translates into lot of::
assert isinstance(dn, DN)
sprinkled through out the code. Maintaining these asserts is
valuable to preserve DN type enforcement. The asserts can be
disabled in production.
The goal of 100% DN usage 100% of the time has been realized, these
asserts are meant to preserve that.
The asserts also proved valuable in detecting functions which did
not obey their function signatures, such as the baseldap pre and
post callbacks.
* Moved ipalib.dn to ipapython.dn because DN class is shared with all
components, not just the server which uses ipalib.
* All API's now accept DN's natively, no need to convert to str (or
unicode).
* Removed ipalib.encoder and encode/decode decorators. Type conversion
is now explicitly performed in each IPASimpleLDAPObject method which
emulates a ldap.SimpleLDAPObject method.
* Entity & Entry classes now utilize DN's
* Removed __getattr__ in Entity & Entity clases. There were two
problems with it. It presented synthetic Python object attributes
based on the current LDAP data it contained. There is no way to
validate synthetic attributes using code checkers, you can't search
the code to find LDAP attribute accesses (because synthetic
attriutes look like Python attributes instead of LDAP data) and
error handling is circumscribed. Secondly __getattr__ was hiding
Python internal methods which broke class semantics.
* Replace use of methods inherited from ldap.SimpleLDAPObject via
IPAdmin class with IPAdmin methods. Directly using inherited methods
was causing us to bypass IPA logic. Mostly this meant replacing the
use of search_s() with getEntry() or getList(). Similarly direct
access of the LDAP data in classes using IPAdmin were replaced with
calls to getValue() or getValues().
* Objects returned by ldap2.find_entries() are now compatible with
either the python-ldap access methodology or the Entity/Entry access
methodology.
* All ldap operations now funnel through the common
IPASimpleLDAPObject giving us a single location where we interface
to python-ldap and perform conversions.
* The above 4 modifications means we've greatly reduced the
proliferation of multiple inconsistent ways to perform LDAP
operations. We are well on the way to having a single API in IPA for
doing LDAP (a long range goal).
* All certificate subject bases are now DN's
* DN objects were enhanced thusly:
- find, rfind, index, rindex, replace and insert methods were added
- AVA, RDN and DN classes were refactored in immutable and mutable
variants, the mutable variants are EditableAVA, EditableRDN and
EditableDN. By default we use the immutable variants preserving
important semantics. To edit a DN cast it to an EditableDN and
cast it back to DN when done editing. These issues are fully
described in other documentation.
- first_key_match was removed
- DN equalty comparison permits comparison to a basestring
* Fixed ldapupdate to work with DN's. This work included:
- Enhance test_updates.py to do more checking after applying
update. Add test for update_from_dict(). Convert code to use
unittest classes.
- Consolidated duplicate code.
- Moved code which should have been in the class into the class.
- Fix the handling of the 'deleteentry' update action. It's no longer
necessary to supply fake attributes to make it work. Detect case
where subsequent update applies a change to entry previously marked
for deletetion. General clean-up and simplification of the
'deleteentry' logic.
- Rewrote a couple of functions to be clearer and more Pythonic.
- Added documentation on the data structure being used.
- Simplfy the use of update_from_dict()
* Removed all usage of get_schema() which was being called prior to
accessing the .schema attribute of an object. If a class is using
internal lazy loading as an optimization it's not right to require
users of the interface to be aware of internal
optimization's. schema is now a property and when the schema
property is accessed it calls a private internal method to perform
the lazy loading.
* Added SchemaCache class to cache the schema's from individual
servers. This was done because of the observation we talk to
different LDAP servers, each of which may have it's own
schema. Previously we globally cached the schema from the first
server we connected to and returned that schema in all contexts. The
cache includes controls to invalidate it thus forcing a schema
refresh.
* Schema caching is now senstive to the run time context. During
install and upgrade the schema can change leading to errors due to
out-of-date cached schema. The schema cache is refreshed in these
contexts.
* We are aware of the LDAP syntax of all LDAP attributes. Every
attribute returned from an LDAP operation is passed through a
central table look-up based on it's LDAP syntax. The table key is
the LDAP syntax it's value is a Python callable that returns a
Python object matching the LDAP syntax. There are a handful of LDAP
attributes whose syntax is historically incorrect
(e.g. DistguishedNames that are defined as DirectoryStrings). The
table driven conversion mechanism is augmented with a table of
hard coded exceptions.
Currently only the following conversions occur via the table:
- dn's are converted to DN objects
- binary objects are converted to Python str objects (IPA
convention).
- everything else is converted to unicode using UTF-8 decoding (IPA
convention).
However, now that the table driven conversion mechanism is in place
it would be trivial to do things such as converting attributes
which have LDAP integer syntax into a Python integer, etc.
* Expected values in the unit tests which are a DN no longer need to
use lambda expressions to promote the returned value to a DN for
equality comparison. The return value is automatically promoted to
a DN. The lambda expressions have been removed making the code much
simpler and easier to read.
* Add class level logging to a number of classes which did not support
logging, less need for use of root_logger.
* Remove ipaserver/conn.py, it was unused.
* Consolidated duplicate code wherever it was found.
* Fixed many places that used string concatenation to form a new
string rather than string formatting operators. This is necessary
because string formatting converts it's arguments to a string prior
to building the result string. You can't concatenate a string and a
non-string.
* Simplify logic in rename_managed plugin. Use DN operators to edit
dn's.
* The live version of ipa-ldap-updater did not generate a log file.
The offline version did, now both do.
https://fedorahosted.org/freeipa/ticket/1670
https://fedorahosted.org/freeipa/ticket/1671
https://fedorahosted.org/freeipa/ticket/1672
https://fedorahosted.org/freeipa/ticket/1673
https://fedorahosted.org/freeipa/ticket/1674
https://fedorahosted.org/freeipa/ticket/1392
https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
|
|
|
self.modified = True
|
2015-07-30 09:49:29 -05:00
|
|
|
except errors.DatabaseError as e:
|
Use DN objects instead of strings
* Convert every string specifying a DN into a DN object
* Every place a dn was manipulated in some fashion it was replaced by
the use of DN operators
* Add new DNParam parameter type for parameters which are DN's
* DN objects are used 100% of the time throughout the entire data
pipeline whenever something is logically a dn.
* Many classes now enforce DN usage for their attributes which are
dn's. This is implmented via ipautil.dn_attribute_property(). The
only permitted types for a class attribute specified to be a DN are
either None or a DN object.
* Require that every place a dn is used it must be a DN object.
This translates into lot of::
assert isinstance(dn, DN)
sprinkled through out the code. Maintaining these asserts is
valuable to preserve DN type enforcement. The asserts can be
disabled in production.
The goal of 100% DN usage 100% of the time has been realized, these
asserts are meant to preserve that.
The asserts also proved valuable in detecting functions which did
not obey their function signatures, such as the baseldap pre and
post callbacks.
* Moved ipalib.dn to ipapython.dn because DN class is shared with all
components, not just the server which uses ipalib.
* All API's now accept DN's natively, no need to convert to str (or
unicode).
* Removed ipalib.encoder and encode/decode decorators. Type conversion
is now explicitly performed in each IPASimpleLDAPObject method which
emulates a ldap.SimpleLDAPObject method.
* Entity & Entry classes now utilize DN's
* Removed __getattr__ in Entity & Entity clases. There were two
problems with it. It presented synthetic Python object attributes
based on the current LDAP data it contained. There is no way to
validate synthetic attributes using code checkers, you can't search
the code to find LDAP attribute accesses (because synthetic
attriutes look like Python attributes instead of LDAP data) and
error handling is circumscribed. Secondly __getattr__ was hiding
Python internal methods which broke class semantics.
* Replace use of methods inherited from ldap.SimpleLDAPObject via
IPAdmin class with IPAdmin methods. Directly using inherited methods
was causing us to bypass IPA logic. Mostly this meant replacing the
use of search_s() with getEntry() or getList(). Similarly direct
access of the LDAP data in classes using IPAdmin were replaced with
calls to getValue() or getValues().
* Objects returned by ldap2.find_entries() are now compatible with
either the python-ldap access methodology or the Entity/Entry access
methodology.
* All ldap operations now funnel through the common
IPASimpleLDAPObject giving us a single location where we interface
to python-ldap and perform conversions.
* The above 4 modifications means we've greatly reduced the
proliferation of multiple inconsistent ways to perform LDAP
operations. We are well on the way to having a single API in IPA for
doing LDAP (a long range goal).
* All certificate subject bases are now DN's
* DN objects were enhanced thusly:
- find, rfind, index, rindex, replace and insert methods were added
- AVA, RDN and DN classes were refactored in immutable and mutable
variants, the mutable variants are EditableAVA, EditableRDN and
EditableDN. By default we use the immutable variants preserving
important semantics. To edit a DN cast it to an EditableDN and
cast it back to DN when done editing. These issues are fully
described in other documentation.
- first_key_match was removed
- DN equalty comparison permits comparison to a basestring
* Fixed ldapupdate to work with DN's. This work included:
- Enhance test_updates.py to do more checking after applying
update. Add test for update_from_dict(). Convert code to use
unittest classes.
- Consolidated duplicate code.
- Moved code which should have been in the class into the class.
- Fix the handling of the 'deleteentry' update action. It's no longer
necessary to supply fake attributes to make it work. Detect case
where subsequent update applies a change to entry previously marked
for deletetion. General clean-up and simplification of the
'deleteentry' logic.
- Rewrote a couple of functions to be clearer and more Pythonic.
- Added documentation on the data structure being used.
- Simplfy the use of update_from_dict()
* Removed all usage of get_schema() which was being called prior to
accessing the .schema attribute of an object. If a class is using
internal lazy loading as an optimization it's not right to require
users of the interface to be aware of internal
optimization's. schema is now a property and when the schema
property is accessed it calls a private internal method to perform
the lazy loading.
* Added SchemaCache class to cache the schema's from individual
servers. This was done because of the observation we talk to
different LDAP servers, each of which may have it's own
schema. Previously we globally cached the schema from the first
server we connected to and returned that schema in all contexts. The
cache includes controls to invalidate it thus forcing a schema
refresh.
* Schema caching is now senstive to the run time context. During
install and upgrade the schema can change leading to errors due to
out-of-date cached schema. The schema cache is refreshed in these
contexts.
* We are aware of the LDAP syntax of all LDAP attributes. Every
attribute returned from an LDAP operation is passed through a
central table look-up based on it's LDAP syntax. The table key is
the LDAP syntax it's value is a Python callable that returns a
Python object matching the LDAP syntax. There are a handful of LDAP
attributes whose syntax is historically incorrect
(e.g. DistguishedNames that are defined as DirectoryStrings). The
table driven conversion mechanism is augmented with a table of
hard coded exceptions.
Currently only the following conversions occur via the table:
- dn's are converted to DN objects
- binary objects are converted to Python str objects (IPA
convention).
- everything else is converted to unicode using UTF-8 decoding (IPA
convention).
However, now that the table driven conversion mechanism is in place
it would be trivial to do things such as converting attributes
which have LDAP integer syntax into a Python integer, etc.
* Expected values in the unit tests which are a DN no longer need to
use lambda expressions to promote the returned value to a DN for
equality comparison. The return value is automatically promoted to
a DN. The lambda expressions have been removed making the code much
simpler and easier to read.
* Add class level logging to a number of classes which did not support
logging, less need for use of root_logger.
* Remove ipaserver/conn.py, it was unused.
* Consolidated duplicate code wherever it was found.
* Fixed many places that used string concatenation to form a new
string rather than string formatting operators. This is necessary
because string formatting converts it's arguments to a string prior
to building the result string. You can't concatenate a string and a
non-string.
* Simplify logic in rename_managed plugin. Use DN operators to edit
dn's.
* The live version of ipa-ldap-updater did not generate a log file.
The offline version did, now both do.
https://fedorahosted.org/freeipa/ticket/1670
https://fedorahosted.org/freeipa/ticket/1671
https://fedorahosted.org/freeipa/ticket/1672
https://fedorahosted.org/freeipa/ticket/1673
https://fedorahosted.org/freeipa/ticket/1674
https://fedorahosted.org/freeipa/ticket/1392
https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
|
|
|
self.error("Delete failed: %s", e)
|
2009-09-14 15:12:58 -05:00
|
|
|
|
2008-09-15 19:51:01 -05:00
|
|
|
def get_all_files(self, root, recursive=False):
|
|
|
|
"""Get all update files"""
|
|
|
|
f = []
|
2016-09-26 07:08:17 -05:00
|
|
|
for path, _subdirs, files in os.walk(root):
|
2008-09-15 19:51:01 -05:00
|
|
|
for name in files:
|
|
|
|
if fnmatch.fnmatch(name, "*.update"):
|
|
|
|
f.append(os.path.join(path, name))
|
|
|
|
if not recursive:
|
|
|
|
break
|
2009-03-23 14:14:31 -05:00
|
|
|
f.sort()
|
2008-09-15 19:51:01 -05:00
|
|
|
return f
|
|
|
|
|
2015-03-18 09:46:00 -05:00
|
|
|
def _run_update_plugin(self, plugin_name):
|
2015-06-08 10:33:11 -05:00
|
|
|
self.log.debug("Executing upgrade plugin: %s", plugin_name)
|
2015-03-18 09:46:00 -05:00
|
|
|
restart_ds, updates = self.api.Updater[plugin_name]()
|
|
|
|
if updates:
|
|
|
|
self._run_updates(updates)
|
|
|
|
# restart may be required even if no updates were returned
|
|
|
|
# from plugin, plugin may change LDAP data directly
|
|
|
|
if restart_ds:
|
|
|
|
self.close_connection()
|
|
|
|
self.restart_ds()
|
|
|
|
self.create_connection()
|
|
|
|
|
Move Managed Entries into their own container in the replicated space.
Repoint cn=Managed Entries,cn=plugins,cn=config in common_setup
Create: cn=Managed Entries,cn=etc,$SUFFIX
Create: cn=Definitions,cn=Managed Entries,cn=etc,$SUFFIX
Create: cn=Templates,cn=Managed Entries,cn=etc,$SUFFIX
Create method for dynamically migrating any and all custom Managed Entries
from the cn=config space into the new container.
Separate the connection creation during update so that a restart can
be performed to initialize changes before performing a delete.
Add wait_for_open_socket() method in installutils
https://fedorahosted.org/freeipa/ticket/1708
2011-09-08 14:07:26 -05:00
|
|
|
def create_connection(self):
|
|
|
|
if self.online:
|
2015-03-18 09:46:00 -05:00
|
|
|
self.api.Backend.ldap2.connect(
|
|
|
|
bind_dn=DN(('cn', 'Directory Manager')),
|
|
|
|
bind_pw=self.dm_password,
|
2015-11-18 03:31:05 -06:00
|
|
|
autobind=self.ldapi,
|
|
|
|
time_limit=UPDATE_SEARCH_TIME_LIMIT,
|
|
|
|
size_limit=0)
|
2015-03-18 09:46:00 -05:00
|
|
|
self.conn = self.api.Backend.ldap2
|
Move Managed Entries into their own container in the replicated space.
Repoint cn=Managed Entries,cn=plugins,cn=config in common_setup
Create: cn=Managed Entries,cn=etc,$SUFFIX
Create: cn=Definitions,cn=Managed Entries,cn=etc,$SUFFIX
Create: cn=Templates,cn=Managed Entries,cn=etc,$SUFFIX
Create method for dynamically migrating any and all custom Managed Entries
from the cn=config space into the new container.
Separate the connection creation during update so that a restart can
be performed to initialize changes before performing a delete.
Add wait_for_open_socket() method in installutils
https://fedorahosted.org/freeipa/ticket/1708
2011-09-08 14:07:26 -05:00
|
|
|
else:
|
|
|
|
raise RuntimeError("Offline updates are not supported.")
|
|
|
|
|
Use DN objects instead of strings
* Convert every string specifying a DN into a DN object
* Every place a dn was manipulated in some fashion it was replaced by
the use of DN operators
* Add new DNParam parameter type for parameters which are DN's
* DN objects are used 100% of the time throughout the entire data
pipeline whenever something is logically a dn.
* Many classes now enforce DN usage for their attributes which are
dn's. This is implmented via ipautil.dn_attribute_property(). The
only permitted types for a class attribute specified to be a DN are
either None or a DN object.
* Require that every place a dn is used it must be a DN object.
This translates into lot of::
assert isinstance(dn, DN)
sprinkled through out the code. Maintaining these asserts is
valuable to preserve DN type enforcement. The asserts can be
disabled in production.
The goal of 100% DN usage 100% of the time has been realized, these
asserts are meant to preserve that.
The asserts also proved valuable in detecting functions which did
not obey their function signatures, such as the baseldap pre and
post callbacks.
* Moved ipalib.dn to ipapython.dn because DN class is shared with all
components, not just the server which uses ipalib.
* All API's now accept DN's natively, no need to convert to str (or
unicode).
* Removed ipalib.encoder and encode/decode decorators. Type conversion
is now explicitly performed in each IPASimpleLDAPObject method which
emulates a ldap.SimpleLDAPObject method.
* Entity & Entry classes now utilize DN's
* Removed __getattr__ in Entity & Entity clases. There were two
problems with it. It presented synthetic Python object attributes
based on the current LDAP data it contained. There is no way to
validate synthetic attributes using code checkers, you can't search
the code to find LDAP attribute accesses (because synthetic
attriutes look like Python attributes instead of LDAP data) and
error handling is circumscribed. Secondly __getattr__ was hiding
Python internal methods which broke class semantics.
* Replace use of methods inherited from ldap.SimpleLDAPObject via
IPAdmin class with IPAdmin methods. Directly using inherited methods
was causing us to bypass IPA logic. Mostly this meant replacing the
use of search_s() with getEntry() or getList(). Similarly direct
access of the LDAP data in classes using IPAdmin were replaced with
calls to getValue() or getValues().
* Objects returned by ldap2.find_entries() are now compatible with
either the python-ldap access methodology or the Entity/Entry access
methodology.
* All ldap operations now funnel through the common
IPASimpleLDAPObject giving us a single location where we interface
to python-ldap and perform conversions.
* The above 4 modifications means we've greatly reduced the
proliferation of multiple inconsistent ways to perform LDAP
operations. We are well on the way to having a single API in IPA for
doing LDAP (a long range goal).
* All certificate subject bases are now DN's
* DN objects were enhanced thusly:
- find, rfind, index, rindex, replace and insert methods were added
- AVA, RDN and DN classes were refactored in immutable and mutable
variants, the mutable variants are EditableAVA, EditableRDN and
EditableDN. By default we use the immutable variants preserving
important semantics. To edit a DN cast it to an EditableDN and
cast it back to DN when done editing. These issues are fully
described in other documentation.
- first_key_match was removed
- DN equalty comparison permits comparison to a basestring
* Fixed ldapupdate to work with DN's. This work included:
- Enhance test_updates.py to do more checking after applying
update. Add test for update_from_dict(). Convert code to use
unittest classes.
- Consolidated duplicate code.
- Moved code which should have been in the class into the class.
- Fix the handling of the 'deleteentry' update action. It's no longer
necessary to supply fake attributes to make it work. Detect case
where subsequent update applies a change to entry previously marked
for deletetion. General clean-up and simplification of the
'deleteentry' logic.
- Rewrote a couple of functions to be clearer and more Pythonic.
- Added documentation on the data structure being used.
- Simplfy the use of update_from_dict()
* Removed all usage of get_schema() which was being called prior to
accessing the .schema attribute of an object. If a class is using
internal lazy loading as an optimization it's not right to require
users of the interface to be aware of internal
optimization's. schema is now a property and when the schema
property is accessed it calls a private internal method to perform
the lazy loading.
* Added SchemaCache class to cache the schema's from individual
servers. This was done because of the observation we talk to
different LDAP servers, each of which may have it's own
schema. Previously we globally cached the schema from the first
server we connected to and returned that schema in all contexts. The
cache includes controls to invalidate it thus forcing a schema
refresh.
* Schema caching is now senstive to the run time context. During
install and upgrade the schema can change leading to errors due to
out-of-date cached schema. The schema cache is refreshed in these
contexts.
* We are aware of the LDAP syntax of all LDAP attributes. Every
attribute returned from an LDAP operation is passed through a
central table look-up based on it's LDAP syntax. The table key is
the LDAP syntax it's value is a Python callable that returns a
Python object matching the LDAP syntax. There are a handful of LDAP
attributes whose syntax is historically incorrect
(e.g. DistguishedNames that are defined as DirectoryStrings). The
table driven conversion mechanism is augmented with a table of
hard coded exceptions.
Currently only the following conversions occur via the table:
- dn's are converted to DN objects
- binary objects are converted to Python str objects (IPA
convention).
- everything else is converted to unicode using UTF-8 decoding (IPA
convention).
However, now that the table driven conversion mechanism is in place
it would be trivial to do things such as converting attributes
which have LDAP integer syntax into a Python integer, etc.
* Expected values in the unit tests which are a DN no longer need to
use lambda expressions to promote the returned value to a DN for
equality comparison. The return value is automatically promoted to
a DN. The lambda expressions have been removed making the code much
simpler and easier to read.
* Add class level logging to a number of classes which did not support
logging, less need for use of root_logger.
* Remove ipaserver/conn.py, it was unused.
* Consolidated duplicate code wherever it was found.
* Fixed many places that used string concatenation to form a new
string rather than string formatting operators. This is necessary
because string formatting converts it's arguments to a string prior
to building the result string. You can't concatenate a string and a
non-string.
* Simplify logic in rename_managed plugin. Use DN operators to edit
dn's.
* The live version of ipa-ldap-updater did not generate a log file.
The offline version did, now both do.
https://fedorahosted.org/freeipa/ticket/1670
https://fedorahosted.org/freeipa/ticket/1671
https://fedorahosted.org/freeipa/ticket/1672
https://fedorahosted.org/freeipa/ticket/1673
https://fedorahosted.org/freeipa/ticket/1674
https://fedorahosted.org/freeipa/ticket/1392
https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
|
|
|
def _run_updates(self, all_updates):
|
2015-03-06 08:14:17 -06:00
|
|
|
for update in all_updates:
|
2015-03-18 09:46:00 -05:00
|
|
|
if 'deleteentry' in update:
|
|
|
|
self._delete_record(update)
|
|
|
|
elif 'plugin' in update:
|
|
|
|
self._run_update_plugin(update['plugin'])
|
|
|
|
else:
|
|
|
|
self._update_record(update)
|
2011-11-23 15:52:40 -06:00
|
|
|
|
2015-03-13 08:59:26 -05:00
|
|
|
def update(self, files, ordered=True):
|
2008-09-15 19:51:01 -05:00
|
|
|
"""Execute the update. files is a list of the update files to use.
|
2015-03-05 09:56:02 -06:00
|
|
|
:param ordered: Update files are executed in alphabetical order
|
2008-09-17 22:18:09 -05:00
|
|
|
|
2015-03-05 09:56:02 -06:00
|
|
|
returns True if anything was changed, otherwise False
|
2008-09-15 19:51:01 -05:00
|
|
|
"""
|
2015-03-05 11:42:03 -06:00
|
|
|
self.modified = False
|
2015-03-06 08:14:17 -06:00
|
|
|
all_updates = []
|
2008-09-15 19:51:01 -05:00
|
|
|
try:
|
Move Managed Entries into their own container in the replicated space.
Repoint cn=Managed Entries,cn=plugins,cn=config in common_setup
Create: cn=Managed Entries,cn=etc,$SUFFIX
Create: cn=Definitions,cn=Managed Entries,cn=etc,$SUFFIX
Create: cn=Templates,cn=Managed Entries,cn=etc,$SUFFIX
Create method for dynamically migrating any and all custom Managed Entries
from the cn=config space into the new container.
Separate the connection creation during update so that a restart can
be performed to initialize changes before performing a delete.
Add wait_for_open_socket() method in installutils
https://fedorahosted.org/freeipa/ticket/1708
2011-09-08 14:07:26 -05:00
|
|
|
self.create_connection()
|
2011-11-23 15:52:40 -06:00
|
|
|
|
2015-03-05 09:56:02 -06:00
|
|
|
upgrade_files = files
|
|
|
|
if ordered:
|
|
|
|
upgrade_files = sorted(files)
|
2013-04-10 11:05:29 -05:00
|
|
|
|
2015-03-05 09:56:02 -06:00
|
|
|
for f in upgrade_files:
|
2008-09-15 19:51:01 -05:00
|
|
|
try:
|
2015-06-08 10:33:11 -05:00
|
|
|
self.debug("Parsing update file '%s'" % f)
|
2008-09-15 19:51:01 -05:00
|
|
|
data = self.read_file(f)
|
2015-07-30 09:49:29 -05:00
|
|
|
except Exception as e:
|
Use DN objects instead of strings
* Convert every string specifying a DN into a DN object
* Every place a dn was manipulated in some fashion it was replaced by
the use of DN operators
* Add new DNParam parameter type for parameters which are DN's
* DN objects are used 100% of the time throughout the entire data
pipeline whenever something is logically a dn.
* Many classes now enforce DN usage for their attributes which are
dn's. This is implmented via ipautil.dn_attribute_property(). The
only permitted types for a class attribute specified to be a DN are
either None or a DN object.
* Require that every place a dn is used it must be a DN object.
This translates into lot of::
assert isinstance(dn, DN)
sprinkled through out the code. Maintaining these asserts is
valuable to preserve DN type enforcement. The asserts can be
disabled in production.
The goal of 100% DN usage 100% of the time has been realized, these
asserts are meant to preserve that.
The asserts also proved valuable in detecting functions which did
not obey their function signatures, such as the baseldap pre and
post callbacks.
* Moved ipalib.dn to ipapython.dn because DN class is shared with all
components, not just the server which uses ipalib.
* All API's now accept DN's natively, no need to convert to str (or
unicode).
* Removed ipalib.encoder and encode/decode decorators. Type conversion
is now explicitly performed in each IPASimpleLDAPObject method which
emulates a ldap.SimpleLDAPObject method.
* Entity & Entry classes now utilize DN's
* Removed __getattr__ in Entity & Entity clases. There were two
problems with it. It presented synthetic Python object attributes
based on the current LDAP data it contained. There is no way to
validate synthetic attributes using code checkers, you can't search
the code to find LDAP attribute accesses (because synthetic
attriutes look like Python attributes instead of LDAP data) and
error handling is circumscribed. Secondly __getattr__ was hiding
Python internal methods which broke class semantics.
* Replace use of methods inherited from ldap.SimpleLDAPObject via
IPAdmin class with IPAdmin methods. Directly using inherited methods
was causing us to bypass IPA logic. Mostly this meant replacing the
use of search_s() with getEntry() or getList(). Similarly direct
access of the LDAP data in classes using IPAdmin were replaced with
calls to getValue() or getValues().
* Objects returned by ldap2.find_entries() are now compatible with
either the python-ldap access methodology or the Entity/Entry access
methodology.
* All ldap operations now funnel through the common
IPASimpleLDAPObject giving us a single location where we interface
to python-ldap and perform conversions.
* The above 4 modifications means we've greatly reduced the
proliferation of multiple inconsistent ways to perform LDAP
operations. We are well on the way to having a single API in IPA for
doing LDAP (a long range goal).
* All certificate subject bases are now DN's
* DN objects were enhanced thusly:
- find, rfind, index, rindex, replace and insert methods were added
- AVA, RDN and DN classes were refactored in immutable and mutable
variants, the mutable variants are EditableAVA, EditableRDN and
EditableDN. By default we use the immutable variants preserving
important semantics. To edit a DN cast it to an EditableDN and
cast it back to DN when done editing. These issues are fully
described in other documentation.
- first_key_match was removed
- DN equalty comparison permits comparison to a basestring
* Fixed ldapupdate to work with DN's. This work included:
- Enhance test_updates.py to do more checking after applying
update. Add test for update_from_dict(). Convert code to use
unittest classes.
- Consolidated duplicate code.
- Moved code which should have been in the class into the class.
- Fix the handling of the 'deleteentry' update action. It's no longer
necessary to supply fake attributes to make it work. Detect case
where subsequent update applies a change to entry previously marked
for deletetion. General clean-up and simplification of the
'deleteentry' logic.
- Rewrote a couple of functions to be clearer and more Pythonic.
- Added documentation on the data structure being used.
- Simplfy the use of update_from_dict()
* Removed all usage of get_schema() which was being called prior to
accessing the .schema attribute of an object. If a class is using
internal lazy loading as an optimization it's not right to require
users of the interface to be aware of internal
optimization's. schema is now a property and when the schema
property is accessed it calls a private internal method to perform
the lazy loading.
* Added SchemaCache class to cache the schema's from individual
servers. This was done because of the observation we talk to
different LDAP servers, each of which may have it's own
schema. Previously we globally cached the schema from the first
server we connected to and returned that schema in all contexts. The
cache includes controls to invalidate it thus forcing a schema
refresh.
* Schema caching is now senstive to the run time context. During
install and upgrade the schema can change leading to errors due to
out-of-date cached schema. The schema cache is refreshed in these
contexts.
* We are aware of the LDAP syntax of all LDAP attributes. Every
attribute returned from an LDAP operation is passed through a
central table look-up based on it's LDAP syntax. The table key is
the LDAP syntax it's value is a Python callable that returns a
Python object matching the LDAP syntax. There are a handful of LDAP
attributes whose syntax is historically incorrect
(e.g. DistguishedNames that are defined as DirectoryStrings). The
table driven conversion mechanism is augmented with a table of
hard coded exceptions.
Currently only the following conversions occur via the table:
- dn's are converted to DN objects
- binary objects are converted to Python str objects (IPA
convention).
- everything else is converted to unicode using UTF-8 decoding (IPA
convention).
However, now that the table driven conversion mechanism is in place
it would be trivial to do things such as converting attributes
which have LDAP integer syntax into a Python integer, etc.
* Expected values in the unit tests which are a DN no longer need to
use lambda expressions to promote the returned value to a DN for
equality comparison. The return value is automatically promoted to
a DN. The lambda expressions have been removed making the code much
simpler and easier to read.
* Add class level logging to a number of classes which did not support
logging, less need for use of root_logger.
* Remove ipaserver/conn.py, it was unused.
* Consolidated duplicate code wherever it was found.
* Fixed many places that used string concatenation to form a new
string rather than string formatting operators. This is necessary
because string formatting converts it's arguments to a string prior
to building the result string. You can't concatenate a string and a
non-string.
* Simplify logic in rename_managed plugin. Use DN operators to edit
dn's.
* The live version of ipa-ldap-updater did not generate a log file.
The offline version did, now both do.
https://fedorahosted.org/freeipa/ticket/1670
https://fedorahosted.org/freeipa/ticket/1671
https://fedorahosted.org/freeipa/ticket/1672
https://fedorahosted.org/freeipa/ticket/1673
https://fedorahosted.org/freeipa/ticket/1674
https://fedorahosted.org/freeipa/ticket/1392
https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
|
|
|
self.error("error reading update file '%s'", f)
|
2015-05-12 06:00:10 -05:00
|
|
|
raise RuntimeError(e)
|
2009-02-04 09:53:34 -06:00
|
|
|
|
Use DN objects instead of strings
* Convert every string specifying a DN into a DN object
* Every place a dn was manipulated in some fashion it was replaced by
the use of DN operators
* Add new DNParam parameter type for parameters which are DN's
* DN objects are used 100% of the time throughout the entire data
pipeline whenever something is logically a dn.
* Many classes now enforce DN usage for their attributes which are
dn's. This is implmented via ipautil.dn_attribute_property(). The
only permitted types for a class attribute specified to be a DN are
either None or a DN object.
* Require that every place a dn is used it must be a DN object.
This translates into lot of::
assert isinstance(dn, DN)
sprinkled through out the code. Maintaining these asserts is
valuable to preserve DN type enforcement. The asserts can be
disabled in production.
The goal of 100% DN usage 100% of the time has been realized, these
asserts are meant to preserve that.
The asserts also proved valuable in detecting functions which did
not obey their function signatures, such as the baseldap pre and
post callbacks.
* Moved ipalib.dn to ipapython.dn because DN class is shared with all
components, not just the server which uses ipalib.
* All API's now accept DN's natively, no need to convert to str (or
unicode).
* Removed ipalib.encoder and encode/decode decorators. Type conversion
is now explicitly performed in each IPASimpleLDAPObject method which
emulates a ldap.SimpleLDAPObject method.
* Entity & Entry classes now utilize DN's
* Removed __getattr__ in Entity & Entity clases. There were two
problems with it. It presented synthetic Python object attributes
based on the current LDAP data it contained. There is no way to
validate synthetic attributes using code checkers, you can't search
the code to find LDAP attribute accesses (because synthetic
attriutes look like Python attributes instead of LDAP data) and
error handling is circumscribed. Secondly __getattr__ was hiding
Python internal methods which broke class semantics.
* Replace use of methods inherited from ldap.SimpleLDAPObject via
IPAdmin class with IPAdmin methods. Directly using inherited methods
was causing us to bypass IPA logic. Mostly this meant replacing the
use of search_s() with getEntry() or getList(). Similarly direct
access of the LDAP data in classes using IPAdmin were replaced with
calls to getValue() or getValues().
* Objects returned by ldap2.find_entries() are now compatible with
either the python-ldap access methodology or the Entity/Entry access
methodology.
* All ldap operations now funnel through the common
IPASimpleLDAPObject giving us a single location where we interface
to python-ldap and perform conversions.
* The above 4 modifications means we've greatly reduced the
proliferation of multiple inconsistent ways to perform LDAP
operations. We are well on the way to having a single API in IPA for
doing LDAP (a long range goal).
* All certificate subject bases are now DN's
* DN objects were enhanced thusly:
- find, rfind, index, rindex, replace and insert methods were added
- AVA, RDN and DN classes were refactored in immutable and mutable
variants, the mutable variants are EditableAVA, EditableRDN and
EditableDN. By default we use the immutable variants preserving
important semantics. To edit a DN cast it to an EditableDN and
cast it back to DN when done editing. These issues are fully
described in other documentation.
- first_key_match was removed
- DN equalty comparison permits comparison to a basestring
* Fixed ldapupdate to work with DN's. This work included:
- Enhance test_updates.py to do more checking after applying
update. Add test for update_from_dict(). Convert code to use
unittest classes.
- Consolidated duplicate code.
- Moved code which should have been in the class into the class.
- Fix the handling of the 'deleteentry' update action. It's no longer
necessary to supply fake attributes to make it work. Detect case
where subsequent update applies a change to entry previously marked
for deletetion. General clean-up and simplification of the
'deleteentry' logic.
- Rewrote a couple of functions to be clearer and more Pythonic.
- Added documentation on the data structure being used.
- Simplfy the use of update_from_dict()
* Removed all usage of get_schema() which was being called prior to
accessing the .schema attribute of an object. If a class is using
internal lazy loading as an optimization it's not right to require
users of the interface to be aware of internal
optimization's. schema is now a property and when the schema
property is accessed it calls a private internal method to perform
the lazy loading.
* Added SchemaCache class to cache the schema's from individual
servers. This was done because of the observation we talk to
different LDAP servers, each of which may have it's own
schema. Previously we globally cached the schema from the first
server we connected to and returned that schema in all contexts. The
cache includes controls to invalidate it thus forcing a schema
refresh.
* Schema caching is now senstive to the run time context. During
install and upgrade the schema can change leading to errors due to
out-of-date cached schema. The schema cache is refreshed in these
contexts.
* We are aware of the LDAP syntax of all LDAP attributes. Every
attribute returned from an LDAP operation is passed through a
central table look-up based on it's LDAP syntax. The table key is
the LDAP syntax it's value is a Python callable that returns a
Python object matching the LDAP syntax. There are a handful of LDAP
attributes whose syntax is historically incorrect
(e.g. DistguishedNames that are defined as DirectoryStrings). The
table driven conversion mechanism is augmented with a table of
hard coded exceptions.
Currently only the following conversions occur via the table:
- dn's are converted to DN objects
- binary objects are converted to Python str objects (IPA
convention).
- everything else is converted to unicode using UTF-8 decoding (IPA
convention).
However, now that the table driven conversion mechanism is in place
it would be trivial to do things such as converting attributes
which have LDAP integer syntax into a Python integer, etc.
* Expected values in the unit tests which are a DN no longer need to
use lambda expressions to promote the returned value to a DN for
equality comparison. The return value is automatically promoted to
a DN. The lambda expressions have been removed making the code much
simpler and easier to read.
* Add class level logging to a number of classes which did not support
logging, less need for use of root_logger.
* Remove ipaserver/conn.py, it was unused.
* Consolidated duplicate code wherever it was found.
* Fixed many places that used string concatenation to form a new
string rather than string formatting operators. This is necessary
because string formatting converts it's arguments to a string prior
to building the result string. You can't concatenate a string and a
non-string.
* Simplify logic in rename_managed plugin. Use DN operators to edit
dn's.
* The live version of ipa-ldap-updater did not generate a log file.
The offline version did, now both do.
https://fedorahosted.org/freeipa/ticket/1670
https://fedorahosted.org/freeipa/ticket/1671
https://fedorahosted.org/freeipa/ticket/1672
https://fedorahosted.org/freeipa/ticket/1673
https://fedorahosted.org/freeipa/ticket/1674
https://fedorahosted.org/freeipa/ticket/1392
https://fedorahosted.org/freeipa/ticket/2872
2012-05-13 06:36:35 -05:00
|
|
|
self.parse_update_file(f, data, all_updates)
|
2015-03-05 09:56:02 -06:00
|
|
|
self._run_updates(all_updates)
|
2015-03-06 08:14:17 -06:00
|
|
|
all_updates = []
|
2008-09-15 19:51:01 -05:00
|
|
|
finally:
|
2015-03-05 09:56:02 -06:00
|
|
|
self.close_connection()
|
2011-11-23 15:52:40 -06:00
|
|
|
|
|
|
|
return self.modified
|
|
|
|
|
2014-11-04 08:59:50 -06:00
|
|
|
def close_connection(self):
|
|
|
|
"""Close ldap connection"""
|
|
|
|
if self.conn:
|
2015-03-18 09:46:00 -05:00
|
|
|
self.api.Backend.ldap2.disconnect()
|
2014-11-04 08:59:50 -06:00
|
|
|
self.conn = None
|
2015-03-18 09:46:00 -05:00
|
|
|
|
|
|
|
def restart_ds(self):
|
2015-03-23 07:00:49 -05:00
|
|
|
dirsrv = services.knownservices.dirsrv
|
2015-06-08 10:33:11 -05:00
|
|
|
self.log.debug('Restarting directory server to apply updates')
|
2016-02-23 03:37:47 -06:00
|
|
|
dirsrv.restart(ldapi=self.ldapi)
|