* Use relative aliases for all non-current Grafana aliases Prevents non-latest documentation "stealing" the page away from latest and through permanent redirects for latest pages that no longer exist. The redirected pages are indexed by search engines but our robots.txt forbids them crawling the non-latest page. Signed-off-by: Jack Baldry <jack.baldry@grafana.com> * Remove aliases from shared pages Signed-off-by: Jack Baldry <jack.baldry@grafana.com> * Rewrite all current latest aliases to be next Signed-off-by: Jack Baldry <jack.baldry@grafana.com> * Fix typo in latest alias Signed-off-by: Jack Baldry <jack.baldry@grafana.com> * Remove all current page aliases find docs/sources -type f -name '*.md' -exec sed -z -i 's#\n *- /docs/grafana/next/[^\n]*\n#\n#' {} \; find docs/sources -type f -name '*.md' -exec sed -Ez -i 's#\n((aliases:\n *-)|aliases:\n)#\n\2#' {} \; Signed-off-by: Jack Baldry <jack.baldry@grafana.com> * Prettier Signed-off-by: Jack Baldry <jack.baldry@grafana.com> Signed-off-by: Jack Baldry <jack.baldry@grafana.com>
4.3 KiB
title |
---|
Build a streaming data source plugin |
Build a streaming data source plugin
This guide explains how to build a streaming data source plugin.
This guide assumes that you're already familiar with how to [Build a data source plugin]({{< ref "build-a-data-source-plugin.md" >}}).
When monitoring critical applications, you want your dashboard to refresh as soon as your data does. In Grafana, you can set your dashboards to automatically refresh at a certain interval, no matter what data source you use. Unfortunately, this means that your queries are requesting all the data to be sent again, regardless of whether the data has actually changed.
By enabling streaming for your data source plugin, you can update your dashboard as soon as new data becomes available.
For example, a streaming data source plugin can connect to a websocket, or subscribe to a message bus, and update the visualization whenever a new message is available.
Let's see how you can add streaming to an existing data source!
Grafana uses RxJS to continuously send data from a data source to a panel visualization. There's a lot more to RxJS than what's covered in this guide. If you want to learn more, check out the RxJS documentation.
-
Enable streaming for your data source in the
plugin.json
file.{ "streaming": true }
-
Change the signature of the
query
method to return anObservable
from therxjs
package. Make sure you remove theasync
keyword.import { Observable } from 'rxjs';
query(options: DataQueryRequest<MyQuery>): Observable<DataQueryResponse> { // ... }
-
Create an
Observable
for each query, and then combine them all using themerge
function from therxjs
package.import { Observable, merge } from 'rxjs';
const observables = options.targets.map((target) => { return new Observable<DataQueryResponse>((subscriber) => { // ... }); }); return merge(...observables);
-
In the
subscribe
function, create aCircularDataFrame
.import { CircularDataFrame } from '@grafana/data';
const frame = new CircularDataFrame({ append: 'tail', capacity: 1000, }); frame.refId = query.refId; frame.addField({ name: 'time', type: FieldType.time }); frame.addField({ name: 'value', type: FieldType.number });
Circular data frames have a limited capacity. When a circular data frame reaches its capacity, the oldest data point is removed.
-
Use
subscriber.next()
to send the updated data frame whenever you receive new updates.import { LoadingState } from '@grafana/data';
const intervalId = setInterval(() => { frame.add({ time: Date.now(), value: Math.random() }); subscriber.next({ data: [frame], key: query.refId, state: LoadingState.Streaming, }); }, 500); return () => { clearInterval(intervalId); };
Note: In practice, you'd call
subscriber.next
as soon as you receive new data from a websocket or a message bus. The example above simulates data being received every 500 milliseconds.
Here's the final query
method.
query(options: DataQueryRequest<MyQuery>): Observable<DataQueryResponse> {
const streams = options.targets.map(target => {
const query = defaults(target, defaultQuery);
return new Observable<DataQueryResponse>(subscriber => {
const frame = new CircularDataFrame({
append: 'tail',
capacity: 1000,
});
frame.refId = query.refId;
frame.addField({ name: 'time', type: FieldType.time });
frame.addField({ name: 'value', type: FieldType.number });
const intervalId = setInterval(() => {
frame.add({ time: Date.now(), value: Math.random() });
subscriber.next({
data: [frame],
key: query.refId,
state: LoadingState.Streaming,
});
}, 100);
return () => {
clearInterval(intervalId);
};
});
});
return merge(...streams);
}
One limitation with this example is that the panel visualization is cleared every time you update the dashboard. If you have access to historical data, you can add, or backfill, it to the data frame before the first call to subscriber.next()
.