grafana/public/app/plugins/datasource/prometheus/language_provider.test.ts
ismail simsek 29906847e1
Prometheus: Fix fetching label values when datasource has no labels match api support (#72960)
* interpolate match string

* provide unit test

* add the third parameter back to fix the unit test
2023-08-07 15:13:08 +02:00

944 lines
36 KiB
TypeScript

import { Editor as SlateEditor } from 'slate';
import Plain from 'slate-plain-serializer';
import { AbstractLabelOperator, dateTime, HistoryItem, TimeRange } from '@grafana/data';
import { config } from '@grafana/runtime';
import { SearchFunctionType } from '@grafana/ui';
import { Label } from './components/monaco-query-field/monaco-completion-provider/situation';
import { PrometheusDatasource } from './datasource';
import LanguageProvider from './language_provider';
import { getClientCacheDurationInMinutes, getPrometheusTime, getRangeSnapInterval } from './language_utils';
import { PrometheusCacheLevel, PromQuery } from './types';
const now = new Date(1681300293392).getTime();
const timeRangeDurationSeconds = 1;
const toPrometheusTime = getPrometheusTime(dateTime(now), false);
const fromPrometheusTime = getPrometheusTime(dateTime(now - timeRangeDurationSeconds * 1000), false);
const toPrometheusTimeString = toPrometheusTime.toString(10);
const fromPrometheusTimeString = fromPrometheusTime.toString(10);
const getTimeRangeParams = (override?: Partial<{ start: string; end: string }>): { start: string; end: string } => ({
start: fromPrometheusTimeString,
end: toPrometheusTimeString,
...override,
});
const getMockQuantizedTimeRangeParams = (override?: Partial<TimeRange>): TimeRange => ({
from: dateTime(fromPrometheusTime * 1000),
to: dateTime(toPrometheusTime * 1000),
raw: {
from: `now-${timeRangeDurationSeconds}s`,
to: 'now',
},
...override,
});
describe('Language completion provider', () => {
const defaultDatasource: PrometheusDatasource = {
metadataRequest: () => ({ data: { data: [] } }),
getTimeRangeParams: getTimeRangeParams,
interpolateString: (string: string) => string,
hasLabelsMatchAPISupport: () => false,
getQuantizedTimeRangeParams: () =>
getRangeSnapInterval(PrometheusCacheLevel.None, getMockQuantizedTimeRangeParams()),
getDaysToCacheMetadata: () => 1,
getAdjustedInterval: () => getRangeSnapInterval(PrometheusCacheLevel.None, getMockQuantizedTimeRangeParams()),
cacheLevel: PrometheusCacheLevel.None,
} as unknown as PrometheusDatasource;
describe('cleanText', () => {
const cleanText = new LanguageProvider(defaultDatasource).cleanText;
it('does not remove metric or label keys', () => {
expect(cleanText('foo')).toBe('foo');
expect(cleanText('foo_bar')).toBe('foo_bar');
});
it('keeps trailing space but removes leading', () => {
expect(cleanText('foo ')).toBe('foo ');
expect(cleanText(' foo')).toBe('foo');
});
it('removes label syntax', () => {
expect(cleanText('foo="bar')).toBe('bar');
expect(cleanText('foo!="bar')).toBe('bar');
expect(cleanText('foo=~"bar')).toBe('bar');
expect(cleanText('foo!~"bar')).toBe('bar');
expect(cleanText('{bar')).toBe('bar');
});
it('removes previous operators', () => {
expect(cleanText('foo + bar')).toBe('bar');
expect(cleanText('foo+bar')).toBe('bar');
expect(cleanText('foo - bar')).toBe('bar');
expect(cleanText('foo * bar')).toBe('bar');
expect(cleanText('foo / bar')).toBe('bar');
expect(cleanText('foo % bar')).toBe('bar');
expect(cleanText('foo ^ bar')).toBe('bar');
expect(cleanText('foo and bar')).toBe('bar');
expect(cleanText('foo or bar')).toBe('bar');
expect(cleanText('foo unless bar')).toBe('bar');
expect(cleanText('foo == bar')).toBe('bar');
expect(cleanText('foo != bar')).toBe('bar');
expect(cleanText('foo > bar')).toBe('bar');
expect(cleanText('foo < bar')).toBe('bar');
expect(cleanText('foo >= bar')).toBe('bar');
expect(cleanText('foo <= bar')).toBe('bar');
expect(cleanText('memory')).toBe('memory');
});
it('removes aggregation syntax', () => {
expect(cleanText('(bar')).toBe('bar');
expect(cleanText('(foo,bar')).toBe('bar');
expect(cleanText('(foo, bar')).toBe('bar');
});
it('removes range syntax', () => {
expect(cleanText('[1m')).toBe('1m');
});
});
// @todo clean up prometheusResourceBrowserCache feature flag
describe('getSeriesLabelsDeprecatedLRU', () => {
beforeEach(() => {
config.featureToggles.prometheusResourceBrowserCache = false;
});
it('should call labels endpoint', () => {
const languageProvider = new LanguageProvider({
...defaultDatasource,
hasLabelsMatchAPISupport: () => true,
} as PrometheusDatasource);
const getSeriesLabels = languageProvider.getSeriesLabels;
const requestSpy = jest.spyOn(languageProvider, 'request');
const labelName = 'job';
const labelValue = 'grafana';
getSeriesLabels(`{${labelName}="${labelValue}"}`, [{ name: labelName, value: labelValue, op: '=' }] as Label[]);
expect(requestSpy).toHaveBeenCalled();
expect(requestSpy).toHaveBeenCalledWith(`/api/v1/labels`, [], {
end: toPrometheusTimeString,
'match[]': '{job="grafana"}',
start: fromPrometheusTimeString,
});
});
it('should call series endpoint', () => {
const languageProvider = new LanguageProvider({
...defaultDatasource,
getAdjustedInterval: () => getRangeSnapInterval(PrometheusCacheLevel.None, getMockQuantizedTimeRangeParams()),
} as PrometheusDatasource);
const getSeriesLabels = languageProvider.getSeriesLabels;
const requestSpy = jest.spyOn(languageProvider, 'request');
const labelName = 'job';
const labelValue = 'grafana';
getSeriesLabels(`{${labelName}="${labelValue}"}`, [{ name: labelName, value: labelValue, op: '=' }] as Label[]);
expect(requestSpy).toHaveBeenCalled();
expect(requestSpy).toHaveBeenCalledWith('/api/v1/series', [], {
end: toPrometheusTimeString,
'match[]': '{job="grafana"}',
start: fromPrometheusTimeString,
});
});
});
describe('getSeriesLabels', () => {
beforeEach(() => {
config.featureToggles.prometheusResourceBrowserCache = true;
});
it('should call labels endpoint', () => {
const languageProvider = new LanguageProvider({
...defaultDatasource,
hasLabelsMatchAPISupport: () => true,
} as PrometheusDatasource);
const getSeriesLabels = languageProvider.getSeriesLabels;
const requestSpy = jest.spyOn(languageProvider, 'request');
const labelName = 'job';
const labelValue = 'grafana';
getSeriesLabels(`{${labelName}="${labelValue}"}`, [{ name: labelName, value: labelValue, op: '=' }] as Label[]);
expect(requestSpy).toHaveBeenCalled();
expect(requestSpy).toHaveBeenCalledWith(
`/api/v1/labels`,
[],
{
end: toPrometheusTimeString,
'match[]': '{job="grafana"}',
start: fromPrometheusTimeString,
},
undefined
);
});
it('should call series endpoint', () => {
const languageProvider = new LanguageProvider({
...defaultDatasource,
getAdjustedInterval: () => getRangeSnapInterval(PrometheusCacheLevel.None, getMockQuantizedTimeRangeParams()),
} as PrometheusDatasource);
const getSeriesLabels = languageProvider.getSeriesLabels;
const requestSpy = jest.spyOn(languageProvider, 'request');
const labelName = 'job';
const labelValue = 'grafana';
getSeriesLabels(`{${labelName}="${labelValue}"}`, [{ name: labelName, value: labelValue, op: '=' }] as Label[]);
expect(requestSpy).toHaveBeenCalled();
expect(requestSpy).toHaveBeenCalledWith(
'/api/v1/series',
[],
{
end: toPrometheusTimeString,
'match[]': '{job="grafana"}',
start: fromPrometheusTimeString,
},
undefined
);
});
it('should call labels endpoint with quantized start', () => {
const timeSnapMinutes = getClientCacheDurationInMinutes(PrometheusCacheLevel.Low);
const languageProvider = new LanguageProvider({
...defaultDatasource,
hasLabelsMatchAPISupport: () => true,
cacheLevel: PrometheusCacheLevel.Low,
getAdjustedInterval: () => getRangeSnapInterval(PrometheusCacheLevel.Low, getMockQuantizedTimeRangeParams()),
getCacheDurationInMinutes: () => timeSnapMinutes,
} as PrometheusDatasource);
const getSeriesLabels = languageProvider.getSeriesLabels;
const requestSpy = jest.spyOn(languageProvider, 'request');
const labelName = 'job';
const labelValue = 'grafana';
getSeriesLabels(`{${labelName}="${labelValue}"}`, [{ name: labelName, value: labelValue, op: '=' }] as Label[]);
expect(requestSpy).toHaveBeenCalled();
expect(requestSpy).toHaveBeenCalledWith(
`/api/v1/labels`,
[],
{
end: (
dateTime(fromPrometheusTime * 1000)
.add(timeSnapMinutes, 'minute')
.startOf('minute')
.valueOf() / 1000
).toString(),
'match[]': '{job="grafana"}',
start: (
dateTime(toPrometheusTime * 1000)
.startOf('minute')
.valueOf() / 1000
).toString(),
},
{ headers: { 'X-Grafana-Cache': `private, max-age=${timeSnapMinutes * 60}` } }
);
});
});
describe('getSeriesValues', () => {
it('should call old series endpoint and should use match[] parameter', () => {
const languageProvider = new LanguageProvider({
...defaultDatasource,
} as PrometheusDatasource);
const getSeriesValues = languageProvider.getSeriesValues;
const requestSpy = jest.spyOn(languageProvider, 'request');
getSeriesValues('job', '{job="grafana"}');
expect(requestSpy).toHaveBeenCalled();
expect(requestSpy).toHaveBeenCalledWith(
'/api/v1/series',
[],
{
end: toPrometheusTimeString,
'match[]': '{job="grafana"}',
start: fromPrometheusTimeString,
},
undefined
);
});
it('should call new series endpoint and should use match[] parameter', () => {
const languageProvider = new LanguageProvider({
...defaultDatasource,
hasLabelsMatchAPISupport: () => true,
} as PrometheusDatasource);
const getSeriesValues = languageProvider.getSeriesValues;
const requestSpy = jest.spyOn(languageProvider, 'request');
const labelName = 'job';
const labelValue = 'grafana';
getSeriesValues(labelName, `{${labelName}="${labelValue}"}`);
expect(requestSpy).toHaveBeenCalled();
expect(requestSpy).toHaveBeenCalledWith(
`/api/v1/label/${labelName}/values`,
[],
{
end: toPrometheusTimeString,
'match[]': `{${labelName}="${labelValue}"}`,
start: fromPrometheusTimeString,
},
undefined
);
});
it('should call old series endpoint and should use match[] parameter and interpolate the template variables', () => {
const languageProvider = new LanguageProvider({
...defaultDatasource,
interpolateString: (string: string) => string.replace(/\$/, 'interpolated-'),
} as PrometheusDatasource);
const getSeriesValues = languageProvider.getSeriesValues;
const requestSpy = jest.spyOn(languageProvider, 'request');
getSeriesValues('job', '{instance="$instance", job="grafana"}');
expect(requestSpy).toHaveBeenCalled();
expect(requestSpy).toHaveBeenCalledWith(
'/api/v1/series',
[],
{
end: toPrometheusTimeString,
'match[]': '{instance="interpolated-instance", job="grafana"}',
start: fromPrometheusTimeString,
},
undefined
);
});
});
describe('fetchSeries', () => {
it('should use match[] parameter', () => {
const languageProvider = new LanguageProvider(defaultDatasource);
const fetchSeries = languageProvider.fetchSeries;
const requestSpy = jest.spyOn(languageProvider, 'request');
fetchSeries('{job="grafana"}');
expect(requestSpy).toHaveBeenCalled();
expect(requestSpy).toHaveBeenCalledWith(
'/api/v1/series',
{},
{ end: toPrometheusTimeString, 'match[]': '{job="grafana"}', start: fromPrometheusTimeString },
undefined
);
});
});
describe('fetchSeriesLabels', () => {
it('should interpolate variable in series', () => {
const languageProvider = new LanguageProvider({
...defaultDatasource,
interpolateString: (string: string) => string.replace(/\$/, 'interpolated-'),
} as PrometheusDatasource);
const fetchSeriesLabels = languageProvider.fetchSeriesLabels;
const requestSpy = jest.spyOn(languageProvider, 'request');
fetchSeriesLabels('$metric');
expect(requestSpy).toHaveBeenCalled();
expect(requestSpy).toHaveBeenCalledWith(
'/api/v1/series',
[],
{
end: toPrometheusTimeString,
'match[]': 'interpolated-metric',
start: fromPrometheusTimeString,
},
undefined
);
});
});
describe('fetchLabelValues', () => {
it('should interpolate variable in series', () => {
const languageProvider = new LanguageProvider({
...defaultDatasource,
interpolateString: (string: string) => string.replace(/\$/, 'interpolated-'),
} as PrometheusDatasource);
const fetchLabelValues = languageProvider.fetchLabelValues;
const requestSpy = jest.spyOn(languageProvider, 'request');
fetchLabelValues('$job');
expect(requestSpy).toHaveBeenCalled();
expect(requestSpy).toHaveBeenCalledWith(
'/api/v1/label/interpolated-job/values',
[],
{
end: toPrometheusTimeString,
start: fromPrometheusTimeString,
},
undefined
);
});
});
describe('empty query suggestions', () => {
it('returns no suggestions on empty context', async () => {
const instance = new LanguageProvider(defaultDatasource);
const value = Plain.deserialize('');
const result = await instance.provideCompletionItems({ text: '', prefix: '', value, wrapperClasses: [] });
expect(result.context).toBeUndefined();
expect(result.suggestions).toMatchObject([]);
});
it('returns no suggestions with metrics on empty context even when metrics were provided', async () => {
const instance = new LanguageProvider(defaultDatasource);
instance.metrics = ['foo', 'bar'];
const value = Plain.deserialize('');
const result = await instance.provideCompletionItems({ text: '', prefix: '', value, wrapperClasses: [] });
expect(result.context).toBeUndefined();
expect(result.suggestions).toMatchObject([]);
});
it('returns history on empty context when history was provided', async () => {
const instance = new LanguageProvider(defaultDatasource);
const value = Plain.deserialize('');
const history: Array<HistoryItem<PromQuery>> = [
{
ts: 0,
query: { refId: '1', expr: 'metric' },
},
];
const result = await instance.provideCompletionItems(
{ text: '', prefix: '', value, wrapperClasses: [] },
{ history }
);
expect(result.context).toBeUndefined();
expect(result.suggestions).toMatchObject([
{
label: 'History',
items: [
{
label: 'metric',
},
],
},
]);
});
});
describe('range suggestions', () => {
it('returns range suggestions in range context', async () => {
const instance = new LanguageProvider(defaultDatasource);
const value = Plain.deserialize('1');
const result = await instance.provideCompletionItems({
text: '1',
prefix: '1',
value,
wrapperClasses: ['context-range'],
});
expect(result.context).toBe('context-range');
expect(result.suggestions).toMatchObject([
{
items: [
{ label: '$__interval', sortValue: '$__interval' },
{ label: '$__rate_interval', sortValue: '$__rate_interval' },
{ label: '$__range', sortValue: '$__range' },
{ label: '1m', sortValue: '00:01:00' },
{ label: '5m', sortValue: '00:05:00' },
{ label: '10m', sortValue: '00:10:00' },
{ label: '30m', sortValue: '00:30:00' },
{ label: '1h', sortValue: '01:00:00' },
{ label: '1d', sortValue: '24:00:00' },
],
label: 'Range vector',
},
]);
});
});
describe('metric suggestions', () => {
it('returns history, metrics and function suggestions in an uknown context ', async () => {
const instance = new LanguageProvider(defaultDatasource);
instance.metrics = ['foo', 'bar'];
const history: Array<HistoryItem<PromQuery>> = [
{
ts: 0,
query: { refId: '1', expr: 'metric' },
},
];
let value = Plain.deserialize('m');
value = value.setSelection({ anchor: { offset: 1 }, focus: { offset: 1 } });
// Even though no metric with `m` is present, we still get metric completion items, filtering is done by the consumer
const result = await instance.provideCompletionItems(
{ text: 'm', prefix: 'm', value, wrapperClasses: [] },
{ history }
);
expect(result.context).toBeUndefined();
expect(result.suggestions).toMatchObject([
{
label: 'History',
items: [
{
label: 'metric',
},
],
},
{
label: 'Functions',
},
{
label: 'Metrics',
},
]);
});
it('returns no suggestions directly after a binary operator', async () => {
const instance = new LanguageProvider(defaultDatasource);
instance.metrics = ['foo', 'bar'];
const value = Plain.deserialize('*');
const result = await instance.provideCompletionItems({ text: '*', prefix: '', value, wrapperClasses: [] });
expect(result.context).toBeUndefined();
expect(result.suggestions).toMatchObject([]);
});
it('returns metric suggestions with prefix after a binary operator', async () => {
const instance = new LanguageProvider(defaultDatasource);
instance.metrics = ['foo', 'bar'];
const value = Plain.deserialize('foo + b');
const ed = new SlateEditor({ value });
const valueWithSelection = ed.moveForward(7).value;
const result = await instance.provideCompletionItems({
text: 'foo + b',
prefix: 'b',
value: valueWithSelection,
wrapperClasses: [],
});
expect(result.context).toBeUndefined();
expect(result.suggestions).toMatchObject([
{
label: 'Functions',
},
{
label: 'Metrics',
},
]);
});
it('returns no suggestions at the beginning of a non-empty function', async () => {
const instance = new LanguageProvider(defaultDatasource);
const value = Plain.deserialize('sum(up)');
const ed = new SlateEditor({ value });
const valueWithSelection = ed.moveForward(4).value;
const result = await instance.provideCompletionItems({
text: '',
prefix: '',
value: valueWithSelection,
wrapperClasses: [],
});
expect(result.context).toBeUndefined();
expect(result.suggestions.length).toEqual(0);
});
});
describe('label suggestions', () => {
it('returns default label suggestions on label context and no metric', async () => {
const instance = new LanguageProvider(defaultDatasource);
const value = Plain.deserialize('{}');
const ed = new SlateEditor({ value });
const valueWithSelection = ed.moveForward(1).value;
const result = await instance.provideCompletionItems({
text: '',
prefix: '',
wrapperClasses: ['context-labels'],
value: valueWithSelection,
});
expect(result.context).toBe('context-labels');
expect(result.suggestions).toEqual([
{
items: [{ label: 'job' }, { label: 'instance' }],
label: 'Labels',
searchFunctionType: SearchFunctionType.Fuzzy,
},
]);
});
it('returns label suggestions on label context and metric', async () => {
const datasources: PrometheusDatasource = {
...defaultDatasource,
metadataRequest: () => ({ data: { data: [{ __name__: 'metric', bar: 'bazinga' }] } }),
} as unknown as PrometheusDatasource;
const instance = new LanguageProvider(datasources);
const value = Plain.deserialize('metric{}');
const ed = new SlateEditor({ value });
const valueWithSelection = ed.moveForward(7).value;
const result = await instance.provideCompletionItems({
text: '',
prefix: '',
wrapperClasses: ['context-labels'],
value: valueWithSelection,
});
expect(result.context).toBe('context-labels');
expect(result.suggestions).toEqual([
{ items: [{ label: 'bar' }], label: 'Labels', searchFunctionType: SearchFunctionType.Fuzzy },
]);
});
it('returns label suggestions on label context but leaves out labels that already exist', async () => {
const testDatasource: PrometheusDatasource = {
...defaultDatasource,
metadataRequest: () => ({
data: {
data: [
{
__name__: 'metric',
bar: 'asdasd',
job1: 'dsadsads',
job2: 'fsfsdfds',
job3: 'dsadsad',
},
],
},
}),
} as unknown as PrometheusDatasource;
const instance = new LanguageProvider(testDatasource);
const value = Plain.deserialize('{job1="foo",job2!="foo",job3=~"foo",__name__="metric",}');
const ed = new SlateEditor({ value });
const valueWithSelection = ed.moveForward(54).value;
const result = await instance.provideCompletionItems({
text: '',
prefix: '',
wrapperClasses: ['context-labels'],
value: valueWithSelection,
});
expect(result.context).toBe('context-labels');
expect(result.suggestions).toEqual([
{ items: [{ label: 'bar' }], label: 'Labels', searchFunctionType: SearchFunctionType.Fuzzy },
]);
});
it('returns label value suggestions inside a label value context after a negated matching operator', async () => {
const instance = new LanguageProvider({
...defaultDatasource,
metadataRequest: () => {
return { data: { data: ['value1', 'value2'] } };
},
} as unknown as PrometheusDatasource);
const value = Plain.deserialize('{job!=}');
const ed = new SlateEditor({ value });
const valueWithSelection = ed.moveForward(6).value;
const result = await instance.provideCompletionItems({
text: '!=',
prefix: '',
wrapperClasses: ['context-labels'],
labelKey: 'job',
value: valueWithSelection,
});
expect(result.context).toBe('context-label-values');
expect(result.suggestions).toEqual([
{
items: [{ label: 'value1' }, { label: 'value2' }],
label: 'Label values for "job"',
searchFunctionType: SearchFunctionType.Fuzzy,
},
]);
});
it('returns a refresher on label context and unavailable metric', async () => {
jest.spyOn(console, 'warn').mockImplementation(() => {});
const instance = new LanguageProvider(defaultDatasource);
const value = Plain.deserialize('metric{}');
const ed = new SlateEditor({ value });
const valueWithSelection = ed.moveForward(7).value;
const result = await instance.provideCompletionItems({
text: '',
prefix: '',
wrapperClasses: ['context-labels'],
value: valueWithSelection,
});
expect(result.context).toBeUndefined();
expect(result.suggestions).toEqual([]);
expect(console.warn).toHaveBeenCalledWith('Server did not return any values for selector = {__name__="metric"}');
});
it('returns label values on label context when given a metric and a label key', async () => {
const instance = new LanguageProvider({
...defaultDatasource,
metadataRequest: () => simpleMetricLabelsResponse,
} as unknown as PrometheusDatasource);
const value = Plain.deserialize('metric{bar=ba}');
const ed = new SlateEditor({ value });
const valueWithSelection = ed.moveForward(13).value;
const result = await instance.provideCompletionItems({
text: '=ba',
prefix: 'ba',
wrapperClasses: ['context-labels'],
labelKey: 'bar',
value: valueWithSelection,
});
expect(result.context).toBe('context-label-values');
expect(result.suggestions).toEqual([
{ items: [{ label: 'baz' }], label: 'Label values for "bar"', searchFunctionType: SearchFunctionType.Fuzzy },
]);
});
it('returns label suggestions on aggregation context and metric w/ selector', async () => {
const instance = new LanguageProvider({
...defaultDatasource,
metadataRequest: () => simpleMetricLabelsResponse,
} as unknown as PrometheusDatasource);
const value = Plain.deserialize('sum(metric{foo="xx"}) by ()');
const ed = new SlateEditor({ value });
const valueWithSelection = ed.moveForward(26).value;
const result = await instance.provideCompletionItems({
text: '',
prefix: '',
wrapperClasses: ['context-aggregation'],
value: valueWithSelection,
});
expect(result.context).toBe('context-aggregation');
expect(result.suggestions).toEqual([
{ items: [{ label: 'bar' }], label: 'Labels', searchFunctionType: SearchFunctionType.Fuzzy },
]);
});
it('returns label suggestions on aggregation context and metric w/o selector', async () => {
const instance = new LanguageProvider({
...defaultDatasource,
metadataRequest: () => simpleMetricLabelsResponse,
} as unknown as PrometheusDatasource);
const value = Plain.deserialize('sum(metric) by ()');
const ed = new SlateEditor({ value });
const valueWithSelection = ed.moveForward(16).value;
const result = await instance.provideCompletionItems({
text: '',
prefix: '',
wrapperClasses: ['context-aggregation'],
value: valueWithSelection,
});
expect(result.context).toBe('context-aggregation');
expect(result.suggestions).toEqual([
{ items: [{ label: 'bar' }], label: 'Labels', searchFunctionType: SearchFunctionType.Fuzzy },
]);
});
it('returns label suggestions inside a multi-line aggregation context', async () => {
const instance = new LanguageProvider({
...defaultDatasource,
metadataRequest: () => simpleMetricLabelsResponse,
} as unknown as PrometheusDatasource);
const value = Plain.deserialize('sum(\nmetric\n)\nby ()');
const aggregationTextBlock = value.document.getBlocks().get(3);
const ed = new SlateEditor({ value });
ed.moveToStartOfNode(aggregationTextBlock);
const valueWithSelection = ed.moveForward(4).value;
const result = await instance.provideCompletionItems({
text: '',
prefix: '',
wrapperClasses: ['context-aggregation'],
value: valueWithSelection,
});
expect(result.context).toBe('context-aggregation');
expect(result.suggestions).toEqual([
{
items: [{ label: 'bar' }],
label: 'Labels',
searchFunctionType: SearchFunctionType.Fuzzy,
},
]);
});
it('returns label suggestions inside an aggregation context with a range vector', async () => {
const instance = new LanguageProvider({
...defaultDatasource,
metadataRequest: () => simpleMetricLabelsResponse,
} as unknown as PrometheusDatasource);
const value = Plain.deserialize('sum(rate(metric[1h])) by ()');
const ed = new SlateEditor({ value });
const valueWithSelection = ed.moveForward(26).value;
const result = await instance.provideCompletionItems({
text: '',
prefix: '',
wrapperClasses: ['context-aggregation'],
value: valueWithSelection,
});
expect(result.context).toBe('context-aggregation');
expect(result.suggestions).toEqual([
{
items: [{ label: 'bar' }],
label: 'Labels',
searchFunctionType: SearchFunctionType.Fuzzy,
},
]);
});
it('returns label suggestions inside an aggregation context with a range vector and label', async () => {
const instance = new LanguageProvider({
...defaultDatasource,
metadataRequest: () => simpleMetricLabelsResponse,
} as unknown as PrometheusDatasource);
const value = Plain.deserialize('sum(rate(metric{label1="value"}[1h])) by ()');
const ed = new SlateEditor({ value });
const valueWithSelection = ed.moveForward(42).value;
const result = await instance.provideCompletionItems({
text: '',
prefix: '',
wrapperClasses: ['context-aggregation'],
value: valueWithSelection,
});
expect(result.context).toBe('context-aggregation');
expect(result.suggestions).toEqual([
{
items: [{ label: 'bar' }],
label: 'Labels',
searchFunctionType: SearchFunctionType.Fuzzy,
},
]);
});
it('returns no suggestions inside an unclear aggregation context using alternate syntax', async () => {
const instance = new LanguageProvider(defaultDatasource);
const value = Plain.deserialize('sum by ()');
const ed = new SlateEditor({ value });
const valueWithSelection = ed.moveForward(8).value;
const result = await instance.provideCompletionItems({
text: '',
prefix: '',
wrapperClasses: ['context-aggregation'],
value: valueWithSelection,
});
expect(result.context).toBe('context-aggregation');
expect(result.suggestions).toEqual([]);
});
it('returns label suggestions inside an aggregation context using alternate syntax', async () => {
const instance = new LanguageProvider({
...defaultDatasource,
metadataRequest: () => simpleMetricLabelsResponse,
} as unknown as PrometheusDatasource);
const value = Plain.deserialize('sum by () (metric)');
const ed = new SlateEditor({ value });
const valueWithSelection = ed.moveForward(8).value;
const result = await instance.provideCompletionItems({
text: '',
prefix: '',
wrapperClasses: ['context-aggregation'],
value: valueWithSelection,
});
expect(result.context).toBe('context-aggregation');
expect(result.suggestions).toEqual([
{
items: [{ label: 'bar' }],
label: 'Labels',
searchFunctionType: SearchFunctionType.Fuzzy,
},
]);
});
it('does not re-fetch default labels', async () => {
const testDatasource: PrometheusDatasource = {
...defaultDatasource,
metadataRequest: jest.fn(() => ({ data: { data: [] } })),
interpolateString: (string: string) => string,
getQuantizedTimeRangeParams: getMockQuantizedTimeRangeParams,
} as unknown as PrometheusDatasource;
const mockedMetadataRequest = jest.mocked(testDatasource.metadataRequest);
const instance = new LanguageProvider(testDatasource);
const value = Plain.deserialize('{}');
const ed = new SlateEditor({ value });
const valueWithSelection = ed.moveForward(1).value;
const args = {
text: '',
prefix: '',
wrapperClasses: ['context-labels'],
value: valueWithSelection,
};
const promise1 = instance.provideCompletionItems(args);
// one call for 2 default labels job, instance
expect(mockedMetadataRequest.mock.calls.length).toBe(2);
const promise2 = instance.provideCompletionItems(args);
expect(mockedMetadataRequest.mock.calls.length).toBe(2);
await Promise.all([promise1, promise2]);
expect(mockedMetadataRequest.mock.calls.length).toBe(2);
});
});
describe('disabled metrics lookup', () => {
it('does not issue any metadata requests when lookup is disabled', async () => {
jest.spyOn(console, 'warn').mockImplementation(() => {});
const datasource: PrometheusDatasource = {
metadataRequest: jest.fn(() => ({ data: { data: ['foo', 'bar'] as string[] } })),
lookupsDisabled: true,
} as unknown as PrometheusDatasource;
const mockedMetadataRequest = jest.mocked(datasource.metadataRequest);
const instance = new LanguageProvider(datasource);
const value = Plain.deserialize('{}');
const ed = new SlateEditor({ value });
const valueWithSelection = ed.moveForward(1).value;
const args = {
text: '',
prefix: '',
wrapperClasses: ['context-labels'],
value: valueWithSelection,
};
expect(mockedMetadataRequest.mock.calls.length).toBe(0);
await instance.start();
expect(mockedMetadataRequest.mock.calls.length).toBe(0);
await instance.provideCompletionItems(args);
expect(mockedMetadataRequest.mock.calls.length).toBe(0);
expect(console.warn).toHaveBeenCalledWith('Server did not return any values for selector = {}');
});
it('issues metadata requests when lookup is not disabled', async () => {
const datasource: PrometheusDatasource = {
...defaultDatasource,
metadataRequest: jest.fn(() => ({ data: { data: ['foo', 'bar'] as string[] } })),
lookupsDisabled: false,
} as unknown as PrometheusDatasource;
const mockedMetadataRequest = jest.mocked(datasource.metadataRequest);
const instance = new LanguageProvider(datasource);
expect(mockedMetadataRequest.mock.calls.length).toBe(0);
await instance.start();
expect(mockedMetadataRequest.mock.calls.length).toBeGreaterThan(0);
});
it('doesnt blow up if metadata or fetchLabels rejects', async () => {
jest.spyOn(console, 'error').mockImplementation();
const datasource: PrometheusDatasource = {
...defaultDatasource,
metadataRequest: jest.fn(() => Promise.reject('rejected')),
lookupsDisabled: false,
} as unknown as PrometheusDatasource;
const mockedMetadataRequest = jest.mocked(datasource.metadataRequest);
const instance = new LanguageProvider(datasource);
expect(mockedMetadataRequest.mock.calls.length).toBe(0);
const result = await instance.start();
expect(result[0]).toBeUndefined();
expect(result[1]).toEqual([]);
expect(mockedMetadataRequest.mock.calls.length).toBe(3);
});
});
describe('Query imports', () => {
it('returns empty queries', async () => {
const instance = new LanguageProvider(defaultDatasource);
const result = await instance.importFromAbstractQuery({ refId: 'bar', labelMatchers: [] });
expect(result).toEqual({ refId: 'bar', expr: '', range: true });
});
describe('exporting to abstract query', () => {
it('exports labels with metric name', async () => {
const instance = new LanguageProvider(defaultDatasource);
const abstractQuery = instance.exportToAbstractQuery({
refId: 'bar',
expr: 'metric_name{label1="value1", label2!="value2", label3=~"value3", label4!~"value4"}',
instant: true,
range: false,
});
expect(abstractQuery).toMatchObject({
refId: 'bar',
labelMatchers: [
{ name: 'label1', operator: AbstractLabelOperator.Equal, value: 'value1' },
{ name: 'label2', operator: AbstractLabelOperator.NotEqual, value: 'value2' },
{ name: 'label3', operator: AbstractLabelOperator.EqualRegEx, value: 'value3' },
{ name: 'label4', operator: AbstractLabelOperator.NotEqualRegEx, value: 'value4' },
{ name: '__name__', operator: AbstractLabelOperator.Equal, value: 'metric_name' },
],
});
});
});
});
});
const simpleMetricLabelsResponse = {
data: {
data: [
{
__name__: 'metric',
bar: 'baz',
},
],
},
};