mirror of
https://github.com/grafana/grafana.git
synced 2025-02-12 00:25:46 -06:00
* interpolate match string * provide unit test * add the third parameter back to fix the unit test
944 lines
36 KiB
TypeScript
944 lines
36 KiB
TypeScript
import { Editor as SlateEditor } from 'slate';
|
|
import Plain from 'slate-plain-serializer';
|
|
|
|
import { AbstractLabelOperator, dateTime, HistoryItem, TimeRange } from '@grafana/data';
|
|
import { config } from '@grafana/runtime';
|
|
import { SearchFunctionType } from '@grafana/ui';
|
|
|
|
import { Label } from './components/monaco-query-field/monaco-completion-provider/situation';
|
|
import { PrometheusDatasource } from './datasource';
|
|
import LanguageProvider from './language_provider';
|
|
import { getClientCacheDurationInMinutes, getPrometheusTime, getRangeSnapInterval } from './language_utils';
|
|
import { PrometheusCacheLevel, PromQuery } from './types';
|
|
|
|
const now = new Date(1681300293392).getTime();
|
|
const timeRangeDurationSeconds = 1;
|
|
const toPrometheusTime = getPrometheusTime(dateTime(now), false);
|
|
const fromPrometheusTime = getPrometheusTime(dateTime(now - timeRangeDurationSeconds * 1000), false);
|
|
const toPrometheusTimeString = toPrometheusTime.toString(10);
|
|
const fromPrometheusTimeString = fromPrometheusTime.toString(10);
|
|
|
|
const getTimeRangeParams = (override?: Partial<{ start: string; end: string }>): { start: string; end: string } => ({
|
|
start: fromPrometheusTimeString,
|
|
end: toPrometheusTimeString,
|
|
...override,
|
|
});
|
|
|
|
const getMockQuantizedTimeRangeParams = (override?: Partial<TimeRange>): TimeRange => ({
|
|
from: dateTime(fromPrometheusTime * 1000),
|
|
to: dateTime(toPrometheusTime * 1000),
|
|
raw: {
|
|
from: `now-${timeRangeDurationSeconds}s`,
|
|
to: 'now',
|
|
},
|
|
...override,
|
|
});
|
|
|
|
describe('Language completion provider', () => {
|
|
const defaultDatasource: PrometheusDatasource = {
|
|
metadataRequest: () => ({ data: { data: [] } }),
|
|
getTimeRangeParams: getTimeRangeParams,
|
|
interpolateString: (string: string) => string,
|
|
hasLabelsMatchAPISupport: () => false,
|
|
getQuantizedTimeRangeParams: () =>
|
|
getRangeSnapInterval(PrometheusCacheLevel.None, getMockQuantizedTimeRangeParams()),
|
|
getDaysToCacheMetadata: () => 1,
|
|
getAdjustedInterval: () => getRangeSnapInterval(PrometheusCacheLevel.None, getMockQuantizedTimeRangeParams()),
|
|
cacheLevel: PrometheusCacheLevel.None,
|
|
} as unknown as PrometheusDatasource;
|
|
|
|
describe('cleanText', () => {
|
|
const cleanText = new LanguageProvider(defaultDatasource).cleanText;
|
|
it('does not remove metric or label keys', () => {
|
|
expect(cleanText('foo')).toBe('foo');
|
|
expect(cleanText('foo_bar')).toBe('foo_bar');
|
|
});
|
|
|
|
it('keeps trailing space but removes leading', () => {
|
|
expect(cleanText('foo ')).toBe('foo ');
|
|
expect(cleanText(' foo')).toBe('foo');
|
|
});
|
|
|
|
it('removes label syntax', () => {
|
|
expect(cleanText('foo="bar')).toBe('bar');
|
|
expect(cleanText('foo!="bar')).toBe('bar');
|
|
expect(cleanText('foo=~"bar')).toBe('bar');
|
|
expect(cleanText('foo!~"bar')).toBe('bar');
|
|
expect(cleanText('{bar')).toBe('bar');
|
|
});
|
|
|
|
it('removes previous operators', () => {
|
|
expect(cleanText('foo + bar')).toBe('bar');
|
|
expect(cleanText('foo+bar')).toBe('bar');
|
|
expect(cleanText('foo - bar')).toBe('bar');
|
|
expect(cleanText('foo * bar')).toBe('bar');
|
|
expect(cleanText('foo / bar')).toBe('bar');
|
|
expect(cleanText('foo % bar')).toBe('bar');
|
|
expect(cleanText('foo ^ bar')).toBe('bar');
|
|
expect(cleanText('foo and bar')).toBe('bar');
|
|
expect(cleanText('foo or bar')).toBe('bar');
|
|
expect(cleanText('foo unless bar')).toBe('bar');
|
|
expect(cleanText('foo == bar')).toBe('bar');
|
|
expect(cleanText('foo != bar')).toBe('bar');
|
|
expect(cleanText('foo > bar')).toBe('bar');
|
|
expect(cleanText('foo < bar')).toBe('bar');
|
|
expect(cleanText('foo >= bar')).toBe('bar');
|
|
expect(cleanText('foo <= bar')).toBe('bar');
|
|
expect(cleanText('memory')).toBe('memory');
|
|
});
|
|
|
|
it('removes aggregation syntax', () => {
|
|
expect(cleanText('(bar')).toBe('bar');
|
|
expect(cleanText('(foo,bar')).toBe('bar');
|
|
expect(cleanText('(foo, bar')).toBe('bar');
|
|
});
|
|
|
|
it('removes range syntax', () => {
|
|
expect(cleanText('[1m')).toBe('1m');
|
|
});
|
|
});
|
|
|
|
// @todo clean up prometheusResourceBrowserCache feature flag
|
|
describe('getSeriesLabelsDeprecatedLRU', () => {
|
|
beforeEach(() => {
|
|
config.featureToggles.prometheusResourceBrowserCache = false;
|
|
});
|
|
it('should call labels endpoint', () => {
|
|
const languageProvider = new LanguageProvider({
|
|
...defaultDatasource,
|
|
hasLabelsMatchAPISupport: () => true,
|
|
} as PrometheusDatasource);
|
|
const getSeriesLabels = languageProvider.getSeriesLabels;
|
|
const requestSpy = jest.spyOn(languageProvider, 'request');
|
|
|
|
const labelName = 'job';
|
|
const labelValue = 'grafana';
|
|
getSeriesLabels(`{${labelName}="${labelValue}"}`, [{ name: labelName, value: labelValue, op: '=' }] as Label[]);
|
|
expect(requestSpy).toHaveBeenCalled();
|
|
expect(requestSpy).toHaveBeenCalledWith(`/api/v1/labels`, [], {
|
|
end: toPrometheusTimeString,
|
|
'match[]': '{job="grafana"}',
|
|
start: fromPrometheusTimeString,
|
|
});
|
|
});
|
|
|
|
it('should call series endpoint', () => {
|
|
const languageProvider = new LanguageProvider({
|
|
...defaultDatasource,
|
|
getAdjustedInterval: () => getRangeSnapInterval(PrometheusCacheLevel.None, getMockQuantizedTimeRangeParams()),
|
|
} as PrometheusDatasource);
|
|
const getSeriesLabels = languageProvider.getSeriesLabels;
|
|
const requestSpy = jest.spyOn(languageProvider, 'request');
|
|
|
|
const labelName = 'job';
|
|
const labelValue = 'grafana';
|
|
getSeriesLabels(`{${labelName}="${labelValue}"}`, [{ name: labelName, value: labelValue, op: '=' }] as Label[]);
|
|
expect(requestSpy).toHaveBeenCalled();
|
|
expect(requestSpy).toHaveBeenCalledWith('/api/v1/series', [], {
|
|
end: toPrometheusTimeString,
|
|
'match[]': '{job="grafana"}',
|
|
start: fromPrometheusTimeString,
|
|
});
|
|
});
|
|
});
|
|
describe('getSeriesLabels', () => {
|
|
beforeEach(() => {
|
|
config.featureToggles.prometheusResourceBrowserCache = true;
|
|
});
|
|
it('should call labels endpoint', () => {
|
|
const languageProvider = new LanguageProvider({
|
|
...defaultDatasource,
|
|
hasLabelsMatchAPISupport: () => true,
|
|
} as PrometheusDatasource);
|
|
const getSeriesLabels = languageProvider.getSeriesLabels;
|
|
const requestSpy = jest.spyOn(languageProvider, 'request');
|
|
|
|
const labelName = 'job';
|
|
const labelValue = 'grafana';
|
|
getSeriesLabels(`{${labelName}="${labelValue}"}`, [{ name: labelName, value: labelValue, op: '=' }] as Label[]);
|
|
expect(requestSpy).toHaveBeenCalled();
|
|
expect(requestSpy).toHaveBeenCalledWith(
|
|
`/api/v1/labels`,
|
|
[],
|
|
{
|
|
end: toPrometheusTimeString,
|
|
'match[]': '{job="grafana"}',
|
|
start: fromPrometheusTimeString,
|
|
},
|
|
undefined
|
|
);
|
|
});
|
|
|
|
it('should call series endpoint', () => {
|
|
const languageProvider = new LanguageProvider({
|
|
...defaultDatasource,
|
|
getAdjustedInterval: () => getRangeSnapInterval(PrometheusCacheLevel.None, getMockQuantizedTimeRangeParams()),
|
|
} as PrometheusDatasource);
|
|
const getSeriesLabels = languageProvider.getSeriesLabels;
|
|
const requestSpy = jest.spyOn(languageProvider, 'request');
|
|
|
|
const labelName = 'job';
|
|
const labelValue = 'grafana';
|
|
getSeriesLabels(`{${labelName}="${labelValue}"}`, [{ name: labelName, value: labelValue, op: '=' }] as Label[]);
|
|
expect(requestSpy).toHaveBeenCalled();
|
|
expect(requestSpy).toHaveBeenCalledWith(
|
|
'/api/v1/series',
|
|
[],
|
|
{
|
|
end: toPrometheusTimeString,
|
|
'match[]': '{job="grafana"}',
|
|
start: fromPrometheusTimeString,
|
|
},
|
|
undefined
|
|
);
|
|
});
|
|
|
|
it('should call labels endpoint with quantized start', () => {
|
|
const timeSnapMinutes = getClientCacheDurationInMinutes(PrometheusCacheLevel.Low);
|
|
const languageProvider = new LanguageProvider({
|
|
...defaultDatasource,
|
|
hasLabelsMatchAPISupport: () => true,
|
|
cacheLevel: PrometheusCacheLevel.Low,
|
|
getAdjustedInterval: () => getRangeSnapInterval(PrometheusCacheLevel.Low, getMockQuantizedTimeRangeParams()),
|
|
getCacheDurationInMinutes: () => timeSnapMinutes,
|
|
} as PrometheusDatasource);
|
|
const getSeriesLabels = languageProvider.getSeriesLabels;
|
|
const requestSpy = jest.spyOn(languageProvider, 'request');
|
|
|
|
const labelName = 'job';
|
|
const labelValue = 'grafana';
|
|
getSeriesLabels(`{${labelName}="${labelValue}"}`, [{ name: labelName, value: labelValue, op: '=' }] as Label[]);
|
|
expect(requestSpy).toHaveBeenCalled();
|
|
expect(requestSpy).toHaveBeenCalledWith(
|
|
`/api/v1/labels`,
|
|
[],
|
|
{
|
|
end: (
|
|
dateTime(fromPrometheusTime * 1000)
|
|
.add(timeSnapMinutes, 'minute')
|
|
.startOf('minute')
|
|
.valueOf() / 1000
|
|
).toString(),
|
|
'match[]': '{job="grafana"}',
|
|
start: (
|
|
dateTime(toPrometheusTime * 1000)
|
|
.startOf('minute')
|
|
.valueOf() / 1000
|
|
).toString(),
|
|
},
|
|
{ headers: { 'X-Grafana-Cache': `private, max-age=${timeSnapMinutes * 60}` } }
|
|
);
|
|
});
|
|
});
|
|
|
|
describe('getSeriesValues', () => {
|
|
it('should call old series endpoint and should use match[] parameter', () => {
|
|
const languageProvider = new LanguageProvider({
|
|
...defaultDatasource,
|
|
} as PrometheusDatasource);
|
|
const getSeriesValues = languageProvider.getSeriesValues;
|
|
const requestSpy = jest.spyOn(languageProvider, 'request');
|
|
getSeriesValues('job', '{job="grafana"}');
|
|
expect(requestSpy).toHaveBeenCalled();
|
|
expect(requestSpy).toHaveBeenCalledWith(
|
|
'/api/v1/series',
|
|
[],
|
|
{
|
|
end: toPrometheusTimeString,
|
|
'match[]': '{job="grafana"}',
|
|
start: fromPrometheusTimeString,
|
|
},
|
|
undefined
|
|
);
|
|
});
|
|
|
|
it('should call new series endpoint and should use match[] parameter', () => {
|
|
const languageProvider = new LanguageProvider({
|
|
...defaultDatasource,
|
|
hasLabelsMatchAPISupport: () => true,
|
|
} as PrometheusDatasource);
|
|
const getSeriesValues = languageProvider.getSeriesValues;
|
|
const requestSpy = jest.spyOn(languageProvider, 'request');
|
|
const labelName = 'job';
|
|
const labelValue = 'grafana';
|
|
getSeriesValues(labelName, `{${labelName}="${labelValue}"}`);
|
|
expect(requestSpy).toHaveBeenCalled();
|
|
expect(requestSpy).toHaveBeenCalledWith(
|
|
`/api/v1/label/${labelName}/values`,
|
|
[],
|
|
{
|
|
end: toPrometheusTimeString,
|
|
'match[]': `{${labelName}="${labelValue}"}`,
|
|
start: fromPrometheusTimeString,
|
|
},
|
|
undefined
|
|
);
|
|
});
|
|
|
|
it('should call old series endpoint and should use match[] parameter and interpolate the template variables', () => {
|
|
const languageProvider = new LanguageProvider({
|
|
...defaultDatasource,
|
|
interpolateString: (string: string) => string.replace(/\$/, 'interpolated-'),
|
|
} as PrometheusDatasource);
|
|
const getSeriesValues = languageProvider.getSeriesValues;
|
|
const requestSpy = jest.spyOn(languageProvider, 'request');
|
|
getSeriesValues('job', '{instance="$instance", job="grafana"}');
|
|
expect(requestSpy).toHaveBeenCalled();
|
|
expect(requestSpy).toHaveBeenCalledWith(
|
|
'/api/v1/series',
|
|
[],
|
|
{
|
|
end: toPrometheusTimeString,
|
|
'match[]': '{instance="interpolated-instance", job="grafana"}',
|
|
start: fromPrometheusTimeString,
|
|
},
|
|
undefined
|
|
);
|
|
});
|
|
});
|
|
|
|
describe('fetchSeries', () => {
|
|
it('should use match[] parameter', () => {
|
|
const languageProvider = new LanguageProvider(defaultDatasource);
|
|
const fetchSeries = languageProvider.fetchSeries;
|
|
const requestSpy = jest.spyOn(languageProvider, 'request');
|
|
fetchSeries('{job="grafana"}');
|
|
expect(requestSpy).toHaveBeenCalled();
|
|
expect(requestSpy).toHaveBeenCalledWith(
|
|
'/api/v1/series',
|
|
{},
|
|
{ end: toPrometheusTimeString, 'match[]': '{job="grafana"}', start: fromPrometheusTimeString },
|
|
undefined
|
|
);
|
|
});
|
|
});
|
|
|
|
describe('fetchSeriesLabels', () => {
|
|
it('should interpolate variable in series', () => {
|
|
const languageProvider = new LanguageProvider({
|
|
...defaultDatasource,
|
|
interpolateString: (string: string) => string.replace(/\$/, 'interpolated-'),
|
|
} as PrometheusDatasource);
|
|
const fetchSeriesLabels = languageProvider.fetchSeriesLabels;
|
|
const requestSpy = jest.spyOn(languageProvider, 'request');
|
|
fetchSeriesLabels('$metric');
|
|
expect(requestSpy).toHaveBeenCalled();
|
|
expect(requestSpy).toHaveBeenCalledWith(
|
|
'/api/v1/series',
|
|
[],
|
|
{
|
|
end: toPrometheusTimeString,
|
|
'match[]': 'interpolated-metric',
|
|
start: fromPrometheusTimeString,
|
|
},
|
|
undefined
|
|
);
|
|
});
|
|
});
|
|
|
|
describe('fetchLabelValues', () => {
|
|
it('should interpolate variable in series', () => {
|
|
const languageProvider = new LanguageProvider({
|
|
...defaultDatasource,
|
|
interpolateString: (string: string) => string.replace(/\$/, 'interpolated-'),
|
|
} as PrometheusDatasource);
|
|
const fetchLabelValues = languageProvider.fetchLabelValues;
|
|
const requestSpy = jest.spyOn(languageProvider, 'request');
|
|
fetchLabelValues('$job');
|
|
expect(requestSpy).toHaveBeenCalled();
|
|
expect(requestSpy).toHaveBeenCalledWith(
|
|
'/api/v1/label/interpolated-job/values',
|
|
[],
|
|
{
|
|
end: toPrometheusTimeString,
|
|
start: fromPrometheusTimeString,
|
|
},
|
|
undefined
|
|
);
|
|
});
|
|
});
|
|
|
|
describe('empty query suggestions', () => {
|
|
it('returns no suggestions on empty context', async () => {
|
|
const instance = new LanguageProvider(defaultDatasource);
|
|
const value = Plain.deserialize('');
|
|
const result = await instance.provideCompletionItems({ text: '', prefix: '', value, wrapperClasses: [] });
|
|
expect(result.context).toBeUndefined();
|
|
expect(result.suggestions).toMatchObject([]);
|
|
});
|
|
|
|
it('returns no suggestions with metrics on empty context even when metrics were provided', async () => {
|
|
const instance = new LanguageProvider(defaultDatasource);
|
|
instance.metrics = ['foo', 'bar'];
|
|
const value = Plain.deserialize('');
|
|
const result = await instance.provideCompletionItems({ text: '', prefix: '', value, wrapperClasses: [] });
|
|
expect(result.context).toBeUndefined();
|
|
expect(result.suggestions).toMatchObject([]);
|
|
});
|
|
|
|
it('returns history on empty context when history was provided', async () => {
|
|
const instance = new LanguageProvider(defaultDatasource);
|
|
const value = Plain.deserialize('');
|
|
const history: Array<HistoryItem<PromQuery>> = [
|
|
{
|
|
ts: 0,
|
|
query: { refId: '1', expr: 'metric' },
|
|
},
|
|
];
|
|
const result = await instance.provideCompletionItems(
|
|
{ text: '', prefix: '', value, wrapperClasses: [] },
|
|
{ history }
|
|
);
|
|
expect(result.context).toBeUndefined();
|
|
|
|
expect(result.suggestions).toMatchObject([
|
|
{
|
|
label: 'History',
|
|
items: [
|
|
{
|
|
label: 'metric',
|
|
},
|
|
],
|
|
},
|
|
]);
|
|
});
|
|
});
|
|
|
|
describe('range suggestions', () => {
|
|
it('returns range suggestions in range context', async () => {
|
|
const instance = new LanguageProvider(defaultDatasource);
|
|
const value = Plain.deserialize('1');
|
|
const result = await instance.provideCompletionItems({
|
|
text: '1',
|
|
prefix: '1',
|
|
value,
|
|
wrapperClasses: ['context-range'],
|
|
});
|
|
expect(result.context).toBe('context-range');
|
|
expect(result.suggestions).toMatchObject([
|
|
{
|
|
items: [
|
|
{ label: '$__interval', sortValue: '$__interval' },
|
|
{ label: '$__rate_interval', sortValue: '$__rate_interval' },
|
|
{ label: '$__range', sortValue: '$__range' },
|
|
{ label: '1m', sortValue: '00:01:00' },
|
|
{ label: '5m', sortValue: '00:05:00' },
|
|
{ label: '10m', sortValue: '00:10:00' },
|
|
{ label: '30m', sortValue: '00:30:00' },
|
|
{ label: '1h', sortValue: '01:00:00' },
|
|
{ label: '1d', sortValue: '24:00:00' },
|
|
],
|
|
label: 'Range vector',
|
|
},
|
|
]);
|
|
});
|
|
});
|
|
|
|
describe('metric suggestions', () => {
|
|
it('returns history, metrics and function suggestions in an uknown context ', async () => {
|
|
const instance = new LanguageProvider(defaultDatasource);
|
|
instance.metrics = ['foo', 'bar'];
|
|
const history: Array<HistoryItem<PromQuery>> = [
|
|
{
|
|
ts: 0,
|
|
query: { refId: '1', expr: 'metric' },
|
|
},
|
|
];
|
|
let value = Plain.deserialize('m');
|
|
value = value.setSelection({ anchor: { offset: 1 }, focus: { offset: 1 } });
|
|
// Even though no metric with `m` is present, we still get metric completion items, filtering is done by the consumer
|
|
const result = await instance.provideCompletionItems(
|
|
{ text: 'm', prefix: 'm', value, wrapperClasses: [] },
|
|
{ history }
|
|
);
|
|
expect(result.context).toBeUndefined();
|
|
expect(result.suggestions).toMatchObject([
|
|
{
|
|
label: 'History',
|
|
items: [
|
|
{
|
|
label: 'metric',
|
|
},
|
|
],
|
|
},
|
|
{
|
|
label: 'Functions',
|
|
},
|
|
{
|
|
label: 'Metrics',
|
|
},
|
|
]);
|
|
});
|
|
|
|
it('returns no suggestions directly after a binary operator', async () => {
|
|
const instance = new LanguageProvider(defaultDatasource);
|
|
instance.metrics = ['foo', 'bar'];
|
|
const value = Plain.deserialize('*');
|
|
const result = await instance.provideCompletionItems({ text: '*', prefix: '', value, wrapperClasses: [] });
|
|
expect(result.context).toBeUndefined();
|
|
expect(result.suggestions).toMatchObject([]);
|
|
});
|
|
|
|
it('returns metric suggestions with prefix after a binary operator', async () => {
|
|
const instance = new LanguageProvider(defaultDatasource);
|
|
instance.metrics = ['foo', 'bar'];
|
|
const value = Plain.deserialize('foo + b');
|
|
const ed = new SlateEditor({ value });
|
|
const valueWithSelection = ed.moveForward(7).value;
|
|
const result = await instance.provideCompletionItems({
|
|
text: 'foo + b',
|
|
prefix: 'b',
|
|
value: valueWithSelection,
|
|
wrapperClasses: [],
|
|
});
|
|
expect(result.context).toBeUndefined();
|
|
expect(result.suggestions).toMatchObject([
|
|
{
|
|
label: 'Functions',
|
|
},
|
|
{
|
|
label: 'Metrics',
|
|
},
|
|
]);
|
|
});
|
|
|
|
it('returns no suggestions at the beginning of a non-empty function', async () => {
|
|
const instance = new LanguageProvider(defaultDatasource);
|
|
const value = Plain.deserialize('sum(up)');
|
|
const ed = new SlateEditor({ value });
|
|
|
|
const valueWithSelection = ed.moveForward(4).value;
|
|
const result = await instance.provideCompletionItems({
|
|
text: '',
|
|
prefix: '',
|
|
value: valueWithSelection,
|
|
wrapperClasses: [],
|
|
});
|
|
expect(result.context).toBeUndefined();
|
|
expect(result.suggestions.length).toEqual(0);
|
|
});
|
|
});
|
|
|
|
describe('label suggestions', () => {
|
|
it('returns default label suggestions on label context and no metric', async () => {
|
|
const instance = new LanguageProvider(defaultDatasource);
|
|
const value = Plain.deserialize('{}');
|
|
const ed = new SlateEditor({ value });
|
|
const valueWithSelection = ed.moveForward(1).value;
|
|
const result = await instance.provideCompletionItems({
|
|
text: '',
|
|
prefix: '',
|
|
wrapperClasses: ['context-labels'],
|
|
value: valueWithSelection,
|
|
});
|
|
expect(result.context).toBe('context-labels');
|
|
expect(result.suggestions).toEqual([
|
|
{
|
|
items: [{ label: 'job' }, { label: 'instance' }],
|
|
label: 'Labels',
|
|
searchFunctionType: SearchFunctionType.Fuzzy,
|
|
},
|
|
]);
|
|
});
|
|
|
|
it('returns label suggestions on label context and metric', async () => {
|
|
const datasources: PrometheusDatasource = {
|
|
...defaultDatasource,
|
|
metadataRequest: () => ({ data: { data: [{ __name__: 'metric', bar: 'bazinga' }] } }),
|
|
} as unknown as PrometheusDatasource;
|
|
const instance = new LanguageProvider(datasources);
|
|
const value = Plain.deserialize('metric{}');
|
|
const ed = new SlateEditor({ value });
|
|
const valueWithSelection = ed.moveForward(7).value;
|
|
const result = await instance.provideCompletionItems({
|
|
text: '',
|
|
prefix: '',
|
|
wrapperClasses: ['context-labels'],
|
|
value: valueWithSelection,
|
|
});
|
|
expect(result.context).toBe('context-labels');
|
|
expect(result.suggestions).toEqual([
|
|
{ items: [{ label: 'bar' }], label: 'Labels', searchFunctionType: SearchFunctionType.Fuzzy },
|
|
]);
|
|
});
|
|
|
|
it('returns label suggestions on label context but leaves out labels that already exist', async () => {
|
|
const testDatasource: PrometheusDatasource = {
|
|
...defaultDatasource,
|
|
metadataRequest: () => ({
|
|
data: {
|
|
data: [
|
|
{
|
|
__name__: 'metric',
|
|
bar: 'asdasd',
|
|
job1: 'dsadsads',
|
|
job2: 'fsfsdfds',
|
|
job3: 'dsadsad',
|
|
},
|
|
],
|
|
},
|
|
}),
|
|
} as unknown as PrometheusDatasource;
|
|
const instance = new LanguageProvider(testDatasource);
|
|
const value = Plain.deserialize('{job1="foo",job2!="foo",job3=~"foo",__name__="metric",}');
|
|
const ed = new SlateEditor({ value });
|
|
const valueWithSelection = ed.moveForward(54).value;
|
|
const result = await instance.provideCompletionItems({
|
|
text: '',
|
|
prefix: '',
|
|
wrapperClasses: ['context-labels'],
|
|
value: valueWithSelection,
|
|
});
|
|
expect(result.context).toBe('context-labels');
|
|
expect(result.suggestions).toEqual([
|
|
{ items: [{ label: 'bar' }], label: 'Labels', searchFunctionType: SearchFunctionType.Fuzzy },
|
|
]);
|
|
});
|
|
|
|
it('returns label value suggestions inside a label value context after a negated matching operator', async () => {
|
|
const instance = new LanguageProvider({
|
|
...defaultDatasource,
|
|
metadataRequest: () => {
|
|
return { data: { data: ['value1', 'value2'] } };
|
|
},
|
|
} as unknown as PrometheusDatasource);
|
|
const value = Plain.deserialize('{job!=}');
|
|
const ed = new SlateEditor({ value });
|
|
const valueWithSelection = ed.moveForward(6).value;
|
|
const result = await instance.provideCompletionItems({
|
|
text: '!=',
|
|
prefix: '',
|
|
wrapperClasses: ['context-labels'],
|
|
labelKey: 'job',
|
|
value: valueWithSelection,
|
|
});
|
|
expect(result.context).toBe('context-label-values');
|
|
expect(result.suggestions).toEqual([
|
|
{
|
|
items: [{ label: 'value1' }, { label: 'value2' }],
|
|
label: 'Label values for "job"',
|
|
searchFunctionType: SearchFunctionType.Fuzzy,
|
|
},
|
|
]);
|
|
});
|
|
|
|
it('returns a refresher on label context and unavailable metric', async () => {
|
|
jest.spyOn(console, 'warn').mockImplementation(() => {});
|
|
const instance = new LanguageProvider(defaultDatasource);
|
|
const value = Plain.deserialize('metric{}');
|
|
const ed = new SlateEditor({ value });
|
|
const valueWithSelection = ed.moveForward(7).value;
|
|
const result = await instance.provideCompletionItems({
|
|
text: '',
|
|
prefix: '',
|
|
wrapperClasses: ['context-labels'],
|
|
value: valueWithSelection,
|
|
});
|
|
expect(result.context).toBeUndefined();
|
|
expect(result.suggestions).toEqual([]);
|
|
expect(console.warn).toHaveBeenCalledWith('Server did not return any values for selector = {__name__="metric"}');
|
|
});
|
|
|
|
it('returns label values on label context when given a metric and a label key', async () => {
|
|
const instance = new LanguageProvider({
|
|
...defaultDatasource,
|
|
metadataRequest: () => simpleMetricLabelsResponse,
|
|
} as unknown as PrometheusDatasource);
|
|
const value = Plain.deserialize('metric{bar=ba}');
|
|
const ed = new SlateEditor({ value });
|
|
const valueWithSelection = ed.moveForward(13).value;
|
|
const result = await instance.provideCompletionItems({
|
|
text: '=ba',
|
|
prefix: 'ba',
|
|
wrapperClasses: ['context-labels'],
|
|
labelKey: 'bar',
|
|
value: valueWithSelection,
|
|
});
|
|
expect(result.context).toBe('context-label-values');
|
|
expect(result.suggestions).toEqual([
|
|
{ items: [{ label: 'baz' }], label: 'Label values for "bar"', searchFunctionType: SearchFunctionType.Fuzzy },
|
|
]);
|
|
});
|
|
|
|
it('returns label suggestions on aggregation context and metric w/ selector', async () => {
|
|
const instance = new LanguageProvider({
|
|
...defaultDatasource,
|
|
metadataRequest: () => simpleMetricLabelsResponse,
|
|
} as unknown as PrometheusDatasource);
|
|
const value = Plain.deserialize('sum(metric{foo="xx"}) by ()');
|
|
const ed = new SlateEditor({ value });
|
|
const valueWithSelection = ed.moveForward(26).value;
|
|
const result = await instance.provideCompletionItems({
|
|
text: '',
|
|
prefix: '',
|
|
wrapperClasses: ['context-aggregation'],
|
|
value: valueWithSelection,
|
|
});
|
|
expect(result.context).toBe('context-aggregation');
|
|
expect(result.suggestions).toEqual([
|
|
{ items: [{ label: 'bar' }], label: 'Labels', searchFunctionType: SearchFunctionType.Fuzzy },
|
|
]);
|
|
});
|
|
|
|
it('returns label suggestions on aggregation context and metric w/o selector', async () => {
|
|
const instance = new LanguageProvider({
|
|
...defaultDatasource,
|
|
metadataRequest: () => simpleMetricLabelsResponse,
|
|
} as unknown as PrometheusDatasource);
|
|
const value = Plain.deserialize('sum(metric) by ()');
|
|
const ed = new SlateEditor({ value });
|
|
const valueWithSelection = ed.moveForward(16).value;
|
|
const result = await instance.provideCompletionItems({
|
|
text: '',
|
|
prefix: '',
|
|
wrapperClasses: ['context-aggregation'],
|
|
value: valueWithSelection,
|
|
});
|
|
expect(result.context).toBe('context-aggregation');
|
|
expect(result.suggestions).toEqual([
|
|
{ items: [{ label: 'bar' }], label: 'Labels', searchFunctionType: SearchFunctionType.Fuzzy },
|
|
]);
|
|
});
|
|
|
|
it('returns label suggestions inside a multi-line aggregation context', async () => {
|
|
const instance = new LanguageProvider({
|
|
...defaultDatasource,
|
|
metadataRequest: () => simpleMetricLabelsResponse,
|
|
} as unknown as PrometheusDatasource);
|
|
const value = Plain.deserialize('sum(\nmetric\n)\nby ()');
|
|
const aggregationTextBlock = value.document.getBlocks().get(3);
|
|
const ed = new SlateEditor({ value });
|
|
ed.moveToStartOfNode(aggregationTextBlock);
|
|
const valueWithSelection = ed.moveForward(4).value;
|
|
const result = await instance.provideCompletionItems({
|
|
text: '',
|
|
prefix: '',
|
|
wrapperClasses: ['context-aggregation'],
|
|
value: valueWithSelection,
|
|
});
|
|
expect(result.context).toBe('context-aggregation');
|
|
expect(result.suggestions).toEqual([
|
|
{
|
|
items: [{ label: 'bar' }],
|
|
label: 'Labels',
|
|
searchFunctionType: SearchFunctionType.Fuzzy,
|
|
},
|
|
]);
|
|
});
|
|
|
|
it('returns label suggestions inside an aggregation context with a range vector', async () => {
|
|
const instance = new LanguageProvider({
|
|
...defaultDatasource,
|
|
metadataRequest: () => simpleMetricLabelsResponse,
|
|
} as unknown as PrometheusDatasource);
|
|
const value = Plain.deserialize('sum(rate(metric[1h])) by ()');
|
|
const ed = new SlateEditor({ value });
|
|
const valueWithSelection = ed.moveForward(26).value;
|
|
const result = await instance.provideCompletionItems({
|
|
text: '',
|
|
prefix: '',
|
|
wrapperClasses: ['context-aggregation'],
|
|
value: valueWithSelection,
|
|
});
|
|
expect(result.context).toBe('context-aggregation');
|
|
expect(result.suggestions).toEqual([
|
|
{
|
|
items: [{ label: 'bar' }],
|
|
label: 'Labels',
|
|
searchFunctionType: SearchFunctionType.Fuzzy,
|
|
},
|
|
]);
|
|
});
|
|
|
|
it('returns label suggestions inside an aggregation context with a range vector and label', async () => {
|
|
const instance = new LanguageProvider({
|
|
...defaultDatasource,
|
|
metadataRequest: () => simpleMetricLabelsResponse,
|
|
} as unknown as PrometheusDatasource);
|
|
const value = Plain.deserialize('sum(rate(metric{label1="value"}[1h])) by ()');
|
|
const ed = new SlateEditor({ value });
|
|
const valueWithSelection = ed.moveForward(42).value;
|
|
const result = await instance.provideCompletionItems({
|
|
text: '',
|
|
prefix: '',
|
|
wrapperClasses: ['context-aggregation'],
|
|
value: valueWithSelection,
|
|
});
|
|
expect(result.context).toBe('context-aggregation');
|
|
expect(result.suggestions).toEqual([
|
|
{
|
|
items: [{ label: 'bar' }],
|
|
label: 'Labels',
|
|
searchFunctionType: SearchFunctionType.Fuzzy,
|
|
},
|
|
]);
|
|
});
|
|
|
|
it('returns no suggestions inside an unclear aggregation context using alternate syntax', async () => {
|
|
const instance = new LanguageProvider(defaultDatasource);
|
|
const value = Plain.deserialize('sum by ()');
|
|
const ed = new SlateEditor({ value });
|
|
const valueWithSelection = ed.moveForward(8).value;
|
|
const result = await instance.provideCompletionItems({
|
|
text: '',
|
|
prefix: '',
|
|
wrapperClasses: ['context-aggregation'],
|
|
value: valueWithSelection,
|
|
});
|
|
expect(result.context).toBe('context-aggregation');
|
|
expect(result.suggestions).toEqual([]);
|
|
});
|
|
|
|
it('returns label suggestions inside an aggregation context using alternate syntax', async () => {
|
|
const instance = new LanguageProvider({
|
|
...defaultDatasource,
|
|
metadataRequest: () => simpleMetricLabelsResponse,
|
|
} as unknown as PrometheusDatasource);
|
|
const value = Plain.deserialize('sum by () (metric)');
|
|
const ed = new SlateEditor({ value });
|
|
const valueWithSelection = ed.moveForward(8).value;
|
|
const result = await instance.provideCompletionItems({
|
|
text: '',
|
|
prefix: '',
|
|
wrapperClasses: ['context-aggregation'],
|
|
value: valueWithSelection,
|
|
});
|
|
expect(result.context).toBe('context-aggregation');
|
|
expect(result.suggestions).toEqual([
|
|
{
|
|
items: [{ label: 'bar' }],
|
|
label: 'Labels',
|
|
searchFunctionType: SearchFunctionType.Fuzzy,
|
|
},
|
|
]);
|
|
});
|
|
|
|
it('does not re-fetch default labels', async () => {
|
|
const testDatasource: PrometheusDatasource = {
|
|
...defaultDatasource,
|
|
metadataRequest: jest.fn(() => ({ data: { data: [] } })),
|
|
interpolateString: (string: string) => string,
|
|
getQuantizedTimeRangeParams: getMockQuantizedTimeRangeParams,
|
|
} as unknown as PrometheusDatasource;
|
|
|
|
const mockedMetadataRequest = jest.mocked(testDatasource.metadataRequest);
|
|
|
|
const instance = new LanguageProvider(testDatasource);
|
|
const value = Plain.deserialize('{}');
|
|
const ed = new SlateEditor({ value });
|
|
const valueWithSelection = ed.moveForward(1).value;
|
|
const args = {
|
|
text: '',
|
|
prefix: '',
|
|
wrapperClasses: ['context-labels'],
|
|
value: valueWithSelection,
|
|
};
|
|
const promise1 = instance.provideCompletionItems(args);
|
|
// one call for 2 default labels job, instance
|
|
expect(mockedMetadataRequest.mock.calls.length).toBe(2);
|
|
const promise2 = instance.provideCompletionItems(args);
|
|
expect(mockedMetadataRequest.mock.calls.length).toBe(2);
|
|
await Promise.all([promise1, promise2]);
|
|
expect(mockedMetadataRequest.mock.calls.length).toBe(2);
|
|
});
|
|
});
|
|
describe('disabled metrics lookup', () => {
|
|
it('does not issue any metadata requests when lookup is disabled', async () => {
|
|
jest.spyOn(console, 'warn').mockImplementation(() => {});
|
|
const datasource: PrometheusDatasource = {
|
|
metadataRequest: jest.fn(() => ({ data: { data: ['foo', 'bar'] as string[] } })),
|
|
lookupsDisabled: true,
|
|
} as unknown as PrometheusDatasource;
|
|
const mockedMetadataRequest = jest.mocked(datasource.metadataRequest);
|
|
const instance = new LanguageProvider(datasource);
|
|
const value = Plain.deserialize('{}');
|
|
const ed = new SlateEditor({ value });
|
|
const valueWithSelection = ed.moveForward(1).value;
|
|
const args = {
|
|
text: '',
|
|
prefix: '',
|
|
wrapperClasses: ['context-labels'],
|
|
value: valueWithSelection,
|
|
};
|
|
|
|
expect(mockedMetadataRequest.mock.calls.length).toBe(0);
|
|
await instance.start();
|
|
expect(mockedMetadataRequest.mock.calls.length).toBe(0);
|
|
await instance.provideCompletionItems(args);
|
|
expect(mockedMetadataRequest.mock.calls.length).toBe(0);
|
|
expect(console.warn).toHaveBeenCalledWith('Server did not return any values for selector = {}');
|
|
});
|
|
it('issues metadata requests when lookup is not disabled', async () => {
|
|
const datasource: PrometheusDatasource = {
|
|
...defaultDatasource,
|
|
metadataRequest: jest.fn(() => ({ data: { data: ['foo', 'bar'] as string[] } })),
|
|
lookupsDisabled: false,
|
|
} as unknown as PrometheusDatasource;
|
|
const mockedMetadataRequest = jest.mocked(datasource.metadataRequest);
|
|
const instance = new LanguageProvider(datasource);
|
|
|
|
expect(mockedMetadataRequest.mock.calls.length).toBe(0);
|
|
await instance.start();
|
|
expect(mockedMetadataRequest.mock.calls.length).toBeGreaterThan(0);
|
|
});
|
|
|
|
it('doesnt blow up if metadata or fetchLabels rejects', async () => {
|
|
jest.spyOn(console, 'error').mockImplementation();
|
|
const datasource: PrometheusDatasource = {
|
|
...defaultDatasource,
|
|
metadataRequest: jest.fn(() => Promise.reject('rejected')),
|
|
lookupsDisabled: false,
|
|
} as unknown as PrometheusDatasource;
|
|
const mockedMetadataRequest = jest.mocked(datasource.metadataRequest);
|
|
const instance = new LanguageProvider(datasource);
|
|
|
|
expect(mockedMetadataRequest.mock.calls.length).toBe(0);
|
|
const result = await instance.start();
|
|
expect(result[0]).toBeUndefined();
|
|
expect(result[1]).toEqual([]);
|
|
expect(mockedMetadataRequest.mock.calls.length).toBe(3);
|
|
});
|
|
});
|
|
|
|
describe('Query imports', () => {
|
|
it('returns empty queries', async () => {
|
|
const instance = new LanguageProvider(defaultDatasource);
|
|
const result = await instance.importFromAbstractQuery({ refId: 'bar', labelMatchers: [] });
|
|
expect(result).toEqual({ refId: 'bar', expr: '', range: true });
|
|
});
|
|
|
|
describe('exporting to abstract query', () => {
|
|
it('exports labels with metric name', async () => {
|
|
const instance = new LanguageProvider(defaultDatasource);
|
|
const abstractQuery = instance.exportToAbstractQuery({
|
|
refId: 'bar',
|
|
expr: 'metric_name{label1="value1", label2!="value2", label3=~"value3", label4!~"value4"}',
|
|
instant: true,
|
|
range: false,
|
|
});
|
|
expect(abstractQuery).toMatchObject({
|
|
refId: 'bar',
|
|
labelMatchers: [
|
|
{ name: 'label1', operator: AbstractLabelOperator.Equal, value: 'value1' },
|
|
{ name: 'label2', operator: AbstractLabelOperator.NotEqual, value: 'value2' },
|
|
{ name: 'label3', operator: AbstractLabelOperator.EqualRegEx, value: 'value3' },
|
|
{ name: 'label4', operator: AbstractLabelOperator.NotEqualRegEx, value: 'value4' },
|
|
{ name: '__name__', operator: AbstractLabelOperator.Equal, value: 'metric_name' },
|
|
],
|
|
});
|
|
});
|
|
});
|
|
});
|
|
});
|
|
|
|
const simpleMetricLabelsResponse = {
|
|
data: {
|
|
data: [
|
|
{
|
|
__name__: 'metric',
|
|
bar: 'baz',
|
|
},
|
|
],
|
|
},
|
|
};
|