Expanded resource instances can initially share the same dependency
slice, so we must take care to not modify the array values when
checking the dependencies.
In the future we can convert these to a generic Set data type, as we
often need to compare for equality and take the union of multiple groups
of dependencies.
The JSON output for sequences previously omitted unknown values for
tuples and sets, which made it impossible to interpret the corresponding
unknown marks. For example, consider this resource:
resource "example_resource" "example" {
tags = toset(["alpha", timestamp(), "charlie"])
}
This would previously be encoded in JSON as:
"after": {
"tags": ["alpha", "charlie"]
},
"after_unknown": {
"id": true,
"tags": [false, true, false]
},
That is, the timestamp value would be omitted from the output
altogether, while the corresponding unknown marks would include a value
for each of the set members.
This commit changes the behaviour to:
"after": {
"tags": ["alpha", null, "charlie"]
},
"after_unknown": {
"id": true,
"tags": [false, true, false]
},
This aligns tuples and sets with the prior behaviour for lists, and
makes it clear which elements are known and which are unknown.
Planned output changes are represented in the JSON output format using
the same change object as planned resource changes. This structure
includes an `after` value and a parallel `after_unknown` value, which
can be combined to determine which specific parts of a value are known
only at apply time.
Previously, structured output values would be marked in the JSON plan as
coarsely known or unknown, even if only some subset of the structure
will be known only at apply time. This simplification was unnecessary,
and this commit reuses the same logic for resource changes to give more
information to consumers of this format.
For example, consider this output:
output "bar" {
value = tolist([
"hello",
timestamp(),
"world",
])
}
The plan output for this output would be:
+ bar = [
+ "hello",
+ (known after apply),
+ "world",
]
For the same plan, the JSON output was previously:
"bar": {
"actions": [
"create"
],
"before": null,
"after_unknown": true,
"before_sensitive": false,
"after_sensitive": false
}
After this commit, the output is instead:
"bar": {
"actions": [
"create"
],
"before": null,
"after": [
"hello",
null,
"world"
],
"after_unknown": [
false,
true,
false
],
"before_sensitive": false,
"after_sensitive": false
}
Currently `sudo` is applied to `echo` resulting in:
`/etc/apt/sources.list.d/terraform.list: Permission denied`
Using `echo "..." | sudo tee /etc/apt/sources.list.d/terraform.list` fix the problem
Adding multiple local names for the same provider type in
required_providers was not prevented, which can lead to ambiguous
behavior in Terraform. Providers are always indexed by the providers
fully qualified name, so duplicate local names cannot be differentiated.
The previous version of this document was produced in haste in order to
support the development of the new provider framework, and so it focused
only on the most important details and left some of the operations totally
unmentioned.
This new version aims to capture the full set of managed-resource-related
provider operations, documenting when Terraform Core will call them and
what the provider ought to do in order to meet Terraform Core's
expectations for a valid response.
This new version does still assume a certain amount of knowledge on the
part of the reader about broadly what Terraform does from a user
perspective and what role providers play in that process. Perhaps a future
revision will include some additional background context as well, but
this is a snapshot of what I had time to do today between other work and
so for now I focused on presenting the remaining operations in a similar
amount of detail to what was here before.
For a while now we've had information equivalent to this in various
internal documents that we've referred to when designing features such as
config-driven refactoring, the "replace" planning option, and so forth.
However, so far we've not put that information in any sort of durable
public place that we can easily find and refer to when having design
discussions on GitHub and similar.
This is therefore an attempt to capture a summary of the three main design
patterns we've identified for planning-related behaviors, with a few
motivating examples of each one, in the hope that this will be a good
reference and some helpful inspiration for future design work.
It's intentionally not totally comprehensive of all planning behaviors
both because that would duplicate the end-user-oriented documentation and
because it would be burdensome to keep updating this document each time we
add anything new which might fit into these categories. However, we might
add a later feature to this document if it illustrates a new take or
different perspective on one of these patterns.