Fixes#10412
The context wasn't properly adding variable values to the Interpolator
instance which made it so that the `console` command couldn't access
variables set via tfvars and the CLI.
This also adds better test coverage in command itself for this.
This turns the new graphs on by default and puts the old graphs behind a
flag `-Xlegacy-graph`. This effectively inverts the current 0.7.x
behavior with the new graphs.
We've incubated most of these for a few weeks now. We've found issues
and we've fixed them and we've been using these graphs internally for
awhile without any major issue. Its time to default them on and get them
part of a beta.
Implement debugInfo and the DebugGraph
DebugInfo will be a global variable through which graph debug
information can we written to a compressed archive. The DebugInfo
methods are all safe for concurrent use, and noop with a nil receiver.
The API outside of the terraform package will be to call SetDebugInfo
to create the archive, and CloseDebugInfo() to properly close the file.
Each write to the archive will be flushed and sync'ed individually, so
in the event of a crash or a missing call to Close, the archive can
still be recovered.
The DebugGraph is a representation of a terraform Graph to be written to
the debug archive, currently in dot format. The DebugGraph also contains
an internal buffer with Printf and Write methods to add to this buffer.
The buffer will be written to an accompanying file in the debug archive
along with the graph.
This also adds a GraphNodeDebugger interface. Any node implementing
`NodeDebug() string` can output information to annotate the debug graph
node, and add the data to the log. This interface may change or be
removed to provide richer options for debugging graph nodes.
The new graph builders all delegate the build to the BasicGraphBuilder.
Having a Name field lets us differentiate the actual builder
implementation in the debug graphs.
Fixes#7975
This changes the InputMode for the CLI to always be:
InputModeProvider | InputModeVar | InputModeVarUnset
Which means:
* Ask for provider variables
* Ask for user variables _that are not already set_
The change is the latter point. Before, we'd only ask for variables if
zero were given. This forces the user to either have no variables set
via the CLI, env vars, tfvars or ALL variables, but no in between. As
reported in #7975, this isn't expected behavior.
The new change makes is so that unset variables are always asked for.
Users can retain the previous behavior by setting `-input=false`. This
would ensure that variables set by external sources cover all cases.
This creates a standard package and interface for defining, querying,
setting experiments (`-X` flags).
I expect we'll want to continue to introduce various features behind
experimental flags. I want to make doing this as easy as possible and I
want to make _removing_ experiments as easy as possible as well.
The goal with this packge has been to rely on the compiler enforcing our
experiment references as much as possible. This means that every
experiment is a global variable that must be referenced directly, so
when it is removed you'll get compiler errors where the experiment is
referenced.
This also unifies and makes it easy to grab CLI flags to enable/disable
experiments as well as env vars! This way defining an experiment is just
a couple lines of code (documented on the package).
This reverts commit c3a4cff133, reversing
changes made to 791a02e6e4.
This change requires plugin recompilation and we should hold off until a
minor release for that.
This enables the shadow graph since all tests pass!
We also change the destroy node to check the resource type using the
addr since that is always available and reliable. The configuration can
be nil for orphans.
This is something that should be determined and done during an apply. It
doesn't make a lot of sense that the plan is doing it (in its current
form at least).
Since it is still very much possible for this to cause problems, this
can be used to disable the shadow graph. We'll purposely not document
this since the goal is to remove this flag as we become more confident
with it.
This is necessary so that the shadow version can actually keep track of
what provider is used for what. Before, providers for different alises
were just initialized but the factory had no idea. Arguably this is fine
but when trying to build a shadow graph this presents challenges.
With these changes, we now pass an opaque "uid" through that is used to
keep track of the providers and what real maps to what shadow.
This PR fixes#7824, which crashed when applying a plan file. The bug is
that while a map which has come from the HCL parser reifies as a
[]map[string]interface{}, the variable saved in the plan file was not.
We now cover both cases.
Fixes#7824.
Terraform 0.7 introduces lists and maps as first-class values for
variables, in addition to string values which were previously available.
However, there was previously no way to override the default value of a
list or map, and the functionality for overriding specific map keys was
broken.
Using the environment variable method for setting variable values, there
was previously no way to give a variable a value of a list or map. These
now support HCL for individual values - specifying:
TF_VAR_test='["Hello", "World"]'
will set the variable `test` to a two-element list containing "Hello"
and "World". Specifying
TF_VAR_test_map='{"Hello = "World", "Foo" = "bar"}'
will set the variable `test_map` to a two-element map with keys "Hello"
and "Foo", and values "World" and "bar" respectively.
The same logic is applied to `-var` flags, and the file parsed by
`-var-files` ("autoVariables").
Note that care must be taken to not run into shell expansion for `-var-`
flags and environment variables.
We also merge map keys where appropriate. The override syntax has
changed (to be noted in CHANGELOG as a breaking change), so several
tests needed their syntax updating from the old `amis.us-east-1 =
"newValue"` style to `amis = "{ "us-east-1" = "newValue"}"` style as
defined in TF-002.
In order to continue supporting the `-var "foo=bar"` type of variable
flag (which is not valid HCL), a special case error is checked after HCL
parsing fails, and the old code path runs instead.
This is the first step in allowing overrides of map and list variables.
We convert Context.variables to map[string]interface{} from
map[string]string and fix up all the call sites.
In #7170 we found two scenarios where the type checking done during the
`context.Validate()` graph walk was circumvented, and the subsequent
assumption of type safety in the provider's `Diff()` implementation
caused panics.
Both scenarios have to do with interpolations that reference Computed
values. The sentinel we use to indicate that a value is Computed does
not carry any type information with it yet.
That means that an incorrect reference to a list or a map in a string
attribute can "sneak through" validation only to crop up...
1. ...during Plan for Data Source References
2. ...during Apply for Resource references
In order to address this, we:
* add high-level tests for each of these two scenarios in `provider/test`
* add context-level tests for the same two scenarios in `terraform`
(these tests proved _really_ tricky to write!)
* place an `EvalValidateResource` just before `EvalDiff` and `EvalApply` to
catch these errors
* add some plumbing to `Plan()` and `Apply()` to return validation
errors, which were previously only generated during `Validate()`
* wrap unit-tests around `EvalValidateResource`
* add an `IgnoreWarnings` option to `EvalValidateResource` to prevent
active warnings from halting execution on the second-pass validation
Eventually, we might be able to attach type information to Computed
values, which would allow for these errors to be caught earlier. For
now, this solution keeps us safe from panics and raises the proper
errors to the user.
Fixes#7170
This commit adds support for native list variables and outputs, building
up on the previous change to state. Interpolation functions now return
native lists in preference to StringList.
List variables are defined like this:
variable "test" {
# This can also be inferred
type = "list"
default = ["Hello", "World"]
}
output "test_out" {
value = "${var.a_list}"
}
This results in the following state:
```
...
"outputs": {
"test_out": [
"hello",
"world"
]
},
...
```
And the result of terraform output is as follows:
```
$ terraform output
test_out = [
hello
world
]
```
Using the output name, an xargs-friendly representation is output:
```
$ terraform output test_out
hello
world
```
The output command also supports indexing into the list (with
appropriate range checking and no wrapping):
```
$ terraform output test_out 1
world
```
Along with maps, list outputs from one module may be passed as variables
into another, removing the need for the `join(",", var.list_as_string)`
and `split(",", var.list_as_string)` which was previously necessary in
Terraform configuration.
This commit also updates the tests and implementations of built-in
interpolation functions to take and return native lists where
appropriate.
A backwards compatibility note: previously the concat interpolation
function was capable of concatenating either strings or lists. The
strings use case was deprectated a long time ago but still remained.
Because we cannot return `ast.TypeAny` from an interpolation function,
this use case is no longer supported for strings - `concat` is only
capable of concatenating lists. This should not be a huge issue - the
type checker picks up incorrect parameters, and the native HIL string
concatenation - or the `join` function - can be used to replicate the
missing behaviour.
This adds a field terraform_version to the state that represents the
Terraform version that wrote that state. If Terraform encounters a state
written by a future version, it will error. You must use at least the
version that wrote that state.
Internally we have fields to override this behavior (StateFutureAllowed),
but I chose not to expose them as CLI flags, since the user can just
modify the state directly. This is tricky, but should be tricky to
represent the horrible disaster that can happen by enabling it.
We didn't have to bump the state format version since the absense of the
field means it was written by version "0.0.0" which will always be
older. In effect though this change will always apply to version 2 of
the state since it appears in 0.7 which bumped the version for other
purposes.
When a user specifies `-target`s on a `terraform plan` and stores
the resulting diff in a plan file using `-out` - it usually works just
fine since the diff is scoped based on the targets.
When there are tainted resources in the state, however, graph nodes to
destroy them were popping back into the plan when it was being loaded
from a file. This was because Targets weren't being stored in the
Planfile, so Terraform didn't know to filter them out. (In the
non-Planfile scenario, we still had the Targets loaded directly from the
flags.)
By encoding Targets in with the Planfile we can ensure that the same
filters are always applied.
Backwards compatibility should be fine here, since we're just adding a
field. The gob encoder/decoder will just do the right thing (ignore/skip
the field) with planfiles stored w/ versions that don't know about
Targets.
Fixes#5183
Now that we support log line filtering (as of 0090c063) it's good to be
a bit more fussy about what log levels are assigned to different things.
Here we make a few things that are implementation details log as DEBUG,
and prevent spurious errors from EvalValidateCount where it was returning
an empty EvalValidateError rather than nil when everything was okay.
In `helper/schema` we already makes a distinction between `Default`
which is always applied and `InputDefault` which is displayed to the
user for an empty field.
But for variables we just have `Default` which is treated like
`InputDefault`. This changes it to _not_ prompt the user for a value
when the variable declaration includes a default.
Treating this as a UX bugfix and the "don't prompt for variables w/
defaults set" behavior as the originally expected behavior we were
failing to honor.
Added an already-passing test to verify and cover the `helper/schema`
behavior.
Perhaps down the road we can add a `input_default` attribute to
variables to allow similar behavior to `helper/schema` in variables, but
for now just sticking with the fix.
Fixes#2592
This reimplements my prior attempt at nipping issues where a plan did
not yield the same cycle an apply did. My prior attempt was to have
ctx.Validate generate a "Verbose" worst-case graph. It turns out that
skipping PruneDestroyTransformer to generate this graph misses important
heuristics that prevent cycles by dropping destroy nodes that are
determined to be unused.
This resulted in Validate improperly failing in scenarios where these
heuristics would have broken the cycle.
We detected the problem during the work on #1781 and worked around the
issue by reverting to the non-Verbose graph in Validate.
This commit accomplishes the original goal in a better way - by
generating the full graph and checking it once Plan has calculated the
diff. This guarantees that any graph issue that would be caught by Apply
will be caught by Plan.
Most CBD-related cycles include destroy nodes, and destroy nodes were
all being pruned from the graph before staring the Validate walk.
In practice this meant that we had scenarios that would error out with
graph cycles on Apply that _seemed_ fine during Plan.
This introduces a Verbose option to the GraphBuilder that tells it to
generate a "worst-case" graph. Validate sets this to true so that cycle
errors will always trigger at this step if they're going to happen.
(This Verbose option will be exposed as a CLI flag to `terraform graph`
in a second incoming PR.)
refs #1651
Add `-target=resource` flag to core operations, allowing users to
target specific resources in their infrastructure. When `-target` is
used, the operation will only apply to that resource and its
dependencies.
The calculated dependencies are different depending on whether we're
running a normal operation or a `terraform destroy`.
Generally, "dependencies" refers to ancestors: resources falling
_before_ the target in the graph, because their changes are required to
accurately act on the target.
For destroys, "dependencies" are descendents: those resources which fall
_after_ the target. These resources depend on our target, which is going
to be destroyed, so they should also be destroyed.