Due to how often the state and plan types are referenced throughout
Terraform, there isn't a great way to switch them out gradually. As a
consequence, this huge commit gets us from the old world to a _compilable_
new world, but still has a large number of known test failures due to
key functionality being stubbed out.
The stubs here are for anything that interacts with providers, since we
now need to do the follow-up work to similarly replace the old
terraform.ResourceProvider interface with its replacement in the new
"providers" package. That work, along with work to fix the remaining
failing tests, will follow in subsequent commits.
The aim here was to replace all references to terraform.State and its
downstream types with states.State, terraform.Plan with plans.Plan,
state.State with statemgr.State, and switch to the new implementations of
the state and plan file formats. However, due to the number of times those
types are used, this also ended up affecting numerous other parts of core
such as terraform.Hook, the backend.Backend interface, and most of the CLI
commands.
Just as with 5861dbf3fc49b19587a31816eb06f511ab861bb4 before, I apologize
in advance to the person who inevitably just found this huge commit while
spelunking through the commit history.
The prior commit changed the schema-access model so that all schemas are
fetched up front during context creation and are then readily available
for use throughout graph building and evaluation.
As a result, we no longer need to create dependency edges to a provider
when one of its resources is referenced by another node, and so the
ProviderTransformer needs only to worry about direct ownership
dependencies.
This also avoids the need for us to run AttachSchemaTransformer twice,
since ProviderTransformer no longer needs schema and we can therefore
defer attaching until just before ReferenceTransformer, when all of the
referencable and referencing nodes are already present in the graph.
Add a graphNodeAttachDestroy interface, so destroy nodes can be attached
to their companion create node. The creator can then reference the
CreateBeforeDestroy status of the destroyer, determining if the current
state needs to be replaced or deposed.
This is needed when a node is forced to become CreateBeforeDestroy by a
dependency rather than the config, since because the config is
immutable, only the destroyer is aware that it has been forced
CreateBeforeDestroy.
Both ProviderTransformer and ReferenceTransformer need schema information,
and so there's a chicken-and-egg problem here where previously the schemas
were not getting attached to provider nodes created during
ProviderTransformer.
As a stop-gap measure for now we'll just run AttachSchemaTransformer
twice, so we can catch any new nodes created during the provider
transforms.
Previously we fetched schemas during the AttachSchemaTransformer,
potentially multiple times as that was re-run for each graph built. Now
we fetch the schemas just once during context construction, passing that
result into each of the graph builders.
This only addresses the schema accesses during graph construction. We're
still separately loading schemas during the main walk for evaluation
purposes. This will be addressed in a later commit.
The initial destroyer map is constructed using DestroyAddr(), which
returns resource instance addresses, but we were then going on to _use_
that map with resource addresses, which means the keys can't match when
indexed instances are being destroyed.
Now we'll use resource instance addresses in all cases.
This also includes some additional logging that was helpful in debugging
this issue.
The provider transforms now depend on analyzing references in order to
properly create provider edges, and so we need to now insert all of the
nodes that can have references and attach schemas before we run
TransformProviders.
This was done for the main graph builders in a previous commit, but as
usual we missed this surprising hidden graph builder that lives inside
a graph transformer. 🙄
These transformers both construct temporary graphs using many of the same
transformers used in the apply graph, and properly doing this now requires
access to the providers and provisioners in order to obtain their schemas.
Along with this, we also update the tests here to use the
simpleMockComponentFactory helper to get a mock provider with a schema
already configured, which means we also need to update the test fixtures
and assertions to use the resource type and attributes defined in that
mock factory.
Due to how deeply the configuration types go into Terraform Core, there
isn't a great way to switch out to HCL2 gradually. As a consequence, this
huge commit gets us from the old state to a _compilable_ new state, but
does not yet attempt to fix any tests and has a number of known missing
parts and bugs. We will continue to iterate on this in forthcoming
commits, heading back towards passing tests and making Terraform
fully-functional again.
The three main goals here are:
- Use the configuration models from the "configs" package instead of the
older models in the "config" package, which is now deprecated and
preserved only to help us write our migration tool.
- Do expression inspection and evaluation using the functionality of the
new "lang" package, instead of the Interpolator type and related
functionality in the main "terraform" package.
- Represent addresses of various objects using types in the addrs package,
rather than hand-constructed strings. This is not critical to support
the above, but was a big help during the implementation of these other
points since it made it much more explicit what kind of address is
expected in each context.
Since our new packages are built to accommodate some future planned
features that are not yet implemented (e.g. the "for_each" argument on
resources, "count"/"for_each" on modules), and since there's still a fair
amount of functionality still using old-style APIs, there is a moderate
amount of shimming here to connect new assumptions with old, hopefully in
a way that makes it easier to find and eliminate these shims later.
I apologize in advance to the person who inevitably just found this huge
commit while spelunking through the commit history.
DestroyValueReferenceTransformer is used during destroy to reverse the
edges for output and local values. Because destruction is going to
remove these from the state, nodes that depend on their value need to be
visited first.
Fixes#10729
Destruction ordering wasn't taking into account ordering implied through
variables across module boundaries.
This is because to build the destruction ordering we create a
non-destruction graph to determine the _creation_ ordering (to properly
flip edges). This creation graph we create wasn't including module
variables. This PR adds that transform to the graph.
Fixes#4645
This is something that never worked (even in legacy graphs), but as we
push forward towards encouraging multi-provider usage especially with
things like the Vault data source, I want to make sure we have this
right for 0.8.
When you have a config like this:
```
resource "foo_type" "name" {}
provider "bar" { attr = "${foo_type.name.value}" }
resource "bar_type" "name" {}
```
Then the destruction ordering MUST be:
1. `bar_type`
2. `foo_type`
Since configuring the client for `bar_type` requires accessing data from
`foo_type`. Prior to this PR, these two would be done in parallel. This
properly pushes forward the dependency.
There are more cases I want to test but this is a basic case that is
fixed.
This fixes: `TestContext2Apply_moduleDestroyOrder`
The new destroy graph wasn't properly creating edges that happened
_through_ an output, it was only created the edges for _direct_
dependents.
To fix this, the DestroyEdgeTransformer now creates the full transitive
list of destroy edges by walking all ancestors. This will create more
edges than are necessary but also will no longer miss resources through
an output.
terraform: more specific resource references
terraform: outputs need to know about the new reference format
terraform: resources w/o a config still have a referencable name
Fixes#9920
This was an issue caught with the shadow graph. Self references in
provisioners were causing a self-edge on destroy apply graphs.
We need to explicitly check that we're not creating an edge to ourself.
This is also how the reference transformer works.