opentofu/config/module/tree.go
James Bardin 0afd4a9097 Lookup registry module versions during Tree.Load.
Registry modules can't be handled directly by the getter.Storage
implementation, which doesn't know how to handle versions. First see if
we have a matching module stored that satisfies our constraints. If
not, and we're getting or updating, we can look it up in the registry.

This essentially takes the place of a "registry detector" for go-getter,
but required the intermediate step of resolving the version dependency.

This also starts breaking up the huge Tree.Load method into more
manageable parts. It was sorely needed, as indicated by the difficulty
encountered in this refactor. There's still a lot that can be done to
improve this, but at least there are now a few easier to read methods
when we come back to it.
2017-10-27 09:08:15 -04:00

722 lines
18 KiB
Go

package module
import (
"bufio"
"bytes"
"fmt"
"log"
"path/filepath"
"strings"
"sync"
getter "github.com/hashicorp/go-getter"
"github.com/hashicorp/terraform/config"
)
// RootName is the name of the root tree.
const RootName = "root"
// Tree represents the module import tree of configurations.
//
// This Tree structure can be used to get (download) new modules, load
// all the modules without getting, flatten the tree into something
// Terraform can use, etc.
type Tree struct {
name string
config *config.Config
children map[string]*Tree
path []string
lock sync.RWMutex
// version is the final version of the config loaded for the Tree's module
version string
// source is the "source" string used to load this module. It's possible
// for a module source to change, but the path remains the same, preventing
// it from being reloaded.
source string
// parent allows us to walk back up the tree and determine if there are any
// versioned ancestor modules which may effect the stored location of
// submodules
parent *Tree
}
// NewTree returns a new Tree for the given config structure.
func NewTree(name string, c *config.Config) *Tree {
return &Tree{config: c, name: name}
}
// NewEmptyTree returns a new tree that is empty (contains no configuration).
func NewEmptyTree() *Tree {
t := &Tree{config: &config.Config{}}
// We do this dummy load so that the tree is marked as "loaded". It
// should never fail because this is just about a no-op. If it does fail
// we panic so we can know its a bug.
if err := t.Load(nil, GetModeGet); err != nil {
panic(err)
}
return t
}
// NewTreeModule is like NewTree except it parses the configuration in
// the directory and gives it a specific name. Use a blank name "" to specify
// the root module.
func NewTreeModule(name, dir string) (*Tree, error) {
c, err := config.LoadDir(dir)
if err != nil {
return nil, err
}
return NewTree(name, c), nil
}
// Config returns the configuration for this module.
func (t *Tree) Config() *config.Config {
return t.config
}
// Child returns the child with the given path (by name).
func (t *Tree) Child(path []string) *Tree {
if t == nil {
return nil
}
if len(path) == 0 {
return t
}
c := t.Children()[path[0]]
if c == nil {
return nil
}
return c.Child(path[1:])
}
// Children returns the children of this tree (the modules that are
// imported by this root).
//
// This will only return a non-nil value after Load is called.
func (t *Tree) Children() map[string]*Tree {
t.lock.RLock()
defer t.lock.RUnlock()
return t.children
}
// DeepEach calls the provided callback for the receiver and then all of
// its descendents in the tree, allowing an operation to be performed on
// all modules in the tree.
//
// Parents will be visited before their children but otherwise the order is
// not defined.
func (t *Tree) DeepEach(cb func(*Tree)) {
t.lock.RLock()
defer t.lock.RUnlock()
t.deepEach(cb)
}
func (t *Tree) deepEach(cb func(*Tree)) {
cb(t)
for _, c := range t.children {
c.deepEach(cb)
}
}
// Loaded says whether or not this tree has been loaded or not yet.
func (t *Tree) Loaded() bool {
t.lock.RLock()
defer t.lock.RUnlock()
return t.children != nil
}
// Modules returns the list of modules that this tree imports.
//
// This is only the imports of _this_ level of the tree. To retrieve the
// full nested imports, you'll have to traverse the tree.
func (t *Tree) Modules() []*Module {
result := make([]*Module, len(t.config.Modules))
for i, m := range t.config.Modules {
result[i] = &Module{
Name: m.Name,
Version: m.Version,
Source: m.Source,
Providers: m.Providers,
}
}
return result
}
// Name returns the name of the tree. This will be "<root>" for the root
// tree and then the module name given for any children.
func (t *Tree) Name() string {
if t.name == "" {
return RootName
}
return t.name
}
// Load loads the configuration of the entire tree.
//
// The parameters are used to tell the tree where to find modules and
// whether it can download/update modules along the way.
//
// Calling this multiple times will reload the tree.
//
// Various semantic-like checks are made along the way of loading since
// module trees inherently require the configuration to be in a reasonably
// sane state: no circular dependencies, proper module sources, etc. A full
// suite of validations can be done by running Validate (after loading).
func (t *Tree) Load(storage getter.Storage, mode GetMode) error {
t.lock.Lock()
defer t.lock.Unlock()
s := newModuleStorage(storage, mode)
children, err := t.getChildren(s)
if err != nil {
return err
}
// Go through all the children and load them.
for _, c := range children {
if err := c.Load(storage, mode); err != nil {
return err
}
}
// Set our tree up
t.children = children
// if we're the root module, we can now set the provider inheritance
if len(t.path) == 0 {
t.inheritProviderConfigs(nil)
}
return nil
}
func (t *Tree) getChildren(s moduleStorage) (map[string]*Tree, error) {
children := make(map[string]*Tree)
// Go through all the modules and get the directory for them.
for _, m := range t.Modules() {
if _, ok := children[m.Name]; ok {
return nil, fmt.Errorf(
"module %s: duplicated. module names must be unique", m.Name)
}
// Determine the path to this child
path := make([]string, len(t.path), len(t.path)+1)
copy(path, t.path)
path = append(path, m.Name)
log.Printf("[TRACE] module source: %q", m.Source)
// Lookup the local location of the module.
// dir is the local directory where the module is stored
mod, err := s.findRegistryModule(m.Source, m.Version)
if err != nil {
return nil, err
}
// The key is the string that will be used to uniquely id the Source in
// the local storage. The prefix digit can be incremented to
// invalidate the local module storage.
key := "1." + t.versionedPathKey(m)
if mod.Version != "" {
key += "." + mod.Version
}
// Check for the exact key if it's not a registry module
if !mod.registry {
mod.Dir, err = s.findModule(key)
if err != nil {
return nil, err
}
}
if mod.Dir != "" {
// We found it locally, but in order to load the Tree we need to
// find out if there was another subDir stored from detection.
subDir, err := s.getModuleRoot(mod.Dir)
if err != nil {
// If there's a problem with the subdir record, we'll let the
// recordSubdir method fix it up. Any other filesystem errors
// will turn up again below.
log.Println("[WARN] error reading subdir record:", err)
} else {
fullDir := filepath.Join(mod.Dir, subDir)
child, err := NewTreeModule(m.Name, fullDir)
if err != nil {
return nil, fmt.Errorf("module %s: %s", m.Name, err)
}
child.path = path
child.parent = t
child.version = mod.Version
child.source = m.Source
children[m.Name] = child
continue
}
}
// Split out the subdir if we have one.
// Terraform keeps the entire requested tree, so that modules can
// reference sibling modules from the same archive or repo.
rawSource, subDir := getter.SourceDirSubdir(m.Source)
// we haven't found a source, so fallback to the go-getter detectors
source := mod.url
if source == "" {
source, err = getter.Detect(rawSource, t.config.Dir, getter.Detectors)
if err != nil {
return nil, fmt.Errorf("module %s: %s", m.Name, err)
}
}
log.Printf("[TRACE] detected module source %q", source)
// Check if the detector introduced something new.
// For example, the registry always adds a subdir of `//*`,
// indicating that we need to strip off the first component from the
// tar archive, though we may not yet know what it is called.
source, detectedSubDir := getter.SourceDirSubdir(source)
if detectedSubDir != "" {
subDir = filepath.Join(detectedSubDir, subDir)
}
dir, ok, err := s.getStorage(key, source)
if err != nil {
return nil, err
}
if !ok {
return nil, fmt.Errorf("module %s: not found, may need to run 'terraform init'", m.Name)
}
log.Printf("[TRACE] %q stored in %q", source, dir)
// expand and record the subDir for later
fullDir := dir
if subDir != "" {
fullDir, err = getter.SubdirGlob(dir, subDir)
if err != nil {
return nil, err
}
// +1 to account for the pathsep
if len(dir)+1 > len(fullDir) {
return nil, fmt.Errorf("invalid module storage path %q", fullDir)
}
subDir = fullDir[len(dir)+1:]
}
// add new info to the module record
mod.Key = key
mod.Dir = dir
mod.Root = subDir
// record the module in our manifest
if err := s.recordModule(mod); err != nil {
return nil, err
}
child, err := NewTreeModule(m.Name, fullDir)
if err != nil {
return nil, fmt.Errorf("module %s: %s", m.Name, err)
}
child.path = path
child.parent = t
child.version = mod.Version
child.source = m.Source
children[m.Name] = child
}
return children, nil
}
// inheritProviderConfig resolves all provider config inheritance after the
// tree is loaded.
//
// If there is a provider block without a config, look in the parent's Module
// block for a provider, and fetch that provider's configuration. If that
// doesn't exist, assume a default empty config. Implicit providers can still
// inherit their config all the way up from the root, so walk up the tree and
// copy the first matching provider into the module.
func (t *Tree) inheritProviderConfigs(stack []*Tree) {
// the recursive calls only append, so we don't need to worry about copying
// this slice.
stack = append(stack, t)
for _, c := range t.children {
c.inheritProviderConfigs(stack)
}
providers := make(map[string]*config.ProviderConfig)
missingProviders := make(map[string]bool)
for _, p := range t.config.ProviderConfigs {
providers[p.FullName()] = p
}
for _, r := range t.config.Resources {
p := r.ProviderFullName()
if _, ok := providers[p]; !(ok || strings.Contains(p, ".")) {
missingProviders[p] = true
}
}
// Search for implicit provider configs
// This adds an empty config is no inherited config is found, so that
// there is always a provider config present.
// This is done in the root module as well, just to set the providers.
for missing := range missingProviders {
// first create an empty provider config
pc := &config.ProviderConfig{
Name: missing,
}
// walk up the stack looking for matching providers
for i := len(stack) - 2; i >= 0; i-- {
pt := stack[i]
var parentProvider *config.ProviderConfig
for _, p := range pt.config.ProviderConfigs {
if p.FullName() == missing {
parentProvider = p
break
}
}
if parentProvider == nil {
continue
}
pc.Path = pt.Path()
pc.Path = append([]string{RootName}, pt.path...)
pc.RawConfig = parentProvider.RawConfig
log.Printf("[TRACE] provider %q inheriting config from %q",
strings.Join(append(t.Path(), pc.FullName()), "."),
strings.Join(append(pt.Path(), parentProvider.FullName()), "."),
)
break
}
// always set a provider config
if pc.RawConfig == nil {
pc.RawConfig, _ = config.NewRawConfig(map[string]interface{}{})
}
t.config.ProviderConfigs = append(t.config.ProviderConfigs, pc)
}
// After allowing the empty implicit configs to be created in root, there's nothing left to inherit
if len(stack) == 1 {
return
}
// get our parent's module config block
parent := stack[len(stack)-2]
var parentModule *config.Module
for _, m := range parent.config.Modules {
if m.Name == t.name {
parentModule = m
break
}
}
if parentModule == nil {
panic("can't be a module without a parent module config")
}
// now look for providers that need a config
for p, pc := range providers {
if len(pc.RawConfig.RawMap()) > 0 {
log.Printf("[TRACE] provider %q has a config, continuing", p)
continue
}
// this provider has no config yet, check for one being passed in
parentProviderName, ok := parentModule.Providers[p]
if !ok {
continue
}
var parentProvider *config.ProviderConfig
// there's a config for us in the parent module
for _, pp := range parent.config.ProviderConfigs {
if pp.FullName() == parentProviderName {
parentProvider = pp
break
}
}
if parentProvider == nil {
// no config found, assume defaults
continue
}
// Copy it in, but set an interpolation Scope.
// An interpolation Scope always need to have "root"
pc.Path = append([]string{RootName}, parent.path...)
pc.RawConfig = parentProvider.RawConfig
log.Printf("[TRACE] provider %q inheriting config from %q",
strings.Join(append(t.Path(), pc.FullName()), "."),
strings.Join(append(parent.Path(), parentProvider.FullName()), "."),
)
}
}
// Path is the full path to this tree.
func (t *Tree) Path() []string {
return t.path
}
// String gives a nice output to describe the tree.
func (t *Tree) String() string {
var result bytes.Buffer
path := strings.Join(t.path, ", ")
if path != "" {
path = fmt.Sprintf(" (path: %s)", path)
}
result.WriteString(t.Name() + path + "\n")
cs := t.Children()
if cs == nil {
result.WriteString(" not loaded")
} else {
// Go through each child and get its string value, then indent it
// by two.
for _, c := range cs {
r := strings.NewReader(c.String())
scanner := bufio.NewScanner(r)
for scanner.Scan() {
result.WriteString(" ")
result.WriteString(scanner.Text())
result.WriteString("\n")
}
}
}
return result.String()
}
// Validate does semantic checks on the entire tree of configurations.
//
// This will call the respective config.Config.Validate() functions as well
// as verifying things such as parameters/outputs between the various modules.
//
// Load must be called prior to calling Validate or an error will be returned.
func (t *Tree) Validate() error {
if !t.Loaded() {
return fmt.Errorf("tree must be loaded before calling Validate")
}
// If something goes wrong, here is our error template
newErr := &treeError{Name: []string{t.Name()}}
// Terraform core does not handle root module children named "root".
// We plan to fix this in the future but this bug was brought up in
// the middle of a release and we don't want to introduce wide-sweeping
// changes at that time.
if len(t.path) == 1 && t.name == "root" {
return fmt.Errorf("root module cannot contain module named 'root'")
}
// Validate our configuration first.
if err := t.config.Validate(); err != nil {
newErr.Add(err)
}
// If we're the root, we do extra validation. This validation usually
// requires the entire tree (since children don't have parent pointers).
if len(t.path) == 0 {
if err := t.validateProviderAlias(); err != nil {
newErr.Add(err)
}
}
// Get the child trees
children := t.Children()
// Validate all our children
for _, c := range children {
err := c.Validate()
if err == nil {
continue
}
verr, ok := err.(*treeError)
if !ok {
// Unknown error, just return...
return err
}
// Append ourselves to the error and then return
verr.Name = append(verr.Name, t.Name())
newErr.AddChild(verr)
}
// Go over all the modules and verify that any parameters are valid
// variables into the module in question.
for _, m := range t.config.Modules {
tree, ok := children[m.Name]
if !ok {
// This should never happen because Load watches us
panic("module not found in children: " + m.Name)
}
// Build the variables that the module defines
requiredMap := make(map[string]struct{})
varMap := make(map[string]struct{})
for _, v := range tree.config.Variables {
varMap[v.Name] = struct{}{}
if v.Required() {
requiredMap[v.Name] = struct{}{}
}
}
// Compare to the keys in our raw config for the module
for k, _ := range m.RawConfig.Raw {
if _, ok := varMap[k]; !ok {
newErr.Add(fmt.Errorf(
"module %s: %s is not a valid parameter",
m.Name, k))
}
// Remove the required
delete(requiredMap, k)
}
// If we have any required left over, they aren't set.
for k, _ := range requiredMap {
newErr.Add(fmt.Errorf(
"module %s: required variable %q not set",
m.Name, k))
}
}
// Go over all the variables used and make sure that any module
// variables represent outputs properly.
for source, vs := range t.config.InterpolatedVariables() {
for _, v := range vs {
mv, ok := v.(*config.ModuleVariable)
if !ok {
continue
}
tree, ok := children[mv.Name]
if !ok {
newErr.Add(fmt.Errorf(
"%s: undefined module referenced %s",
source, mv.Name))
continue
}
found := false
for _, o := range tree.config.Outputs {
if o.Name == mv.Field {
found = true
break
}
}
if !found {
newErr.Add(fmt.Errorf(
"%s: %s is not a valid output for module %s",
source, mv.Field, mv.Name))
}
}
}
return newErr.ErrOrNil()
}
// versionedPathKey returns a path string with every levels full name, version
// and source encoded. This is to provide a unique key for our module storage,
// since submodules need to know which versions of their ancestor modules they
// are loaded from.
func (t *Tree) versionedPathKey(m *Module) string {
path := make([]string, len(t.path)+1)
path[len(path)-1] = m.Name + ";" + m.Source
// We're going to load these in order for easier reading and debugging, but
// in practice they only need to be unique and consistent.
p := t
i := len(path) - 2
for ; i >= 0; i-- {
if p == nil {
break
}
// we may have been loaded under a blank Tree, so always check for a name
// too.
if p.name == "" {
break
}
seg := p.name
if p.version != "" {
seg += "#" + p.version
}
if p.source != "" {
seg += ";" + p.source
}
path[i] = seg
p = p.parent
}
key := strings.Join(path, "|")
return key
}
// treeError is an error use by Tree.Validate to accumulates all
// validation errors.
type treeError struct {
Name []string
Errs []error
Children []*treeError
}
func (e *treeError) Add(err error) {
e.Errs = append(e.Errs, err)
}
func (e *treeError) AddChild(err *treeError) {
e.Children = append(e.Children, err)
}
func (e *treeError) ErrOrNil() error {
if len(e.Errs) > 0 || len(e.Children) > 0 {
return e
}
return nil
}
func (e *treeError) Error() string {
name := strings.Join(e.Name, ".")
var out bytes.Buffer
fmt.Fprintf(&out, "module %s: ", name)
if len(e.Errs) == 1 {
// single like error
out.WriteString(e.Errs[0].Error())
} else {
// multi-line error
for _, err := range e.Errs {
fmt.Fprintf(&out, "\n %s", err)
}
}
if len(e.Children) > 0 {
// start the next error on a new line
out.WriteString("\n ")
}
for _, child := range e.Children {
out.WriteString(child.Error())
}
return out.String()
}