opentofu/states/instance_object.go
Martin Atkins 9eb32c4536 core: Reinstaint instance tainting, but without mutating objects
Our previous mechanism for dealing with tainting relied on directly
mutating the InstanceState object to mark it as such. In our new state
models we consider the instance objects to be immutable by convention, and
so we frequently copy them. As a result, the taint flagging was no longer
making it all the way through the apply evaluation process.

Here we now implement tainting as a separate step in the evaluation
process, creating a copy of the object with a tainted status if there were
any errors during creation.

This introduces a new behavior where any provider-level errors during
creation will also cause an instance to be marked as tainted if any object
is returned at all. Create-time errors _normally_ result in no object at
all, but the provider might return an object if the failure occurred at
a subsequent step of a multi-step creation process and so left behind a
remote object that needs to be cleaned up on a future run.
2018-10-16 19:14:11 -07:00

121 lines
4.8 KiB
Go

package states
import (
"github.com/zclconf/go-cty/cty"
ctyjson "github.com/zclconf/go-cty/cty/json"
"github.com/hashicorp/terraform/addrs"
)
// ResourceInstanceObject is the local representation of a specific remote
// object associated with a resource instance. In practice not all remote
// objects are actually remote in the sense of being accessed over the network,
// but this is the most common case.
//
// It is not valid to mutate a ResourceInstanceObject once it has been created.
// Instead, create a new object and replace the existing one.
type ResourceInstanceObject struct {
// Value is the object-typed value representing the remote object within
// Terraform.
Value cty.Value
// Internal is an opaque value set by the provider when this object was
// last created or updated. Terraform Core does not use this value in
// any way and it is not exposed anywhere in the user interface, so
// a provider can use it for retaining any necessary private state.
Private []byte
// Status represents the "readiness" of the object as of the last time
// it was updated.
Status ObjectStatus
// Dependencies is a set of other addresses in the same module which
// this instance depended on when the given attributes were evaluated.
// This is used to construct the dependency relationships for an object
// whose configuration is no longer available, such as if it has been
// removed from configuration altogether, or is now deposed.
Dependencies []addrs.Referenceable
}
// ObjectStatus represents the status of a RemoteObject.
type ObjectStatus rune
//go:generate stringer -type ObjectStatus
const (
// ObjectReady is an object status for an object that is ready to use.
ObjectReady ObjectStatus = 'R'
// ObjectTainted is an object status representing an object that is in
// an unrecoverable bad state due to a partial failure during a create,
// update, or delete operation. Since it cannot be moved into the
// ObjectRead state, a tainted object must be replaced.
ObjectTainted ObjectStatus = 'T'
// ObjectPlanned is a special object status used only for the transient
// placeholder objects we place into state during the refresh and plan
// walks to stand in for objects that will be created during apply.
//
// Any object of this status must have a corresponding change recorded
// in the current plan, whose value must then be used in preference to
// the value stored in state when evaluating expressions. A planned
// object stored in state will be incomplete if any of its attributes are
// not yet known, and the plan must be consulted in order to "see" those
// unknown values, because the state is not able to represent them.
ObjectPlanned ObjectStatus = 'P'
)
// Encode marshals the value within the receiver to produce a
// ResourceInstanceObjectSrc ready to be written to a state file.
//
// The given type must be the implied type of the resource type schema, and
// the given value must conform to it. It is important to pass the schema
// type and not the object's own type so that dynamically-typed attributes
// will be stored correctly. The caller must also provide the version number
// of the schema that the given type was derived from, which will be recorded
// in the source object so it can be used to detect when schema migration is
// required on read.
//
// The returned object may share internal references with the receiver and
// so the caller must not mutate the receiver any further once once this
// method is called.
func (o *ResourceInstanceObject) Encode(ty cty.Type, schemaVersion uint64) (*ResourceInstanceObjectSrc, error) {
// Our state serialization can't represent unknown values, so we convert
// them to nulls here. This is lossy, but nobody should be writing unknown
// values here and expecting to get them out again later.
//
// We get unknown values here while we're building out a "planned state"
// during the plan phase, but the value stored in the plan takes precedence
// for expression evaluation. The apply step should never produce unknown
// values, but if it does it's the responsibility of the caller to detect
// and raise an error about that.
val := cty.UnknownAsNull(o.Value)
src, err := ctyjson.Marshal(val, ty)
if err != nil {
return nil, err
}
return &ResourceInstanceObjectSrc{
SchemaVersion: schemaVersion,
AttrsJSON: src,
Private: o.Private,
Status: o.Status,
Dependencies: o.Dependencies,
}, nil
}
// AsTainted returns a deep copy of the receiver with the status updated to
// ObjectTainted.
func (o *ResourceInstanceObject) AsTainted() *ResourceInstanceObject {
if o == nil {
// A nil object can't be tainted, but we'll allow this anyway to
// avoid a crash, since we presumably intend to eventually record
// the object has having been deleted anyway.
return nil
}
ret := o.DeepCopy()
ret.Status = ObjectTainted
return ret
}