[CPP Speech Sample] Improve -o and -oname flags (#10321)

* Improve `-o` and `-oname` flags

* Apply clang-format tool

* fix saving output files

* Apply clang-format

* Fix error when `-oname` not specified

* apply clang format

* Fix error `-oname`

* Use output name with port to find model output

* fix comment line breaking

* fix comparison with reference for multiple outputs

* Fix output name printing  error

* try to fix clang format

* fix problem with bs > 1

* minimal change to rerun test pipeline

* clang format

* Revert "Fix error `-oname`"

This reverts commit c33d5f16e8.
This commit is contained in:
Dmitry Pigasin
2022-02-25 11:25:35 +03:00
committed by GitHub
parent 9e3610c028
commit bacf597516
2 changed files with 273 additions and 240 deletions

View File

@@ -1,6 +1,6 @@
# Automatic Speech Recognition C++ Sample {#openvino_inference_engine_samples_speech_sample_README}
This sample demonstrates how to execute an Asynchronous Inference of acoustic model based on Kaldi\* neural networks and speech feature vectors.
This sample demonstrates how to execute an Asynchronous Inference of acoustic model based on Kaldi\* neural networks and speech feature vectors.
The sample works with Kaldi ARK or Numpy* uncompressed NPZ files, so it does not cover an end-to-end speech recognition scenario (speech to text), requiring additional preprocessing (feature extraction) to get a feature vector from a speech signal, as well as postprocessing (decoding) to produce text from scores.

View File

@@ -86,10 +86,11 @@ int main(int argc, char* argv[]) {
uint32_t batchSize = (FLAGS_cw_r > 0 || FLAGS_cw_l > 0 || !FLAGS_bs) ? 1 : (uint32_t)FLAGS_bs;
std::shared_ptr<ov::Model> model;
std::vector<std::string> outputs;
std::vector<std::string> output_names;
std::vector<size_t> ports;
// --------------------------- Processing custom outputs ---------------------------------------------
if (!FLAGS_oname.empty()) {
std::vector<std::string> output_names = convert_str_to_vector(FLAGS_oname);
output_names = convert_str_to_vector(FLAGS_oname);
for (const auto& output_name : output_names) {
auto pos_layer = output_name.rfind(":");
if (pos_layer == std::string::npos) {
@@ -248,10 +249,9 @@ int main(int argc, char* argv[]) {
auto t0 = Time::now();
ms loadTime = std::chrono::duration_cast<ms>(Time::now() - t0);
slog::info << "Model loading time " << loadTime.count() << " ms" << slog::endl;
slog::info << "Loading model to the device " << FLAGS_d << slog::endl;
ov::CompiledModel executableNet;
if (!FLAGS_m.empty()) {
slog::info << "Loading model to the device" << slog::endl;
slog::info << "Loading model to the device " << FLAGS_d << slog::endl;
executableNet = core.compile_model(model, deviceStr, genericPluginConfig);
} else {
slog::info << "Importing model to the device" << slog::endl;
@@ -344,157 +344,184 @@ int main(int argc, char* argv[]) {
}
// -----------------------------------------------------------------------------------------------------
// --------------------------- Step 5. Do inference --------------------------------------------------------
for (size_t next_output = 0; next_output < count_file; next_output++) {
std::vector<std::vector<uint8_t>> ptrUtterances;
std::vector<uint8_t> ptrScores;
std::vector<uint8_t> ptrReferenceScores;
ScoreErrorT frameError, totalError;
ptrUtterances.resize(inputFiles.size());
// initialize memory state before starting
for (auto&& state : inferRequests.begin()->inferRequest.query_state()) {
state.reset();
}
/** Work with each utterance **/
for (uint32_t utteranceIndex = 0; utteranceIndex < numUtterances; ++utteranceIndex) {
std::map<std::string, ov::ProfilingInfo> utterancePerfMap;
uint64_t totalNumberOfRunsOnHw = 0;
std::string uttName;
uint32_t numFrames(0), n(0);
std::vector<uint32_t> numFrameElementsInput;
uint32_t numFramesReference(0), numFrameElementsReference(0), numBytesPerElementReference(0),
numBytesReferenceScoreThisUtterance(0);
auto dims = executableNet.outputs()[0].get_shape();
const auto numScoresPerFrame =
std::accumulate(std::begin(dims), std::end(dims), size_t{1}, std::multiplies<size_t>());
slog::info << "Number scores per frame : " << numScoresPerFrame << slog::endl;
/** Get information from input file for current utterance **/
numFrameElementsInput.resize(numInputFiles);
for (size_t i = 0; i < inputFiles.size(); i++) {
std::vector<uint8_t> ptrUtterance;
auto inputFilename = inputFiles[i].c_str();
uint32_t currentNumFrames(0), currentNumFrameElementsInput(0), currentNumBytesPerElementInput(0);
file->get_file_info(inputFilename, utteranceIndex, &n, &numBytesThisUtterance[i]);
ptrUtterance.resize(numBytesThisUtterance[i]);
file->load_file(inputFilename,
utteranceIndex,
uttName,
ptrUtterance,
&currentNumFrames,
&currentNumFrameElementsInput,
&currentNumBytesPerElementInput);
if (numFrames == 0) {
numFrames = currentNumFrames;
} else if (numFrames != currentNumFrames) {
std::string errMessage("Number of frames in input files is different: " +
std::to_string(numFrames) + " and " + std::to_string(currentNumFrames));
throw std::logic_error(errMessage);
}
ptrUtterances[i] = ptrUtterance;
numFrameElementsInput[i] = currentNumFrameElementsInput;
}
int i = 0;
for (auto& ptrInputBlob : ptrInputBlobs) {
if (ptrInputBlob.get_size() != numFrameElementsInput[i++] * batchSize) {
throw std::logic_error("network input size(" + std::to_string(ptrInputBlob.get_size()) +
") mismatch to input file size (" +
std::to_string(numFrameElementsInput[i - 1] * batchSize) + ")");
}
}
ptrScores.resize(numFrames * numScoresPerFrame * sizeof(float));
if (!FLAGS_r.empty()) {
/** Read file with reference scores **/
BaseFile* fileReferenceScores;
auto exReferenceScoresFile = fileExt(FLAGS_r);
if (exReferenceScoresFile == "ark") {
fileReferenceScores = &arkFile;
} else if (exReferenceScoresFile == "npz") {
fileReferenceScores = &numpyFile;
} else {
throw std::logic_error("Invalid Reference Scores file");
}
std::string refUtteranceName;
fileReferenceScores->get_file_info(reference_name_files[next_output].c_str(),
utteranceIndex,
&n,
&numBytesReferenceScoreThisUtterance);
ptrReferenceScores.resize(numBytesReferenceScoreThisUtterance);
fileReferenceScores->load_file(reference_name_files[next_output].c_str(),
utteranceIndex,
refUtteranceName,
ptrReferenceScores,
&numFramesReference,
&numFrameElementsReference,
&numBytesPerElementReference);
}
double totalTime = 0.0;
std::cout << "Utterance " << utteranceIndex << ": " << std::endl;
clear_score_error(&totalError);
totalError.threshold = frameError.threshold = MAX_SCORE_DIFFERENCE;
auto outputFrame = &ptrScores.front();
std::vector<uint8_t*> inputFrame;
for (auto& ut : ptrUtterances) {
inputFrame.push_back(&ut.front());
}
std::map<std::string, ov::ProfilingInfo> callPerfMap;
size_t frameIndex = 0;
uint32_t numFramesFile = numFrames;
numFrames += FLAGS_cw_l + FLAGS_cw_r;
uint32_t numFramesThisBatch{batchSize};
auto t0 = Time::now();
auto t1 = t0;
while (frameIndex <= numFrames) {
if (frameIndex == numFrames) {
if (std::find_if(inferRequests.begin(), inferRequests.end(), [&](InferRequestStruct x) {
return (x.frameIndex != -1);
}) == inferRequests.end()) {
break;
}
}
bool inferRequestFetched = false;
/** Start inference loop **/
for (auto& inferRequest : inferRequests) {
if (frameIndex == numFrames) {
numFramesThisBatch = 1;
} else {
numFramesThisBatch =
(numFrames - frameIndex < batchSize) ? (numFrames - frameIndex) : batchSize;
}
std::vector<std::vector<uint8_t>> ptrUtterances;
std::vector<std::vector<uint8_t>> vectorPtrScores((outputs.size() == 0) ? 1 : outputs.size());
std::vector<uint16_t> numScoresPerOutput((outputs.size() == 0) ? 1 : outputs.size());
std::vector<std::vector<uint8_t>> vectorPtrReferenceScores(reference_name_files.size());
std::vector<ScoreErrorT> vectorFrameError(reference_name_files.size()),
vectorTotalError(reference_name_files.size());
ptrUtterances.resize(inputFiles.size());
// initialize memory state before starting
for (auto&& state : inferRequests.begin()->inferRequest.query_state()) {
state.reset();
}
/** Work with each utterance **/
for (uint32_t utteranceIndex = 0; utteranceIndex < numUtterances; ++utteranceIndex) {
std::map<std::string, ov::ProfilingInfo> utterancePerfMap;
uint64_t totalNumberOfRunsOnHw = 0;
std::string uttName;
uint32_t numFrames(0), n(0);
std::vector<uint32_t> numFrameElementsInput;
std::vector<uint32_t> numFramesReference(reference_name_files.size()),
numFrameElementsReference(reference_name_files.size()),
numBytesPerElementReference(reference_name_files.size()),
numBytesReferenceScoreThisUtterance(reference_name_files.size());
/** Get information from input file for current utterance **/
numFrameElementsInput.resize(numInputFiles);
for (size_t i = 0; i < inputFiles.size(); i++) {
std::vector<uint8_t> ptrUtterance;
auto inputFilename = inputFiles[i].c_str();
uint32_t currentNumFrames(0), currentNumFrameElementsInput(0), currentNumBytesPerElementInput(0);
file->get_file_info(inputFilename, utteranceIndex, &n, &numBytesThisUtterance[i]);
ptrUtterance.resize(numBytesThisUtterance[i]);
file->load_file(inputFilename,
utteranceIndex,
uttName,
ptrUtterance,
&currentNumFrames,
&currentNumFrameElementsInput,
&currentNumBytesPerElementInput);
if (numFrames == 0) {
numFrames = currentNumFrames;
} else if (numFrames != currentNumFrames) {
std::string errMessage("Number of frames in input files is different: " +
std::to_string(numFrames) + " and " + std::to_string(currentNumFrames));
throw std::logic_error(errMessage);
}
ptrUtterances[i] = ptrUtterance;
numFrameElementsInput[i] = currentNumFrameElementsInput;
}
int i = 0;
for (auto& ptrInputBlob : ptrInputBlobs) {
if (ptrInputBlob.get_size() != numFrameElementsInput[i++] * batchSize) {
throw std::logic_error("network input size(" + std::to_string(ptrInputBlob.get_size()) +
") mismatch to input file size (" +
std::to_string(numFrameElementsInput[i - 1] * batchSize) + ")");
}
}
double totalTime = 0.0;
for (size_t errorIndex = 0; errorIndex < vectorFrameError.size(); errorIndex++) {
clear_score_error(&vectorTotalError[errorIndex]);
vectorTotalError[errorIndex].threshold = vectorFrameError[errorIndex].threshold = MAX_SCORE_DIFFERENCE;
}
std::vector<uint8_t*> inputFrame;
for (auto& ut : ptrUtterances) {
inputFrame.push_back(&ut.front());
}
std::map<std::string, ov::ProfilingInfo> callPerfMap;
size_t frameIndex = 0;
uint32_t numFramesFile = numFrames;
numFrames += FLAGS_cw_l + FLAGS_cw_r;
uint32_t numFramesThisBatch{batchSize};
auto t0 = Time::now();
auto t1 = t0;
BaseFile* fileReferenceScores;
std::string refUtteranceName;
if (!FLAGS_r.empty()) {
/** Read file with reference scores **/
auto exReferenceScoresFile = fileExt(FLAGS_r);
if (exReferenceScoresFile == "ark") {
fileReferenceScores = &arkFile;
} else if (exReferenceScoresFile == "npz") {
fileReferenceScores = &numpyFile;
} else {
throw std::logic_error("Invalid Reference Scores file");
}
for (size_t next_output = 0; next_output < count_file; next_output++) {
if (fileReferenceScores != nullptr) {
fileReferenceScores->get_file_info(reference_name_files[next_output].c_str(),
utteranceIndex,
&n,
&numBytesReferenceScoreThisUtterance[next_output]);
vectorPtrReferenceScores[next_output].resize(numBytesReferenceScoreThisUtterance[next_output]);
fileReferenceScores->load_file(reference_name_files[next_output].c_str(),
utteranceIndex,
refUtteranceName,
vectorPtrReferenceScores[next_output],
&numFramesReference[next_output],
&numFrameElementsReference[next_output],
&numBytesPerElementReference[next_output]);
}
}
}
while (frameIndex <= numFrames) {
if (frameIndex == numFrames) {
if (std::find_if(inferRequests.begin(), inferRequests.end(), [&](InferRequestStruct x) {
return (x.frameIndex != -1);
}) == inferRequests.end()) {
break;
}
}
bool inferRequestFetched = false;
/** Start inference loop **/
for (auto& inferRequest : inferRequests) {
if (frameIndex == numFrames) {
numFramesThisBatch = 1;
} else {
numFramesThisBatch =
(numFrames - frameIndex < batchSize) ? (numFrames - frameIndex) : batchSize;
}
/* waits until inference result becomes available */
if (inferRequest.frameIndex != -1) {
inferRequest.inferRequest.wait();
if (inferRequest.frameIndex >= 0)
for (size_t next_output = 0; next_output < count_file; next_output++) {
std::string outputName = (outputs.size() == 0) ? executableNet.output(0).get_any_name()
: output_names[next_output];
auto dims = executableNet.output(outputName).get_shape();
numScoresPerOutput[next_output] = std::accumulate(std::begin(dims),
std::end(dims),
size_t{1},
std::multiplies<size_t>());
vectorPtrScores[next_output].resize(numFramesFile * numScoresPerOutput[next_output] *
sizeof(float));
/* waits until inference result becomes available */
if (inferRequest.frameIndex != -1) {
inferRequest.inferRequest.wait();
if (inferRequest.frameIndex >= 0) {
if (!FLAGS_o.empty()) {
/* Prepare output data for save to file in future */
outputFrame = &ptrScores.front() +
numScoresPerFrame * sizeof(float) * (inferRequest.frameIndex);
auto outputFrame =
&vectorPtrScores[next_output].front() +
numScoresPerOutput[next_output] * sizeof(float) * (inferRequest.frameIndex);
ov::Tensor outputBlob =
inferRequest.inferRequest.get_tensor(executableNet.outputs()[0]);
inferRequest.inferRequest.get_tensor(executableNet.output(outputName));
if (!outputs.empty()) {
outputBlob =
inferRequest.inferRequest.get_tensor(executableNet.output(FLAGS_oname));
inferRequest.inferRequest.get_tensor(executableNet.output(outputName));
}
// locked memory holder should be alive all time while access to its buffer
// happens
auto byteSize = numScoresPerFrame * sizeof(float);
// locked memory holder should be alive all time while access to its buffer happens
auto byteSize = numScoresPerOutput[next_output] * sizeof(float);
std::memcpy(outputFrame, outputBlob.data<float>(), byteSize);
}
if (!FLAGS_r.empty()) {
/** Compare output data with reference scores **/
ov::Tensor outputBlob =
inferRequest.inferRequest.get_tensor(executableNet.outputs()[0]);
if (!FLAGS_oname.empty())
outputBlob =
inferRequest.inferRequest.get_tensor(executableNet.output(FLAGS_oname));
compare_scores(
outputBlob.data<float>(),
&ptrReferenceScores[inferRequest.frameIndex * numFrameElementsReference *
numBytesPerElementReference],
&frameError,
inferRequest.numFramesThisBatch,
numFrameElementsReference);
update_score_error(&frameError, &totalError);
inferRequest.inferRequest.get_tensor(executableNet.output(outputName));
if (numScoresPerOutput[next_output] / numFrameElementsReference[next_output] ==
batchSize) {
compare_scores(
outputBlob.data<float>(),
&vectorPtrReferenceScores[next_output]
[inferRequest.frameIndex *
numFrameElementsReference[next_output] *
numBytesPerElementReference[next_output]],
&vectorFrameError[next_output],
inferRequest.numFramesThisBatch,
numFrameElementsReference[next_output]);
update_score_error(&vectorFrameError[next_output],
&vectorTotalError[next_output]);
} else {
throw std::logic_error("Number of output and reference frames does not match.");
}
}
if (FLAGS_pc) {
// retrieve new counters
@@ -503,90 +530,108 @@ int main(int argc, char* argv[]) {
sum_performance_counters(callPerfMap, utterancePerfMap, totalNumberOfRunsOnHw);
}
}
// -----------------------------------------------------------------------------------------------------
}
if (frameIndex == numFrames) {
inferRequest.frameIndex = -1;
continue;
}
ptrInputBlobs.clear();
if (FLAGS_iname.empty()) {
for (auto& input : cInputInfo) {
ptrInputBlobs.push_back(inferRequest.inferRequest.get_tensor(input));
}
} else {
std::vector<std::string> inputNameBlobs = convert_str_to_vector(FLAGS_iname);
for (const auto& input : inputNameBlobs) {
ov::Tensor blob = inferRequests.begin()->inferRequest.get_tensor(input);
if (!blob) {
std::string errMessage("No blob with name : " + input);
throw std::logic_error(errMessage);
}
ptrInputBlobs.push_back(blob);
}
}
/** Iterate over all the input blobs **/
for (size_t i = 0; i < numInputFiles; ++i) {
ov::Tensor minput = ptrInputBlobs[i];
if (!minput) {
std::string errMessage("We expect ptrInputBlobs[" + std::to_string(i) +
"] to be inherited from Tensor, " +
"but in fact we were not able to cast input to Tensor");
throw std::logic_error(errMessage);
}
memcpy(minput.data<float>(), inputFrame[i], minput.get_byte_size());
// Used to infer fewer frames than the batch size
if (batchSize != numFramesThisBatch) {
memset(minput.data<float>() + numFramesThisBatch * numFrameElementsInput[i],
0,
(batchSize - numFramesThisBatch) * numFrameElementsInput[i]);
}
}
// -----------------------------------------------------------------------------------------------------
int index = static_cast<int>(frameIndex) - (FLAGS_cw_l + FLAGS_cw_r);
/* Starting inference in asynchronous mode*/
inferRequest.inferRequest.start_async();
inferRequest.frameIndex = index < 0 ? -2 : index;
inferRequest.numFramesThisBatch = numFramesThisBatch;
frameIndex += numFramesThisBatch;
for (size_t j = 0; j < inputFiles.size(); j++) {
if (FLAGS_cw_l > 0 || FLAGS_cw_r > 0) {
int idx = frameIndex - FLAGS_cw_l;
if (idx > 0 && idx < static_cast<int>(numFramesFile)) {
inputFrame[j] += sizeof(float) * numFrameElementsInput[j] * numFramesThisBatch;
} else if (idx >= static_cast<int>(numFramesFile)) {
inputFrame[j] = &ptrUtterances[j].front() + (numFramesFile - 1) * sizeof(float) *
numFrameElementsInput[j] *
numFramesThisBatch;
} else if (idx <= 0) {
inputFrame[j] = &ptrUtterances[j].front();
}
} else {
inputFrame[j] += sizeof(float) * numFrameElementsInput[j] * numFramesThisBatch;
}
}
inferRequestFetched |= true;
}
/** Inference was finished for current frame **/
if (!inferRequestFetched) {
std::this_thread::sleep_for(std::chrono::milliseconds(1));
if (frameIndex == numFrames) {
inferRequest.frameIndex = -1;
continue;
}
}
t1 = Time::now();
fsec fs = t1 - t0;
ms d = std::chrono::duration_cast<ms>(fs);
totalTime += d.count();
// resetting state between utterances
for (auto&& state : inferRequests.begin()->inferRequest.query_state()) {
state.reset();
}
// -----------------------------------------------------------------------------------------------------
ptrInputBlobs.clear();
if (FLAGS_iname.empty()) {
for (auto& input : cInputInfo) {
ptrInputBlobs.push_back(inferRequest.inferRequest.get_tensor(input));
}
} else {
std::vector<std::string> inputNameBlobs = convert_str_to_vector(FLAGS_iname);
for (const auto& input : inputNameBlobs) {
ov::Tensor blob = inferRequests.begin()->inferRequest.get_tensor(input);
if (!blob) {
std::string errMessage("No blob with name : " + input);
throw std::logic_error(errMessage);
}
ptrInputBlobs.push_back(blob);
}
}
// --------------------------- Step 6. Process output
// -------------------------------------------------------
/** Iterate over all the input blobs **/
for (size_t i = 0; i < numInputFiles; ++i) {
ov::Tensor minput = ptrInputBlobs[i];
if (!minput) {
std::string errMessage("We expect ptrInputBlobs[" + std::to_string(i) +
"] to be inherited from Tensor, " +
"but in fact we were not able to cast input to Tensor");
throw std::logic_error(errMessage);
}
memcpy(minput.data<float>(), inputFrame[i], minput.get_byte_size());
// Used to infer fewer frames than the batch size
if (batchSize != numFramesThisBatch) {
memset(minput.data<float>() + numFramesThisBatch * numFrameElementsInput[i],
0,
(batchSize - numFramesThisBatch) * numFrameElementsInput[i]);
}
}
// -----------------------------------------------------------------------------------------------------
int index = static_cast<int>(frameIndex) - (FLAGS_cw_l + FLAGS_cw_r);
/* Starting inference in asynchronous mode*/
inferRequest.inferRequest.start_async();
inferRequest.frameIndex = index < 0 ? -2 : index;
inferRequest.numFramesThisBatch = numFramesThisBatch;
frameIndex += numFramesThisBatch;
for (size_t j = 0; j < inputFiles.size(); j++) {
if (FLAGS_cw_l > 0 || FLAGS_cw_r > 0) {
int idx = frameIndex - FLAGS_cw_l;
if (idx > 0 && idx < static_cast<int>(numFramesFile)) {
inputFrame[j] += sizeof(float) * numFrameElementsInput[j] * numFramesThisBatch;
} else if (idx >= static_cast<int>(numFramesFile)) {
inputFrame[j] = &ptrUtterances[j].front() + (numFramesFile - 1) * sizeof(float) *
numFrameElementsInput[j] *
numFramesThisBatch;
} else if (idx <= 0) {
inputFrame[j] = &ptrUtterances[j].front();
}
} else {
inputFrame[j] += sizeof(float) * numFrameElementsInput[j] * numFramesThisBatch;
}
}
inferRequestFetched |= true;
}
/** Inference was finished for current frame **/
if (!inferRequestFetched) {
std::this_thread::sleep_for(std::chrono::milliseconds(1));
continue;
}
}
t1 = Time::now();
fsec fs = t1 - t0;
ms d = std::chrono::duration_cast<ms>(fs);
totalTime += d.count();
// resetting state between utterances
for (auto&& state : inferRequests.begin()->inferRequest.query_state()) {
state.reset();
}
// -----------------------------------------------------------------------------------------------------
// --------------------------- Step 6. Process output
// -------------------------------------------------------
/** Show performance results **/
std::cout << "Utterance " << utteranceIndex << ": " << std::endl;
std::cout << "Total time in Infer (HW and SW):\t" << totalTime << " ms" << std::endl;
std::cout << "Frames in utterance:\t\t\t" << numFrames << " frames" << std::endl;
std::cout << "Average Infer time per frame:\t\t" << totalTime / static_cast<double>(numFrames) << " ms\n"
<< std::endl;
if (FLAGS_pc) {
// print performance results
print_performance_counters(utterancePerfMap,
frameIndex,
std::cout,
getFullDeviceName(core, FLAGS_d),
totalNumberOfRunsOnHw,
FLAGS_d);
}
for (size_t next_output = 0; next_output < count_file; next_output++) {
if (!FLAGS_o.empty()) {
auto exOutputScoresFile = fileExt(FLAGS_o);
if (exOutputScoresFile == "ark") {
@@ -601,33 +646,21 @@ int main(int argc, char* argv[]) {
fileOutput->save_file(output_name_files[next_output].c_str(),
shouldAppend,
uttName,
&ptrScores.front(),
&vectorPtrScores[next_output].front(),
numFramesFile,
numScoresPerFrame);
}
/** Show performance results **/
std::cout << "Total time in Infer (HW and SW):\t" << totalTime << " ms" << std::endl;
std::cout << "Frames in utterance:\t\t\t" << numFrames << " frames" << std::endl;
std::cout << "Average Infer time per frame:\t\t" << totalTime / static_cast<double>(numFrames) << " ms"
<< std::endl;
if (FLAGS_pc) {
// print performance results
print_performance_counters(utterancePerfMap,
frameIndex,
std::cout,
getFullDeviceName(core, FLAGS_d),
totalNumberOfRunsOnHw,
FLAGS_d);
numScoresPerOutput[next_output]);
}
if (!FLAGS_r.empty()) {
// print statistical score error
print_reference_compare_results(totalError, numFrames, std::cout);
std::string outputName =
(outputs.size() == 0) ? executableNet.output(0).get_any_name() : output_names[next_output];
std::cout << "Output name: " << outputName << std::endl;
std::cout << "Number scores per frame: " << numScoresPerOutput[next_output] / batchSize << std::endl
<< std::endl;
print_reference_compare_results(vectorTotalError[next_output], numFrames, std::cout);
}
std::cout << "End of Utterance " << utteranceIndex << std::endl << std::endl;
// -----------------------------------------------------------------------------------------------------
}
}
// -----------------------------------------------------------------------------------------------------
} catch (const std::exception& error) {
slog::err << error.what() << slog::endl;
return 1;