Files
openvino/samples/python/benchmark/throughput_benchmark/README.md
Zlobin Vladimir 67d25d7099 Add benchmark samples (#13388)
* Add sync_bnehcmark

* Fix Unix comilation

* niter->time

* Explain main loop

* samples: factor out common

* Code style

* clang-format -i

* return 0; -> return EXIT_SUCCESS;, +x

* Update throughput_benchmark

* Add READMEs

* Fix READMEs refs

* Add sync_benchmark.py

* Add niter, infer_new_request, -pc

* from datetime import timedelta

* Fix niter and seconds_to_run

* Add disclaimer about benchmark_app performance

* Update samples/cpp/benchmark/sync_benchmark/README.md

* Add dynamic_shape_bert_benhcmark

* Add dynamic_shape_detection_benchmark

* Adopt for detr-resnet50

* Remove sync_benchmark2, throughput_benchmark2, perf counters

* clang-format -i

* Fix flake8

* Add README.md

* Add links to sample_dynamic_shape_bert_benchmark

* Add softmax

* nameless LatencyMetrics

* parent.parent -> parents[2]

* Add bert_benhcmark sample

* Code style

* Add bert_benhcmark/README.md

* rm -r samples/python/benchmark/dynamic_shape_bert_benhcmark/

* rm -r samples/cpp/benchmark/dynamic_shape_detection_benchmark/

* bert_benhcmark/README.md: remove dynamic shape

* Remove add_subdirectory(dynamic_shape_detection_benchmark)

* flake8

* samples: Add a note about CUMULATIVE_THROUGHPUT, don’t expect get_property() to throw, don’t introduce json dependency for samples/cpp/common

* / namespace

* Add article

* namespace -> static

* Update README, seconds_ro_run 10, niter 10, no inter alinment

* percentile->median

* benchmark samples: use generate(), align logs, update READMEs

* benchmakr samples: remove percentile()

* samples/python/benchmark/bert_benhcmark/bert_benhcmark.py: report average sequence length and processing time

* Python samples: move requirements.txt to every sample

* Remove numpy from requirements.txt

* Remove Building section from Python samples, install only required extras from openvino-dev, set up environment for bert_benhcmark, report duration for bert_benhcmark

* Install openvino-dev for Hello Reshape SSD C++ Sample
2022-12-05 15:12:53 +04:00

4.4 KiB

Throughput Benchmark Python* Sample

This sample demonstrates how to estimate performace of a model using Asynchronous Inference Request API in throughput mode. Unlike [demos](@ref omz_demos) this sample doesn't have other configurable command line arguments. Feel free to modify sample's source code to try out different options.

The reported results may deviate from what benchmark_app reports. One example is model input precision for computer vision tasks. benchmark_app sets uint8, while the sample uses default model precision which is usually float32.

The following Python* API is used in the application:

Feature API Description
OpenVINO Runtime Version [openvino.runtime.get_version] Get Openvino API version
Basic Infer Flow [openvino.runtime.Core], [openvino.runtime.Core.compile_model], [openvino.runtime.InferRequest.get_tensor] Common API to do inference: compile a model, configure input tensors
Asynchronous Infer [openvino.runtime.AsyncInferQueue], [openvino.runtime.AsyncInferQueue.start_async], [openvino.runtime.AsyncInferQueue.wait_all], [openvino.runtime.InferRequest.results] Do asynchronous inference
Model Operations [openvino.runtime.CompiledModel.inputs] Get inputs of a model
Tensor Operations [openvino.runtime.Tensor.get_shape], [openvino.runtime.Tensor.data] Get a tensor shape and its data.
Options Values
Validated Models [alexnet](@ref omz_models_model_alexnet), [googlenet-v1](@ref omz_models_model_googlenet_v1) [yolo-v3-tf](@ref omz_models_model_yolo_v3_tf), [face-detection-0200](@ref omz_models_model_face_detection_0200)
Model Format OpenVINO™ toolkit Intermediate Representation (*.xml + *.bin), ONNX (*.onnx)
Supported devices All
Other language realization C++

How It Works

The sample compiles a model for a given device, randomly generates input data, performs asynchronous inference multiple times for a given number of seconds. Then processes and reports performance results.

You can see the explicit description of each sample step at Integration Steps section of "Integrate OpenVINO™ Runtime with Your Application" guide.

Running

python throughput_benchmark.py <path_to_model>

To run the sample, you need to specify a model:

  • You can use [public](@ref omz_models_group_public) or [Intel's](@ref omz_models_group_intel) pre-trained models from the Open Model Zoo. The models can be downloaded using the [Model Downloader](@ref omz_tools_downloader).

NOTES:

  • Before running the sample with a trained model, make sure the model is converted to the intermediate representation (IR) format (*.xml + *.bin) using the Model Optimizer tool.

  • The sample accepts models in ONNX format (.onnx) that do not require preprocessing.

Example

  1. Install the openvino-dev Python package to use Open Model Zoo Tools:
python -m pip install openvino-dev[caffe]
  1. Download a pre-trained model using:
omz_downloader --name googlenet-v1
  1. If a model is not in the IR or ONNX format, it must be converted. You can do this using the model converter:
omz_converter --name googlenet-v1
  1. Perform benchmarking using the googlenet-v1 model on a CPU:
python throughput_benchmark.py googlenet-v1.xml

Sample Output

The application outputs performance results.

[ INFO ] OpenVINO:
[ INFO ] Build ................................. <version>
[ INFO ] Count:          2817 iterations
[ INFO ] Duration:       10012.65 ms
[ INFO ] Latency:
[ INFO ]     Median:     13.80 ms
[ INFO ]     Average:    14.10 ms
[ INFO ]     Min:        8.35 ms
[ INFO ]     Max:        28.38 ms
[ INFO ] Throughput: 281.34 FPS

See Also