* Added info on DockerHub CI Framework
* Feature/azaytsev/change layout (#3295)
* Changes according to feedback comments
* Replaced @ref's with html links
* Fixed links, added a title page for installing from repos and images, fixed formatting issues
* Added links
* minor fix
* Added DL Streamer to the list of components installed by default
* Link fixes
* Link fixes
* ovms doc fix (#2988)
* added OpenVINO Model Server
* ovms doc fixes
Co-authored-by: Trawinski, Dariusz <dariusz.trawinski@intel.com>
* Updated openvino_docs.xml
* Added Intel® Iris® Xe Dedicated Graphics, naming convention info (#3523)
* Added Intel® Iris® Xe Dedicated Graphics, naming convention info
* Added GPU.0 GPU.1
* added info about Intel® Iris® Xe MAX Graphics drivers
* Feature/azaytsev/transition s3 bucket (#3609)
* Replaced https://download.01.org/ links with https://storage.openvinotoolkit.org/
* Fixed links
# Conflicts:
# inference-engine/ie_bridges/java/samples/README.md
* Benchmarks 2021 2 (#3590)
* Initial changes
* Updates
* Updates
* Updates
* Fixed graph names
* minor fix
* Fixed link
* Implemented changes according to the review changes
* fixed links
* Updated Legal_Information.md according to review feedback
* Replaced Uzel* UI-AR8 with Mustang-V100-MX8
* Feature/azaytsev/ovsa docs (#3627)
* Added ovsa_get_started.md
* Fixed formatting issues
* Fixed formatting issues
* Fixed formatting issues
* Fixed formatting issues
* Fixed formatting issues
* Fixed formatting issues
* Fixed formatting issues
* Updated the GSG topic, added a new image
* Formatting issues fixes
* Formatting issues fixes
* Formatting issues fixes
* Formatting issues fixes
* Formatting issues fixes
* Formatting issues fixes
* Formatting issues fixes
* Formatting issues fixes
* Formatting issues fixes
* Formatting issues fixes
* Formatting issues fixes
* Formatting issues fixes
* Formatting issues fixes
* Revert "Formatting issues fixes"
This reverts commit c6e6207431.
* Replaced to Security section
* doc fixes (#3626)
Co-authored-by: Nikolay Tyukaev <ntyukaev_lo@jenkins.inn.intel.com>
# Conflicts:
# docs/IE_DG/network_state_intro.md
* fix latex formula (#3630)
Co-authored-by: Nikolay Tyukaev <ntyukaev_lo@jenkins.inn.intel.com>
* fix comments ngraph api 2021.2 (#3520)
* fix comments ngraph api
* remove whitespace
* fixes
Co-authored-by: Nikolay Tyukaev <ntyukaev_lo@jenkins.inn.intel.com>
* Feature/azaytsev/g api docs (#3731)
* Initial commit
* Added content
* Added new content for g-api documentation. Removed obsolete links through all docs
* Fixed layout
* Fixed layout
* Added new topics
* Added new info
* added a note
* Removed redundant .svg
# Conflicts:
# docs/get_started/get_started_dl_workbench.md
* [Cherry-pick] DL Workbench cross-linking (#3488)
* Added links to MO and Benchmark App
* Changed wording
* Fixes a link
* fixed a link
* Changed the wording
* Links to WB
* Changed wording
* Changed wording
* Fixes
* Changes the wording
* Minor corrections
* Removed an extra point
* cherry-pick
* Added the doc
* More instructions and images
* Added slide
* Borders for screenshots
* fixes
* Fixes
* Added link to Benchmark app
* Replaced the image
* tiny fix
* tiny fix
* Fixed a typo
* Feature/azaytsev/g api docs (#3731)
* Initial commit
* Added content
* Added new content for g-api documentation. Removed obsolete links through all docs
* Fixed layout
* Fixed layout
* Added new topics
* Added new info
* added a note
* Removed redundant .svg
* Doc updates 2021 2 (#3749)
* Change the name of parameter tensorflow_use_custom_operations_config to transformations_config
* Fixed formatting
* Corrected MYRIAD plugin name
* Installation Guides formatting fixes
* Installation Guides formatting fixes
* Installation Guides formatting fixes
* Installation Guides formatting fixes
* Installation Guides formatting fixes
* Installation Guides formatting fixes
* Installation Guides formatting fixes
* Installation Guides formatting fixes
* Installation Guides formatting fixes
* Fixed link to Model Optimizer Extensibility
* Fixed link to Model Optimizer Extensibility
* Fixed link to Model Optimizer Extensibility
* Fixed link to Model Optimizer Extensibility
* Fixed link to Model Optimizer Extensibility
* Fixed formatting
* Fixed formatting
* Fixed formatting
* Fixed formatting
* Fixed formatting
* Fixed formatting
* Fixed formatting
* Fixed formatting
* Fixed formatting
* Fixed formatting
* Fixed formatting
* Updated IGS, added links to Get Started Guides
* Fixed links
* Fixed formatting issues
* Fixed formatting issues
* Fixed formatting issues
* Fixed formatting issues
* Move the Note to the proper place
* Removed optimization notice
# Conflicts:
# docs/ops/detection/DetectionOutput_1.md
* minor fix
* Benchmark updates (#4041)
* Link fixes for 2021.2 benchmark page (#4086)
* Benchmark updates
* Fixed links
Co-authored-by: Trawinski, Dariusz <dariusz.trawinski@intel.com>
Co-authored-by: Nikolay Tyukaev <nikolay.tyukaev@intel.com>
Co-authored-by: Nikolay Tyukaev <ntyukaev_lo@jenkins.inn.intel.com>
Co-authored-by: Alina Alborova <alina.alborova@intel.com>
9.1 KiB
Model Optimizer Developer Guide
Model Optimizer is a cross-platform command-line tool that facilitates the transition between the training and deployment environment, performs static model analysis, and adjusts deep learning models for optimal execution on end-point target devices.
Model Optimizer process assumes you have a network model trained using a supported deep learning framework. The scheme below illustrates the typical workflow for deploying a trained deep learning model:
Model Optimizer produces an Intermediate Representation (IR) of the network, which can be read, loaded, and inferred with the Inference Engine. The Inference Engine API offers a unified API across a number of supported Intel® platforms. The Intermediate Representation is a pair of files describing the model:
-
.xml- Describes the network topology -
.bin- Contains the weights and biases binary data.
Tip
: You also can work with the Model Optimizer inside the OpenVINO™ [Deep Learning Workbench](@ref workbench_docs_Workbench_DG_Introduction) (DL Workbench). [DL Workbench](@ref workbench_docs_Workbench_DG_Introduction) is a platform built upon OpenVINO™ and provides a web-based graphical environment that enables you to optimize, fine-tune, analyze, visualize, and compare performance of deep learning models on various Intel® architecture configurations. In the DL Workbench, you can use most of OpenVINO™ toolkit components.
Proceed to an [easy installation from Docker](@ref workbench_docs_Workbench_DG_Install_from_Docker_Hub) to get started.
What's New in the Model Optimizer in this Release?
- Common changes:
- Implemented several optimization transformations to replace sub-graphs of operations with HSwish, Mish, Swish and SoftPlus operations.
- Model Optimizer generates IR keeping shape-calculating sub-graphs by default. Previously, this behavior was triggered if the "--keep_shape_ops" command line parameter was provided. The key is ignored in this release and will be deleted in the next release. To trigger the legacy behavior to generate an IR for a fixed input shape (folding ShapeOf operations and shape-calculating sub-graphs to Constant), use the "--static_shape" command line parameter. Changing model input shape using the Inference Engine API in runtime may fail for such an IR.
- Fixed Model Optimizer conversion issues resulted in non-reshapeable IR using the Inference Engine reshape API.
- Enabled transformations to fix non-reshapeable patterns in the original networks:
- Hardcoded Reshape
- In Reshape(2D)->MatMul pattern
- Reshape->Transpose->Reshape when the pattern can be fused to the ShuffleChannels or DepthToSpace operation
- Hardcoded Interpolate
- In Interpolate->Concat pattern
- Added a dedicated requirements file for TensorFlow 2.X as well as the dedicated install prerequisites scripts.
- Replaced the SparseToDense operation with ScatterNDUpdate-4.
- Hardcoded Reshape
- ONNX*:
- Enabled an ability to specify the model output tensor name using the "--output" command line parameter.
- Added support for the following operations:
- Acosh
- Asinh
- Atanh
- DepthToSpace-11, 13
- DequantizeLinear-10 (zero_point must be constant)
- HardSigmoid-1,6
- QuantizeLinear-10 (zero_point must be constant)
- ReduceL1-11, 13
- ReduceL2-11, 13
- Resize-11, 13 (except mode="nearest" with 5D+ input, mode="tf_crop_and_resize", and attributes exclude_outside and extrapolation_value with non-zero values)
- ScatterND-11, 13
- SpaceToDepth-11, 13
- TensorFlow*:
- Added support for the following operations:
- Acosh
- Asinh
- Atanh
- CTCLoss
- EuclideanNorm
- ExtractImagePatches
- FloorDiv
- Added support for the following operations:
- MXNet*:
- Added support for the following operations:
- Acosh
- Asinh
- Atanh
- Added support for the following operations:
- Kaldi*:
- Fixed bug with ParallelComponent support. Now it is fully supported with no restrictions.
NOTE: Intel® System Studio is an all-in-one, cross-platform tool suite, purpose-built to simplify system bring-up and improve system and IoT device application performance on Intel® platforms. If you are using the Intel® Distribution of OpenVINO™ with Intel® System Studio, go to Get Started with Intel® System Studio.
Table of Content
-
Preparing and Optimizing your Trained Model with Model Optimizer
- Configuring Model Optimizer
- Converting a Model to Intermediate Representation (IR)
- Converting a Model Using General Conversion Parameters
- Converting Your Caffe* Model
- Converting Your TensorFlow* Model
- Converting BERT from TensorFlow
- Converting GNMT from TensorFlow
- Converting YOLO from DarkNet to TensorFlow and then to IR
- Converting Wide and Deep Models from TensorFlow
- Converting FaceNet from TensorFlow
- Converting DeepSpeech from TensorFlow
- Converting Language Model on One Billion Word Benchmark from TensorFlow
- Converting Neural Collaborative Filtering Model from TensorFlow*
- Converting TensorFlow* Object Detection API Models
- Converting TensorFlow*-Slim Image Classification Model Library Models
- Converting CRNN Model from TensorFlow*
- Converting Your MXNet* Model
- Converting Your Kaldi* Model
- Converting Your ONNX* Model
- Model Optimizations Techniques
- Cutting parts of the model
- Sub-graph Replacement in Model Optimizer
- Supported Framework Layers
- Intermediate Representation and Operation Sets
- Operations Specification
- Intermediate Representation suitable for INT8 inference
- Model Optimizer Extensibility
- Model Optimizer Frequently Asked Questions
Typical Next Step: Preparing and Optimizing your Trained Model with Model Optimizer
