Files
openvino/docs/ops/arithmetic/Subtract_1.md
Tatiana Savina aa5b6ecac2 DOCS shift to rst - Opset S (#17158)
* ops to rst

* fix errors

* formula fix

* change code

* console directive

* vsplit try hoghlight

* fix code snippets

* comment fixes

* fix list
2023-04-24 11:02:30 +02:00

2.8 KiB

Subtract

@sphinxdirective

Versioned name: Subtract-1

Category: Arithmetic binary

Short description: Subtract performs element-wise subtraction operation with two given tensors applying broadcasting rule specified in the auto_broacast attribute.

Detailed description Before performing arithmetic operation, input tensors a and b are broadcasted if their shapes are different and auto_broadcast attribute is not none. Broadcasting is performed according to auto_broadcast value. After broadcasting Subtract performs subtraction operation for the input tensors a and b using the formula below:

.. math::

o_{i} = a_{i} - b_{i}

Attributes:

  • auto_broadcast

    • Description: specifies rules used for auto-broadcasting of input tensors.

    • Range of values:

      • none - no auto-broadcasting is allowed, all input shapes must match,
      • numpy - numpy broadcasting rules, description is available in :doc:Broadcast Rules For Elementwise Operations <openvino_docs_ops_broadcast_rules>,
      • pdpd - PaddlePaddle-style implicit broadcasting, description is available in :doc:Broadcast Rules For Elementwise Operations <openvino_docs_ops_broadcast_rules>.
    • Type: string

    • Default value: "numpy"

    • Required: no

Inputs

  • 1: A tensor of type T and arbitrary shape and rank. Required.
  • 2: A tensor of type T and arbitrary shape and rank. Required.

Outputs

  • 1: The result of element-wise subtraction operation. A tensor of type T with shape equal to broadcasted shape of the two inputs.

Types

  • T: any numeric type.

Examples

Example 1

.. code-block:: cpp

<layer ... type="Subtract">
    <data auto_broadcast="none"/>
    <input>
        <port id="0">
            <dim>256</dim>
            <dim>56</dim>
        </port>
        <port id="1">
            <dim>256</dim>
            <dim>56</dim>
        </port>
    </input>
    <output>
        <port id="2">
            <dim>256</dim>
            <dim>56</dim>
        </port>
    </output>
</layer>

Example 2: broadcast

.. code-block:: cpp

<layer ... type="Subtract">
    <data auto_broadcast="numpy"/>
    <input>
        <port id="0">
            <dim>8</dim>
            <dim>1</dim>
            <dim>6</dim>
            <dim>1</dim>
        </port>
        <port id="1">
            <dim>7</dim>
            <dim>1</dim>
            <dim>5</dim>
        </port>
    </input>
    <output>
        <port id="2">
            <dim>8</dim>
            <dim>7</dim>
            <dim>6</dim>
            <dim>5</dim>
        </port>
    </output>
</layer>

@endsphinxdirective