* Added info on DockerHub CI Framework
* Feature/azaytsev/change layout (#3295)
* Changes according to feedback comments
* Replaced @ref's with html links
* Fixed links, added a title page for installing from repos and images, fixed formatting issues
* Added links
* minor fix
* Added DL Streamer to the list of components installed by default
* Link fixes
* Link fixes
* ovms doc fix (#2988)
* added OpenVINO Model Server
* ovms doc fixes
Co-authored-by: Trawinski, Dariusz <dariusz.trawinski@intel.com>
* Updated openvino_docs.xml
* Updated the link to software license agreements
* Revert "Updated the link to software license agreements"
This reverts commit 706dac500e.
* Docs to Sphinx (#8151)
* docs to sphinx
* Update GPU.md
* Update CPU.md
* Update AUTO.md
* Update performance_int8_vs_fp32.md
* update
* update md
* updates
* disable doc ci
* disable ci
* fix index.rst
Co-authored-by: Andrey Zaytsev <andrey.zaytsev@intel.com>
# Conflicts:
# .gitignore
# docs/CMakeLists.txt
# docs/IE_DG/Deep_Learning_Inference_Engine_DevGuide.md
# docs/IE_DG/Extensibility_DG/Custom_ONNX_Ops.md
# docs/IE_DG/Extensibility_DG/VPU_Kernel.md
# docs/IE_DG/InferenceEngine_QueryAPI.md
# docs/IE_DG/Int8Inference.md
# docs/IE_DG/Integrate_with_customer_application_new_API.md
# docs/IE_DG/Model_caching_overview.md
# docs/IE_DG/supported_plugins/GPU_RemoteBlob_API.md
# docs/IE_DG/supported_plugins/HETERO.md
# docs/IE_DG/supported_plugins/MULTI.md
# docs/MO_DG/prepare_model/convert_model/Convert_Model_From_Caffe.md
# docs/MO_DG/prepare_model/convert_model/Convert_Model_From_Kaldi.md
# docs/MO_DG/prepare_model/convert_model/Convert_Model_From_MxNet.md
# docs/MO_DG/prepare_model/convert_model/Convert_Model_From_ONNX.md
# docs/MO_DG/prepare_model/convert_model/Converting_Model.md
# docs/MO_DG/prepare_model/convert_model/Converting_Model_General.md
# docs/MO_DG/prepare_model/convert_model/Cutting_Model.md
# docs/MO_DG/prepare_model/convert_model/pytorch_specific/Convert_RNNT.md
# docs/MO_DG/prepare_model/convert_model/tf_specific/Convert_EfficientDet_Models.md
# docs/MO_DG/prepare_model/convert_model/tf_specific/Convert_WideAndDeep_Family_Models.md
# docs/MO_DG/prepare_model/convert_model/tf_specific/Convert_YOLO_From_Tensorflow.md
# docs/doxygen/Doxyfile.config
# docs/doxygen/ie_docs.xml
# docs/doxygen/ie_plugin_api.config
# docs/doxygen/ngraph_cpp_api.config
# docs/doxygen/openvino_docs.xml
# docs/get_started/get_started_macos.md
# docs/get_started/get_started_raspbian.md
# docs/get_started/get_started_windows.md
# docs/img/cpu_int8_flow.png
# docs/index.md
# docs/install_guides/VisionAcceleratorFPGA_Configure.md
# docs/install_guides/VisionAcceleratorFPGA_Configure_Windows.md
# docs/install_guides/deployment-manager-tool.md
# docs/install_guides/installing-openvino-linux.md
# docs/install_guides/installing-openvino-macos.md
# docs/install_guides/installing-openvino-windows.md
# docs/optimization_guide/dldt_optimization_guide.md
# inference-engine/ie_bridges/c/include/c_api/ie_c_api.h
# inference-engine/ie_bridges/python/docs/api_overview.md
# inference-engine/ie_bridges/python/sample/ngraph_function_creation_sample/README.md
# inference-engine/ie_bridges/python/sample/speech_sample/README.md
# inference-engine/ie_bridges/python/src/openvino/inference_engine/ie_api.pyx
# inference-engine/include/ie_api.h
# inference-engine/include/ie_core.hpp
# inference-engine/include/ie_version.hpp
# inference-engine/samples/benchmark_app/README.md
# inference-engine/samples/speech_sample/README.md
# inference-engine/src/plugin_api/exec_graph_info.hpp
# inference-engine/src/plugin_api/file_utils.h
# inference-engine/src/transformations/include/transformations_visibility.hpp
# inference-engine/tools/benchmark_tool/README.md
# ngraph/core/include/ngraph/ngraph.hpp
# ngraph/frontend/onnx_common/include/onnx_common/parser.hpp
# ngraph/python/src/ngraph/utils/node_factory.py
# openvino/itt/include/openvino/itt.hpp
# thirdparty/ade
# tools/benchmark/README.md
* Cherry-picked remove font-family (#8211)
* Cherry-picked: Update get_started_scripts.md (#8338)
* doc updates (#8268)
* Various doc changes
* theme changes
* remove font-family (#8211)
* fix css
* Update uninstalling-openvino.md
* fix css
* fix
* Fixes for Installation Guides
Co-authored-by: Andrey Zaytsev <andrey.zaytsev@intel.com>
Co-authored-by: kblaszczak-intel <karol.blaszczak@intel.com>
# Conflicts:
# docs/IE_DG/Bfloat16Inference.md
# docs/IE_DG/InferenceEngine_QueryAPI.md
# docs/IE_DG/OnnxImporterTutorial.md
# docs/IE_DG/supported_plugins/AUTO.md
# docs/IE_DG/supported_plugins/HETERO.md
# docs/IE_DG/supported_plugins/MULTI.md
# docs/MO_DG/prepare_model/convert_model/Convert_Model_From_Kaldi.md
# docs/MO_DG/prepare_model/convert_model/tf_specific/Convert_YOLO_From_Tensorflow.md
# docs/install_guides/installing-openvino-macos.md
# docs/install_guides/installing-openvino-windows.md
# docs/ops/opset.md
# inference-engine/samples/benchmark_app/README.md
# inference-engine/tools/benchmark_tool/README.md
# thirdparty/ade
* Cherry-picked: doc script changes (#8568)
* fix openvino-sphinx-theme
* add linkcheck target
* fix
* change version
* add doxygen-xfail.txt
* fix
* AA
* fix
* fix
* fix
* fix
* fix
# Conflicts:
# thirdparty/ade
* Cherry-pick: Feature/azaytsev/doc updates gna 2021 4 2 (#8567)
* Various doc changes
* Reformatted C++/Pythob sections. Updated with info from PR8490
* additional fix
* Gemini Lake replaced with Elkhart Lake
* Fixed links in IGs, Added 12th Gen
# Conflicts:
# docs/IE_DG/supported_plugins/GNA.md
# thirdparty/ade
* Cherry-pick: Feature/azaytsev/doc fixes (#8897)
* Various doc changes
* Removed the empty Learning path topic
* Restored the Gemini Lake CPIU list
# Conflicts:
# docs/IE_DG/supported_plugins/GNA.md
# thirdparty/ade
* Cherry-pick: sphinx copybutton doxyrest code blocks (#8992)
# Conflicts:
# thirdparty/ade
* Cherry-pick: iframe video enable fullscreen (#9041)
# Conflicts:
# thirdparty/ade
* Cherry-pick: fix untitled titles (#9213)
# Conflicts:
# thirdparty/ade
* Cherry-pick: perf bench graph animation (#9045)
* animation
* fix
# Conflicts:
# thirdparty/ade
* Cherry-pick: doc pytest (#8888)
* docs pytest
* fixes
# Conflicts:
# docs/doxygen/doxygen-ignore.txt
# docs/scripts/ie_docs.xml
# thirdparty/ade
* Cherry-pick: restore deleted files (#9215)
* Added new operations to the doc structure (from removed ie_docs.xml)
* Additional fixes
* Update docs/IE_DG/InferenceEngine_QueryAPI.md
Co-authored-by: Helena Kloosterman <helena.kloosterman@intel.com>
* Update docs/IE_DG/Int8Inference.md
Co-authored-by: Helena Kloosterman <helena.kloosterman@intel.com>
* Update Custom_Layers_Guide.md
* Changes according to review comments
* doc scripts fixes
* Update docs/IE_DG/Int8Inference.md
Co-authored-by: Helena Kloosterman <helena.kloosterman@intel.com>
* Update Int8Inference.md
* update xfail
* clang format
* updated xfail
Co-authored-by: Trawinski, Dariusz <dariusz.trawinski@intel.com>
Co-authored-by: Nikolay Tyukaev <nikolay.tyukaev@intel.com>
Co-authored-by: kblaszczak-intel <karol.blaszczak@intel.com>
Co-authored-by: Yury Gorbachev <yury.gorbachev@intel.com>
Co-authored-by: Helena Kloosterman <helena.kloosterman@intel.com>
7.3 KiB
Proposal
Versioned name: Proposal-4
Category: Object detection
Short description: Proposal operation filters bounding boxes and outputs only those with the highest prediction confidence.
Detailed description
Proposal has three inputs: a 4D tensor of shape [num_batches, 2*K, H, W] with probabilities whether particular
bounding box corresponds to background or foreground, a 4D tensor of shape [num_batches, 4*K, H, W] with deltas for each
of the bound box, and a tensor with input image size in the [image_height, image_width, scale_height_and_width] or
[image_height, image_width, scale_height, scale_width] format. K is number of anchors and H, W are height and
width of the feature map. Operation produces two tensors:
the first mandatory tensor of shape [batch_size * post_nms_topn, 5] with proposed boxes and
the second optional tensor of shape [batch_size * post_nms_topn] with probabilities (sometimes referred as scores).
Proposal layer does the following with the input tensor:
- Generates initial anchor boxes. Left top corner of all boxes is at (0, 0). Width and height of boxes are calculated from base_size with scale and ratio attributes.
- For each point in the first input tensor:
- pins anchor boxes to the image according to the second input tensor that contains four deltas for each box: for x and y of center, for width and for height
- finds out score in the first input tensor
- Filters out boxes with size less than min_size
- Sorts all proposals (box, score) by score from highest to lowest
- Takes top pre_nms_topn proposals
- Calculates intersections for boxes and filter out all boxes with \f$intersection/union > nms_thresh\f$
- Takes top post_nms_topn proposals
- Returns the results:
- Top proposals, if there is not enough proposals to fill the whole output tensor, the valid proposals will be terminated with a single -1.
- Optionally returns probabilities for each proposal, which are not terminated by any special value.
Attributes:
-
base_size
- Description: base_size is the size of the anchor to which scale and ratio attributes are applied.
- Range of values: a positive integer number
- Type:
int - Required: yes
-
pre_nms_topn
- Description: pre_nms_topn is the number of bounding boxes before the NMS operation. For example, pre_nms_topn equal to 15 means to take top 15 boxes with the highest scores.
- Range of values: a positive integer number
- Type:
int - Required: yes
-
post_nms_topn
- Description: post_nms_topn is the number of bounding boxes after the NMS operation. For example, post_nms_topn equal to 15 means to take after NMS top 15 boxes with the highest scores.
- Range of values: a positive integer number
- Type:
int - Required: yes
-
nms_thresh
- Description: nms_thresh is the minimum value of the proposal to be taken into consideration. For example, nms_thresh equal to 0.5 means that all boxes with prediction probability less than 0.5 are filtered out.
- Range of values: a positive floating-point number
- Type:
float - Required: yes
-
feat_stride
- Description: feat_stride is the step size to slide over boxes (in pixels). For example, feat_stride equal to 16 means that all boxes are analyzed with the slide 16.
- Range of values: a positive integer
- Type:
int - Required: yes
-
min_size
- Description: min_size is the minimum size of box to be taken into consideration. For example, min_size equal 35 means that all boxes with box size less than 35 are filtered out.
- Range of values: a positive integer number
- Type:
int - Required: yes
-
ratio
- Description: ratio is the ratios for anchor generation.
- Range of values: a list of floating-point numbers
- Type:
float[] - Required: yes
-
scale
- Description: scale is the scales for anchor generation.
- Range of values: a list of floating-point numbers
- Type:
float[] - Required: yes
-
clip_before_nms
- Description: clip_before_nms flag that specifies whether to perform clip bounding boxes before non-maximum suppression or not.
- Range of values: true or false
- Type:
boolean - Default value: true
- Required: no
-
clip_after_nms
- Description: clip_after_nms is a flag that specifies whether to perform clip bounding boxes after non-maximum suppression or not.
- Range of values: true or false
- Type:
boolean - Default value: false
- Required: no
-
normalize
- Description: normalize is a flag that specifies whether to perform normalization of output boxes to [0,1] interval or not.
- Range of values: true or false
- Type:
boolean - Default value: false
- Required: no
-
box_size_scale
- Description: box_size_scale specifies the scale factor applied to box sizes before decoding.
- Range of values: a positive floating-point number
- Type:
float - Default value: 1.0
- Required: no
-
box_coordinate_scale
- Description: box_coordinate_scale specifies the scale factor applied to box coordinates before decoding.
- Range of values: a positive floating-point number
- Type:
float - Default value: 1.0
- Required: no
-
framework
- Description: framework specifies how the box coordinates are calculated.
- Range of values:
- "" (empty string) - calculate box coordinates like in Caffe*
- tensorflow - calculate box coordinates like in the TensorFlow* Object Detection API models
- Type: string
- Default value: "" (empty string)
- Required: no
Inputs:
-
1: 4D tensor of type T and shape
[batch_size, 2*K, H, W]with class prediction scores. Required. -
2: 4D tensor of type T and shape
[batch_size, 4*K, H, W]with deltas for each bounding box. Required. -
3: 1D tensor of type T with 3 or 4 elements:
[image_height, image_width, scale_height_and_width]or[image_height, image_width, scale_height, scale_width]. Required.
Outputs
-
1: tensor of type T and shape
[batch_size * post_nms_topn, 5]. -
2: tensor of type T and shape
[batch_size * post_nms_topn]with probabilities.
Types
- T: floating-point type.
Example
<layer ... type="Proposal" ... >
<data base_size="16" feat_stride="8" min_size="16" nms_thresh="1.0" normalize="0" post_nms_topn="1000" pre_nms_topn="1000" ratio="1" scale="1,2"/>
<input>
<port id="0">
<dim>7</dim>
<dim>4</dim>
<dim>28</dim>
<dim>28</dim>
</port>
<port id="1">
<dim>7</dim>
<dim>8</dim>
<dim>28</dim>
<dim>28</dim>
</port>
<port id="2">
<dim>3</dim>
</port>
</input>
<output>
<port id="3" precision="FP32">
<dim>7000</dim>
<dim>5</dim>
</port>
<port id="4" precision="FP32">
<dim>7000</dim>
</port>
</output>
</layer>