Files
openvino/docs/ops/normalization/BatchNormInference_5.md
Maciej Smyk 49b5d039db DOCS shift to rst - Opsets B (#17169)
* Update BatchNormInference_1.md

* Update BatchNormInference_1.md

* Update BatchNormInference_1.md

* Update BatchNormInference_1.md

* Update BatchNormInference_1.md

* Update BatchNormInference_1.md

* Update BatchNormInference_1.md

* Update BatchNormInference_1.md

* Update BatchNormInference_1.md

* Update BatchNormInference_1.md

* Update BatchNormInference_1.md

* Update BatchNormInference_1.md

* Update BatchNormInference_5.md

* Update BatchToSpace_2.md

* Update BinaryConvolution_1.md

* Update Broadcast_1.md

* Update Broadcast_3.md

* Update Bucketize_3.md

* fix

* fix-2
2023-04-25 16:06:17 +02:00

172 lines
5.4 KiB
Markdown

# BatchNormInference {#openvino_docs_ops_normalization_BatchNormInference_5}
@sphinxdirective
**Versioned name**: *BatchNormInference-5*
**Category**: *Normalization*
**Short description**: *BatchNormInference* performs Batch Normalization operation described in the `Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift <https://arxiv.org/abs/1502.03167v2>`__ article.
**Detailed Description**
*BatchNormInference* performs the following operations on a given data batch input tensor ``data``:
* Normalizes each activation :math:`x^{(k)}` by the mean and variance.
.. math::
\hat{x}^{(k)}=\frac{x^{(k)} - E[x^{(k)}]}{\sqrt{Var(x^{(k)}) + \epsilon}}
where :math:`E[x^{(k)}]` and :math:`Var(x^{(k)})` are the mean and variance, calculated per channel axis of ``data`` input, and correspond to ``mean`` and ``variance`` inputs, respectively. Additionally, :math:`\epsilon` is a value added to the variance for numerical stability and corresponds to ``epsilon`` attribute.
* Performs linear transformation of each normalized activation based on ``gamma`` and ``beta`` input, representing the scaling factor and shift, respectively.
.. math::
\hat{y}^{(k)}=\gamma^{(k)}\hat{x}^{(k)} + \beta^{(k)}
where :math:`\gamma^{(k)}` and :math:`\beta^{(k)}` are learnable parameters, calculated per channel axis, and correspond to ``gamma`` and ``beta`` inputs.
**Mathematical Formulation**
Let ``x`` be a *d*-dimensional input, :math:`x=(x_{1}\dotsc x_{d})`. Since normalization is applied to each activation :math:`E[x^{(k)}]`, you can focus on a particular activation and omit k.
For a particular activation, consider a mini-batch :math:`\mathcal{B}` of m values. *BatchNormInference* performs Batch Normalization algorithm as follows:
* **Input**: Values of :math:`x` over a mini-batch:
.. math::
\mathcal{B} = {x_{1...m}}
* **Parameters to learn**: :math:`\gamma, \beta`
* **Output**:
.. math::
{o_{i} = BN_{\gamma, \beta} ( b_{i} )}
* **Mini-batch mean**:
.. math::
\mu_{\mathcal{B}} \leftarrow \frac{1}{m}\sum_{i=1}^{m}b_{i}
* **Mini-batch variance**:
.. math::
\sigma_{\mathcal{B}}^{2}\leftarrow \frac{1}{m}\sum_{i=1}^{m} ( b_{i} - \mu_{\mathcal{B}})^{2}
* **Normalize**:
.. math::
\hat{b_{i}} \leftarrow \frac{b_{i} - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^{2} + \epsilon }}
* **Scale and shift**:
.. math::
o_{i} \leftarrow \gamma\hat{b_{i}} + \beta = BN_{\gamma ,\beta } ( b_{i} )
**Attributes**:
* *epsilon*
* **Description**: *epsilon* is a constant added to the variance for numerical stability.
* **Range of values**: a floating-point number greater than or equal to zero
* **Type**: ``float``
* **Required**: *yes*
**Inputs**
* **1**: ``data`` - A tensor of type *T* and at least rank 2. The second dimension represents the channel axis and must have a span of at least 1. **Required.**
* **2**: ``gamma`` - Scaling factor for normalized value. A 1D tensor of type *T* with the same span as ``data`` channel axis. **Required.**
* **3**: ``beta`` - Bias added to the scaled normalized value. A 1D tensor of type *T* with the same span as ``data`` channel axis. **Required.**
* **4**: ``mean`` - Value for mean normalization. A 1D tensor of type *T* with the same span as ``data`` channel axis. **Required.**
* **5**: ``variance`` - Value for variance normalization. A 1D tensor of type *T* with the same span as ``data`` channel axis. **Required.**
**Outputs**
* **1**: The result of element-wise Batch Normalization operation applied to the input tensor ``data``. A tensor of type *T* and the same shape as ``data`` input tensor.
**Types**
* *T*: any supported floating-point type.
**Examples**
Example: 2D input tensor ``data``
.. code-block:: cpp
<layer ... type="BatchNormInference" ...>
<data epsilon="9.99e-06" />
<input>
<port id="0"> < !-- input -->
<dim>10</dim>
<dim>128</dim>
</port>
<port id="1"> < !-- gamma -->
<dim>128</dim>
</port>
<port id="2"> < !-- beta -->
<dim>128</dim>
</port>
<port id="3"> < !-- mean -->
<dim>128</dim>
</port>
<port id="4"> < !-- variance -->
<dim>128</dim>
</port>
</input>
<output>
<port id="5">
<dim>10</dim>
<dim>128</dim>
</port>
</output>
</layer>
Example: 4D input tensor ``data``
.. code-block:: cpp
<layer ... type="BatchNormInference" ...>
<data epsilon="9.99e-06" />
<input>
<port id="0"> < !-- input -->
<dim>1</dim>
<dim>3</dim>
<dim>224</dim>
<dim>224</dim>
</port>
<port id="1"> < !-- gamma -->
<dim>3</dim>
</port>
<port id="2"> < !-- beta -->
<dim>3</dim>
</port>
<port id="3"> < !-- mean -->
<dim>3</dim>
</port>
<port id="4"> < !-- variance -->
<dim>3</dim>
</port>
</input>
<output>
<port id="5">
<dim>1</dim>
<dim>3</dim>
<dim>224</dim>
<dim>224</dim>
</port>
</output>
</layer>
@endsphinxdirective