* Added info on DockerHub CI Framework
* Feature/azaytsev/change layout (#3295)
* Changes according to feedback comments
* Replaced @ref's with html links
* Fixed links, added a title page for installing from repos and images, fixed formatting issues
* Added links
* minor fix
* Added DL Streamer to the list of components installed by default
* Link fixes
* Link fixes
* ovms doc fix (#2988)
* added OpenVINO Model Server
* ovms doc fixes
Co-authored-by: Trawinski, Dariusz <dariusz.trawinski@intel.com>
* Updated openvino_docs.xml
* Updated the link to software license agreements
* Revert "Updated the link to software license agreements"
This reverts commit 706dac500e.
* Docs to Sphinx (#8151)
* docs to sphinx
* Update GPU.md
* Update CPU.md
* Update AUTO.md
* Update performance_int8_vs_fp32.md
* update
* update md
* updates
* disable doc ci
* disable ci
* fix index.rst
Co-authored-by: Andrey Zaytsev <andrey.zaytsev@intel.com>
# Conflicts:
# .gitignore
# docs/CMakeLists.txt
# docs/IE_DG/Deep_Learning_Inference_Engine_DevGuide.md
# docs/IE_DG/Extensibility_DG/Custom_ONNX_Ops.md
# docs/IE_DG/Extensibility_DG/VPU_Kernel.md
# docs/IE_DG/InferenceEngine_QueryAPI.md
# docs/IE_DG/Int8Inference.md
# docs/IE_DG/Integrate_with_customer_application_new_API.md
# docs/IE_DG/Model_caching_overview.md
# docs/IE_DG/supported_plugins/GPU_RemoteBlob_API.md
# docs/IE_DG/supported_plugins/HETERO.md
# docs/IE_DG/supported_plugins/MULTI.md
# docs/MO_DG/prepare_model/convert_model/Convert_Model_From_Caffe.md
# docs/MO_DG/prepare_model/convert_model/Convert_Model_From_Kaldi.md
# docs/MO_DG/prepare_model/convert_model/Convert_Model_From_MxNet.md
# docs/MO_DG/prepare_model/convert_model/Convert_Model_From_ONNX.md
# docs/MO_DG/prepare_model/convert_model/Converting_Model.md
# docs/MO_DG/prepare_model/convert_model/Converting_Model_General.md
# docs/MO_DG/prepare_model/convert_model/Cutting_Model.md
# docs/MO_DG/prepare_model/convert_model/pytorch_specific/Convert_RNNT.md
# docs/MO_DG/prepare_model/convert_model/tf_specific/Convert_EfficientDet_Models.md
# docs/MO_DG/prepare_model/convert_model/tf_specific/Convert_WideAndDeep_Family_Models.md
# docs/MO_DG/prepare_model/convert_model/tf_specific/Convert_YOLO_From_Tensorflow.md
# docs/doxygen/Doxyfile.config
# docs/doxygen/ie_docs.xml
# docs/doxygen/ie_plugin_api.config
# docs/doxygen/ngraph_cpp_api.config
# docs/doxygen/openvino_docs.xml
# docs/get_started/get_started_macos.md
# docs/get_started/get_started_raspbian.md
# docs/get_started/get_started_windows.md
# docs/img/cpu_int8_flow.png
# docs/index.md
# docs/install_guides/VisionAcceleratorFPGA_Configure.md
# docs/install_guides/VisionAcceleratorFPGA_Configure_Windows.md
# docs/install_guides/deployment-manager-tool.md
# docs/install_guides/installing-openvino-linux.md
# docs/install_guides/installing-openvino-macos.md
# docs/install_guides/installing-openvino-windows.md
# docs/optimization_guide/dldt_optimization_guide.md
# inference-engine/ie_bridges/c/include/c_api/ie_c_api.h
# inference-engine/ie_bridges/python/docs/api_overview.md
# inference-engine/ie_bridges/python/sample/ngraph_function_creation_sample/README.md
# inference-engine/ie_bridges/python/sample/speech_sample/README.md
# inference-engine/ie_bridges/python/src/openvino/inference_engine/ie_api.pyx
# inference-engine/include/ie_api.h
# inference-engine/include/ie_core.hpp
# inference-engine/include/ie_version.hpp
# inference-engine/samples/benchmark_app/README.md
# inference-engine/samples/speech_sample/README.md
# inference-engine/src/plugin_api/exec_graph_info.hpp
# inference-engine/src/plugin_api/file_utils.h
# inference-engine/src/transformations/include/transformations_visibility.hpp
# inference-engine/tools/benchmark_tool/README.md
# ngraph/core/include/ngraph/ngraph.hpp
# ngraph/frontend/onnx_common/include/onnx_common/parser.hpp
# ngraph/python/src/ngraph/utils/node_factory.py
# openvino/itt/include/openvino/itt.hpp
# thirdparty/ade
# tools/benchmark/README.md
* Cherry-picked remove font-family (#8211)
* Cherry-picked: Update get_started_scripts.md (#8338)
* doc updates (#8268)
* Various doc changes
* theme changes
* remove font-family (#8211)
* fix css
* Update uninstalling-openvino.md
* fix css
* fix
* Fixes for Installation Guides
Co-authored-by: Andrey Zaytsev <andrey.zaytsev@intel.com>
Co-authored-by: kblaszczak-intel <karol.blaszczak@intel.com>
# Conflicts:
# docs/IE_DG/Bfloat16Inference.md
# docs/IE_DG/InferenceEngine_QueryAPI.md
# docs/IE_DG/OnnxImporterTutorial.md
# docs/IE_DG/supported_plugins/AUTO.md
# docs/IE_DG/supported_plugins/HETERO.md
# docs/IE_DG/supported_plugins/MULTI.md
# docs/MO_DG/prepare_model/convert_model/Convert_Model_From_Kaldi.md
# docs/MO_DG/prepare_model/convert_model/tf_specific/Convert_YOLO_From_Tensorflow.md
# docs/install_guides/installing-openvino-macos.md
# docs/install_guides/installing-openvino-windows.md
# docs/ops/opset.md
# inference-engine/samples/benchmark_app/README.md
# inference-engine/tools/benchmark_tool/README.md
# thirdparty/ade
* Cherry-picked: doc script changes (#8568)
* fix openvino-sphinx-theme
* add linkcheck target
* fix
* change version
* add doxygen-xfail.txt
* fix
* AA
* fix
* fix
* fix
* fix
* fix
# Conflicts:
# thirdparty/ade
* Cherry-pick: Feature/azaytsev/doc updates gna 2021 4 2 (#8567)
* Various doc changes
* Reformatted C++/Pythob sections. Updated with info from PR8490
* additional fix
* Gemini Lake replaced with Elkhart Lake
* Fixed links in IGs, Added 12th Gen
# Conflicts:
# docs/IE_DG/supported_plugins/GNA.md
# thirdparty/ade
* Cherry-pick: Feature/azaytsev/doc fixes (#8897)
* Various doc changes
* Removed the empty Learning path topic
* Restored the Gemini Lake CPIU list
# Conflicts:
# docs/IE_DG/supported_plugins/GNA.md
# thirdparty/ade
* Cherry-pick: sphinx copybutton doxyrest code blocks (#8992)
# Conflicts:
# thirdparty/ade
* Cherry-pick: iframe video enable fullscreen (#9041)
# Conflicts:
# thirdparty/ade
* Cherry-pick: fix untitled titles (#9213)
# Conflicts:
# thirdparty/ade
* Cherry-pick: perf bench graph animation (#9045)
* animation
* fix
# Conflicts:
# thirdparty/ade
* Cherry-pick: doc pytest (#8888)
* docs pytest
* fixes
# Conflicts:
# docs/doxygen/doxygen-ignore.txt
# docs/scripts/ie_docs.xml
# thirdparty/ade
* Cherry-pick: restore deleted files (#9215)
* Added new operations to the doc structure (from removed ie_docs.xml)
* Additional fixes
* Update docs/IE_DG/InferenceEngine_QueryAPI.md
Co-authored-by: Helena Kloosterman <helena.kloosterman@intel.com>
* Update docs/IE_DG/Int8Inference.md
Co-authored-by: Helena Kloosterman <helena.kloosterman@intel.com>
* Update Custom_Layers_Guide.md
* Changes according to review comments
* doc scripts fixes
* Update docs/IE_DG/Int8Inference.md
Co-authored-by: Helena Kloosterman <helena.kloosterman@intel.com>
* Update Int8Inference.md
* update xfail
* clang format
* updated xfail
Co-authored-by: Trawinski, Dariusz <dariusz.trawinski@intel.com>
Co-authored-by: Nikolay Tyukaev <nikolay.tyukaev@intel.com>
Co-authored-by: kblaszczak-intel <karol.blaszczak@intel.com>
Co-authored-by: Yury Gorbachev <yury.gorbachev@intel.com>
Co-authored-by: Helena Kloosterman <helena.kloosterman@intel.com>
6.3 KiB
CTCLoss
Versioned name: CTCLoss-4
Category: Sequence processing
Short description: CTCLoss computes the CTC (Connectionist Temporal Classification) Loss.
Detailed description:
CTCLoss operation is presented in Connectionist Temporal Classification - Labeling Unsegmented Sequence Data with Recurrent Neural Networks: Graves et al., 2016
CTCLoss estimates likelihood that a target labels[i,:] can occur (or is real) for given input sequence of logits logits[i,:,:].
Briefly, CTCLoss operation finds all sequences aligned with a target labels[i,:], computes log-probabilities of the aligned sequences using logits[i,:,:]
and computes a negative sum of these log-probabilies.
Input sequences of logits logits can have different lengths. The length of each sequence logits[i,:,:] equals logit_length[i].
A length of target sequence labels[i,:] equals label_length[i]. The length of the target sequence must not be greater than the length of corresponding input sequence logits[i,:,:].
Otherwise, the operation behaviour is undefined.
CTCLoss calculation scheme:
-
Compute probability of
j-th character at time steptfori-th input sequence fromlogitsusing softmax formula: \f[ p_{i,t,j} = \frac{\exp(logits[i,t,j])}{\sum^{K}_{k=0}{\exp(logits[i,t,k])}} \f] -
For a given
i-th target fromlabels[i,:]find all aligned paths. A pathS = (c1,c2,...,cT)is aligned with a targetG=(g1,g2,...,gT)if both chains are equal after decoding. The decoding extracts substring of lengthlabel_length[i]from a targetG, merges repeated characters inGin case preprocess_collapse_repeated equal to true and finds unique elements in the order of character occurrence in case unique equal to true. The decoding merges repeated characters inSin case ctc_merge_repeated equal to true and removes blank characters represented byblank_index. By default,blank_indexis equal toC-1, whereCis a number of classes including the blank. For example, in case default ctc_merge_repeated, preprocess_collapse_repeated, unique andblank_indexa target sequenceG=(0,3,2,2,2,2,2,4,3)of a lengthlabel_length[i]=4is processed to(0,3,2,2)and a pathS=(0,0,4,3,2,2,4,2,4)of a lengthlogit_length[i]=9is also processed to(0,3,2,2), whereC=5. There exist other paths that are also aligned withG, for instance,0,4,3,3,2,4,2,2,2. Paths checked for alignment with a targetlabel[:,i]must be of lengthlogit_length[i] = L_i. Compute probabilities of these aligned paths (alignments) as follows: \f[ p(S) = \prod_{t=1}^{L_i} p_{i,t,ct} \f] -
Finally, compute negative log of summed up probabilities of all found alignments: \f[ CTCLoss = - \ln \sum_{S} p(S) \f]
Note 1: This calculation scheme does not provide steps for optimal implementation and primarily serves for better explanation.
Note 2: This is recommended to compute a log-probability \f$ \ln p(S)\f$ for an aligned path as a sum of log-softmax of input logits. It helps to avoid underflow and overflow during calculation. Having log-probabilities for aligned paths, log of summed up probabilities for these paths can be computed as follows: \f[ \ln(a + b) = \ln(a) + \ln(1 + \exp(\ln(b) - \ln(a))) \f]
Attributes
-
preprocess_collapse_repeated
- Description: preprocess_collapse_repeated is a flag for a preprocessing step before loss calculation, wherein repeated labels in
labels[i,:]passed to the loss are merged into single labels. - Range of values: true or false
- Type:
boolean - Default value: false
- Required: no
- Description: preprocess_collapse_repeated is a flag for a preprocessing step before loss calculation, wherein repeated labels in
-
ctc_merge_repeated
- Description: ctc_merge_repeated is a flag for merging repeated characters in a potential alignment during the CTC loss calculation.
- Range of values: true or false
- Type:
boolean - Default value: true
- Required: no
-
unique
- Description: unique is a flag to find unique elements for a target
labels[i,:]before matching with potential alignments. Unique elements in the processedlabels[i,:]are sorted in the order of their occurrence in originallabels[i,:]. For example, the processed sequence forlabels[i,:]=(0,1,1,0,1,3,3,2,2,3)of lengthlabel_length[i]=10will be(0,1,3,2)in case unique equal to true. - Range of values: true or false
- Type:
boolean - Default value: false
- Required: no
- Description: unique is a flag to find unique elements for a target
Inputs
-
1:
logits- Input tensor with a batch of sequences of logits. Type of elements is T_F. Shape of the tensor is[N, T, C], whereNis the batch size,Tis the maximum sequence length andCis the number of classes including the blank. Required. -
2:
logit_length- 1D input tensor of type T1 and of a shape[N]. The tensor must consist of non-negative values not greater thanT. Lengths of input sequences of logitslogits[i,:,:]. Required. -
3:
labels- 2D tensor with shape[N, T]of type T2. A length of a target sequencelabels[i,:]is equal tolabel_length[i]and must contain of integers from a range[0; C-1]exceptblank_index. Required. -
4:
label_length- 1D tensor of type T1 and of a shape[N]. The tensor must consist of non-negative values not greater thanTandlabel_length[i] <= logit_length[i]for all possiblei. Required. -
5:
blank_index- Scalar of type T2. Set the class index to use for the blank label. Default value isC-1. Optional.
Output
- 1: Output tensor with shape
[N], negative sum of log-probabilities of alignments. Type of elements is T_F.
Types
-
T_F: any supported floating-point type.
-
T1, T2:
int32orint64.
Example
<layer ... type="CTCLoss" ...>
<input>
<port id="0">
<dim>8</dim>
<dim>20</dim>
<dim>128</dim>
</port>
<port id="1">
<dim>8</dim>
</port>
<port id="2">
<dim>8</dim>
<dim>20</dim>
</port>
<port id="3">
<dim>8</dim>
</port>
<port id="4"> <!-- blank_index value is: 120 -->
</input>
<output>
<port id="0">
<dim>8</dim>
</port>
</output>
</layer>