3.9 KiB
NonMaxSuppression
Versioned name: NonMaxSuppression-3
Category: Sorting and maximization
Short description: NonMaxSuppression performs non maximum suppression of the boxes with predicted scores.
Detailed description: NonMaxSuppression performs non maximum suppression algorithm as described below:
- Take the box with highest score. If the score is less than
score_thresholdthen stop. Otherwise add the box to the output and continue to the next step. - For each input box, calculate the IOU (intersection over union) with the box added during the previous step. If the
value is greater than the
iou_thresholdthreshold then remove the input box from further consideration. - Return to step 1.
This algorithm is applied independently to each class of each batch element. The total number of output boxes for each
class must not exceed max_output_boxes_per_class.
Attributes:
-
box_encoding
- Description: box_encoding specifies the format of boxes data encoding.
- Range of values: "corner" or "center"
- corner - the box data is supplied as
[y1, x1, y2, x2]where(y1, x1)and(y2, x2)are the coordinates of any diagonal pair of box corners. - center - the box data is supplied as
[x_center, y_center, width, height].
- corner - the box data is supplied as
- Type: string
- Default value: "corner"
- Required: no
-
sort_result_descending
- Description: sort_result_descending is a flag that specifies whenever it is necessary to sort selected boxes across batches or not.
- Range of values: true of false
- true - sort selected boxes across batches.
- false - do not sort selected boxes across batches (boxes are sorted per class).
- Type: boolean
- Default value: true
- Required: no
-
output_type
- Description: the output tensor type
- Range of values: "i64" or "i32"
- Type: string
- Default value: "i64"
- Required: no
Inputs:
-
1:
boxes- tensor of type T and shape[num_batches, num_boxes, 4]with box coordinates. Required. -
2:
scores- tensor of type T and shape[num_batches, num_classes, num_boxes]with box scores. Required. -
3:
max_output_boxes_per_class- scalar tensor of type T_MAX_BOXES specifying maximum number of boxes to be selected per class. Optional with default value 0 meaning select no boxes. -
4:
iou_threshold- scalar tensor of type T_THRESHOLDS specifying intersection over union threshold. Optional with default value 0 meaning keep all boxes. -
5:
score_threshold- scalar tensor of type T_THRESHOLDS specifying minimum score to consider box for the processing. Optional with default value 0.
Outputs:
- 1:
selected_indices- tensor of type T_IND and shape[min(num_boxes, max_output_boxes_per_class * num_classes), 3]containing information about selected boxes as triplets[batch_index, class_index, box_index]. The output tensor is filled with -1s for output tensor elements if the total number of selected boxes is less than the output tensor size.
Types
-
T: floating-point type.
-
T_MAX_BOXES: integer type.
-
T_THRESHOLDS: floating-point type.
-
T_IND:
int64orint32.
Example
<layer ... type="NonMaxSuppression" ... >
<data box_encoding="corner" sort_result_descending="1" output_type="i64"/>
<input>
<port id="0">
<dim>1</dim>
<dim>1000</dim>
<dim>4</dim>
</port>
<port id="1">
<dim>1</dim>
<dim>1</dim>
<dim>1000</dim>
</port>
<port id="2"/>
<port id="3"/>
<port id="4"/>
</input>
<output>
<port id="5" precision="I64">
<dim>1000</dim>
<dim>3</dim>
</port>
</output>
</layer>