5.3 KiB
NonMaxSuppression
Versioned name: NonMaxSuppression-5
Category: Sorting and maximization
Short description: NonMaxSuppression performs non maximum suppression of the boxes with predicted scores.
Detailed description: NonMaxSuppression performs non maximum suppression algorithm as described below:
- Let
B = [b_0,...,b_n]be the list of initial detection boxes,S = [s_0,...,s_N]be the list of corresponding scores. - Let
D = []be an initial collection of resulting boxes. - If
Bis empty then go to step 8. - Take the box with highest score. Suppose that it is the box
bwith the scores. - Delete
bfromB. - If the score
sis greater or equal thanscore_thresholdthen addbtoDelse go to step 8. - For each input box
b_ifromBand the corresponding scores_i, sets_i = s_i * func(IOU(b_i, b))and go to step 3. - Return
D, a collection of the corresponding scoresS, and the number of elements inD.
Here func(iou) = 1 if iou <= iou_threshold else 0 when soft_nms_sigma == 0, else func(iou) = exp(-0.5 * iou * iou / soft_nms_sigma) if iou <= iou_threshold else 0.
This algorithm is applied independently to each class of each batch element. The total number of output boxes for each
class must not exceed max_output_boxes_per_class.
Attributes:
-
box_encoding
- Description: box_encoding specifies the format of boxes data encoding.
- Range of values: "corner" or "center"
- corner - the box data is supplied as
[y1, x1, y2, x2]where(y1, x1)and(y2, x2)are the coordinates of any diagonal pair of box corners. - center - the box data is supplied as
[x_center, y_center, width, height].
- corner - the box data is supplied as
- Type: string
- Default value: "corner"
- Required: no
-
sort_result_descending
- Description: sort_result_descending is a flag that specifies whenever it is necessary to sort selected boxes across batches or not.
- Range of values: true of false
- true - sort selected boxes across batches.
- false - do not sort selected boxes across batches (boxes are sorted per class).
- Type: boolean
- Default value: true
- Required: no
-
output_type
- Description: the output tensor type
- Range of values: "i64" or "i32"
- Type: string
- Default value: "i64"
- Required: no
Inputs:
-
1:
boxes- tensor of type T and shape[num_batches, num_boxes, 4]with box coordinates. Required. -
2:
scores- tensor of type T and shape[num_batches, num_classes, num_boxes]with box scores. Required. -
3:
max_output_boxes_per_class- scalar or 1D tensor with 1 element of type T_MAX_BOXES specifying maximum number of boxes to be selected per class. Optional with default value 0 meaning select no boxes. -
4:
iou_threshold- scalar or 1D tensor with 1 element of type T_THRESHOLDS specifying intersection over union threshold. Optional with default value 0 meaning keep all boxes. -
5:
score_threshold- scalar or 1D tensor with 1 element of type T_THRESHOLDS specifying minimum score to consider box for the processing. Optional with default value 0. -
6:
soft_nms_sigma- scalar or 1D tensor with 1 element of type T_THRESHOLDS specifying the sigma parameter for Soft-NMS; see Bodla et al. Optional with default value 0.
Outputs:
-
1:
selected_indices- tensor of type T_IND and shape[number of selected boxes, 3]containing information about selected boxes as triplets[batch_index, class_index, box_index]. -
2:
selected_scores- tensor of type T_THRESHOLDS and shape[number of selected boxes, 3]containing information about scores for each selected box as triplets[batch_index, class_index, box_score]. -
3:
valid_outputs- 1D tensor with 1 element of type T_IND representing the total number of selected boxes.
Plugins which do not support dynamic output tensors produce selected_indices and selected_scores tensors of shape [min(num_boxes, max_output_boxes_per_class) * num_batches * num_classes, 3] which is an upper bound for the number of possible selected boxes. Output tensor elements following the really selected boxes are filled with value -1.
Types
-
T: floating-point type.
-
T_MAX_BOXES: integer type.
-
T_THRESHOLDS: floating-point type.
-
T_IND:
int64orint32.
Example
<layer ... type="NonMaxSuppression" ... >
<data box_encoding="corner" sort_result_descending="1" output_type="i64"/>
<input>
<port id="0">
<dim>3</dim>
<dim>100</dim>
<dim>4</dim>
</port>
<port id="1">
<dim>3</dim>
<dim>5</dim>
<dim>100</dim>
</port>
<port id="2"/> <!-- 10 -->
<port id="3"/>
<port id="4"/>
</input>
<output>
<port id="5" precision="I64">
<dim>150</dim> <!-- min(100, 10) * 3 * 5 -->
<dim>3</dim>
</port>
<port id="6" precision="FP32">
<dim>150</dim> <!-- min(100, 10) * 3 * 5 -->
<dim>3</dim>
</port>
<port id="7" precision="I64">
<dim>1</dim>
</port>
</output>
</layer>