Files
openvino/docs/optimization_guide/dldt_optimization_guide.md
Ilya Lavrenov a883dc0b85 DOCS: ported changes from 2022.1 release branch (#11206)
* Extensibility guide with FE extensions and remove OV_FRAMEWORK_MAP from docs

* Rework of Extensibility Intro, adopted examples to missing OPENVINO_FRAMEWORK_MAP

* Removed OPENVINO_FRAMEWORK_MAP reference

* Frontend extension detailed documentation

* Fixed distributed snippets

* Fixed snippet inclusion in FE extension document and chapter headers

* Fixed wrong name in a snippet reference

* Fixed test for template extension due to changed number of loaded extensions

* Update docs/Extensibility_UG/frontend_extensions.md

Co-authored-by: Ivan Tikhonov <ivan.tikhonov@intel.com>

* Minor fixes in extension snippets

* Small grammar fix

Co-authored-by: Ivan Tikhonov <ivan.tikhonov@intel.com>

Co-authored-by: Ivan Tikhonov <ivan.tikhonov@intel.com>

* DOCS: transition banner (#10973)

* transition banner

* minor fix

* update transition banner

* updates

* update custom.js

* updates

* updates

* Documentation fixes (#11044)

* Benchmark app usage

* Fixed link to the devices

* More fixes

* Update docs/OV_Runtime_UG/multi_device.md

Co-authored-by: Sergey Lyubimtsev <sergey.lyubimtsev@intel.com>

* Removed several hardcoded links

Co-authored-by: Sergey Lyubimtsev <sergey.lyubimtsev@intel.com>

* Updated documentation for compile_tool (#11049)

* Added deployment guide (#11060)

* Added deployment guide

* Added local distribution

* Updates

* Fixed more indentations

* Removed obsolete code snippets (#11061)

* Removed obsolete code snippets

* NCC style

* Fixed NCC for BA

* Add a troubleshooting issue for PRC installation (#11074)

* updates

* adding gna to linux

* add missing reference

* update

* Update docs/install_guides/installing-model-dev-tools.md

Co-authored-by: Sergey Lyubimtsev <sergey.lyubimtsev@intel.com>

* Update docs/install_guides/installing-model-dev-tools.md

Co-authored-by: Sergey Lyubimtsev <sergey.lyubimtsev@intel.com>

* Update docs/install_guides/installing-model-dev-tools.md

Co-authored-by: Sergey Lyubimtsev <sergey.lyubimtsev@intel.com>

* Update docs/install_guides/installing-model-dev-tools.md

Co-authored-by: Sergey Lyubimtsev <sergey.lyubimtsev@intel.com>

* Update docs/install_guides/installing-model-dev-tools.md

Co-authored-by: Sergey Lyubimtsev <sergey.lyubimtsev@intel.com>

* update

* minor updates

* add gna item to yum and apt

* add gna to get started page

* update reference formatting

* merge commit

* add a troubleshooting issue

* update

* update

* fix CVS-71846

Co-authored-by: Sergey Lyubimtsev <sergey.lyubimtsev@intel.com>

* DOCS: fixed hardcoded links  (#11100)

* Fixes

* Use links

* applying reviewers comments to the Opt Guide (#11093)

* applying reviewrs comments

* fixed refs, more structuring (bold, bullets, etc)

* refactoring tput/latency sections

* next iteration (mostly latency), also brushed the auto-batching and other sections

* updates sync/async images

* common opts brushed

* WIP tput redesigned

* minor brushing of common and auto-batching

* Tput fully refactored

* fixed doc name in the link

* moved int8 perf counters to the right section

* fixed links

* fixed broken quotes

* fixed more links

* add ref to the internals to the TOC

* Added a note on the batch size

Co-authored-by: Andrey Zaytsev <andrey.zaytsev@intel.com>

* [80085] New images for docs (#11114)

* change doc structure

* fix manager tools

* fix manager tools 3 step

* fix manager tools 3 step

* new img

* new img for OV Runtime

* fix steps

* steps

* fix intendents

* change list

* fix space

* fix space

* code snippets fix

* change display

* Benchmarks 2022 1 (#11130)

* Minor fixes

* Updates for 2022.1

* Edits according to the review

* Edits according to review comments

* Edits according to review comments

* Edits according to review comments

* Fixed table

* Edits according to review comments

* Removed config for Intel® Core™ i7-11850HE

* Removed forward-tacotron-duration-prediction-241 graph

* Added resnet-18-pytorch

* Add info about Docker images in Deployment guide (#11136)

* Renamed user guides (#11137)

* fix screenshot (#11140)

* More conservative recommendations on dynamic shapes usage in docs (#11161)

* More conservative recommendations about using dynamic shapes

* Duplicated statement from C++ part to Python part of reshape doc (no semantical changes)

* Update ShapeInference.md (#11168)

* Benchmarks 2022 1 updates (#11180)

* Updated graphs

* Quick fix for TODO in Dynamic Shapes article

* Anchor link fixes

* Fixed DM config (#11199)

* DOCS: doxy sphinxtabs (#11027)

* initial implementation of doxy sphinxtabs

* fixes

* fixes

* fixes

* fixes

* fixes

* WA for ignored visibility attribute

* Fixes

Co-authored-by: Sergey Lyalin <sergey.lyalin@intel.com>
Co-authored-by: Ivan Tikhonov <ivan.tikhonov@intel.com>
Co-authored-by: Nikolay Tyukaev <nikolay.tyukaev@intel.com>
Co-authored-by: Sergey Lyubimtsev <sergey.lyubimtsev@intel.com>
Co-authored-by: Yuan Xu <yuan1.xu@intel.com>
Co-authored-by: Maxim Shevtsov <maxim.y.shevtsov@intel.com>
Co-authored-by: Andrey Zaytsev <andrey.zaytsev@intel.com>
Co-authored-by: Tatiana Savina <tatiana.savina@intel.com>
Co-authored-by: Ilya Naumov <ilya.naumov@intel.com>
Co-authored-by: Evgenya Stepyreva <evgenya.stepyreva@intel.com>
2022-03-24 22:27:29 +03:00

3.9 KiB

Introduction to Performance Optimization

Before exploring possible optimization techniques, let us first define what the inference performance is and how to measure that. Notice that reported inference performance often tends to focus on the speed of execution. In fact these are at least four connected factors of accuracy, throughput/latency and efficiency. The rest of the document discusses how to balance these key factors.

What Is Inference Performance

Generally, performance means how fast the model processes the live data. Two key metrics are used to measure the performance: latency and throughput are fundamentally interconnected.

Latency measures inference time (ms) required to process a single input. When it comes to the executing multiple inputs executed simultaneously (e.g. via batching) then the overall throughput (inferences per second, or frames per second, FPS, in the specific case of visual processing) is usually of more concern. To calculate throughput, divide number of inputs that were processed by the processing time.

End-to-End Application Performance

It is important to separate the "pure" inference time of a neural network and the end-to-end application performance. For example data transfers between the host and a device may unintentionally affect the performance when a host input tensor is processed on the accelerator like dGPU. Similarly, the image-preprocessing may also contribute significantly to the to inference time. As detailed in the getting performance numbers section, when drilling into inference performance, one option is to measure all such items separately. For the end-to-end scenario though, consider the image pre-processing thru the OpenVINO and the asynchronous execution as a way to amortize the communication costs like data transfers. You can find further details in the general optimizations document.

First-inference latency is another specific case (e.g. when fast application start-up is required) where the resulting performance may be well dominated by the model loading time. Consider model caching as a way to improve model loading/compilation time.

Finally, memory footprint restrictions is another possible concern when designing an application. While this is a motivation for the model optimization techniques referenced in the next section, notice that the the throughput-oriented execution is usually much more memory-hungry, as detailed in the Runtime Inference Optimizations.

Note

: To get performance numbers for OpenVINO, as well as tips how to measure it and compare with native framework, check Getting performance numbers page.

Improving the Performance: Model vs Runtime Optimizations

Note

: Make sure that your model can be successfully inferred with OpenVINO Runtime.

With the OpenVINO there are two primary ways of improving the inference performance, namely model- and runtime-level optimizations. These two optimizations directions are fully compatible.

  • Model optimizations includes model modification, such as quantization, pruning, optimization of preprocessing, etc. Fore more details, refer to this document.

  • Runtime (Deployment) optimizations includes tuning of model execution parameters. To read more visit the Runtime Inference Optimizations.

Performance benchmarks

To estimate the performance and compare performance numbers, measured on various supported devices, a wide range of public models are available at Performance benchmarks section.