* Extensibility guide with FE extensions and remove OV_FRAMEWORK_MAP from docs * Rework of Extensibility Intro, adopted examples to missing OPENVINO_FRAMEWORK_MAP * Removed OPENVINO_FRAMEWORK_MAP reference * Frontend extension detailed documentation * Fixed distributed snippets * Fixed snippet inclusion in FE extension document and chapter headers * Fixed wrong name in a snippet reference * Fixed test for template extension due to changed number of loaded extensions * Update docs/Extensibility_UG/frontend_extensions.md Co-authored-by: Ivan Tikhonov <ivan.tikhonov@intel.com> * Minor fixes in extension snippets * Small grammar fix Co-authored-by: Ivan Tikhonov <ivan.tikhonov@intel.com> Co-authored-by: Ivan Tikhonov <ivan.tikhonov@intel.com> * DOCS: transition banner (#10973) * transition banner * minor fix * update transition banner * updates * update custom.js * updates * updates * Documentation fixes (#11044) * Benchmark app usage * Fixed link to the devices * More fixes * Update docs/OV_Runtime_UG/multi_device.md Co-authored-by: Sergey Lyubimtsev <sergey.lyubimtsev@intel.com> * Removed several hardcoded links Co-authored-by: Sergey Lyubimtsev <sergey.lyubimtsev@intel.com> * Updated documentation for compile_tool (#11049) * Added deployment guide (#11060) * Added deployment guide * Added local distribution * Updates * Fixed more indentations * Removed obsolete code snippets (#11061) * Removed obsolete code snippets * NCC style * Fixed NCC for BA * Add a troubleshooting issue for PRC installation (#11074) * updates * adding gna to linux * add missing reference * update * Update docs/install_guides/installing-model-dev-tools.md Co-authored-by: Sergey Lyubimtsev <sergey.lyubimtsev@intel.com> * Update docs/install_guides/installing-model-dev-tools.md Co-authored-by: Sergey Lyubimtsev <sergey.lyubimtsev@intel.com> * Update docs/install_guides/installing-model-dev-tools.md Co-authored-by: Sergey Lyubimtsev <sergey.lyubimtsev@intel.com> * Update docs/install_guides/installing-model-dev-tools.md Co-authored-by: Sergey Lyubimtsev <sergey.lyubimtsev@intel.com> * Update docs/install_guides/installing-model-dev-tools.md Co-authored-by: Sergey Lyubimtsev <sergey.lyubimtsev@intel.com> * update * minor updates * add gna item to yum and apt * add gna to get started page * update reference formatting * merge commit * add a troubleshooting issue * update * update * fix CVS-71846 Co-authored-by: Sergey Lyubimtsev <sergey.lyubimtsev@intel.com> * DOCS: fixed hardcoded links (#11100) * Fixes * Use links * applying reviewers comments to the Opt Guide (#11093) * applying reviewrs comments * fixed refs, more structuring (bold, bullets, etc) * refactoring tput/latency sections * next iteration (mostly latency), also brushed the auto-batching and other sections * updates sync/async images * common opts brushed * WIP tput redesigned * minor brushing of common and auto-batching * Tput fully refactored * fixed doc name in the link * moved int8 perf counters to the right section * fixed links * fixed broken quotes * fixed more links * add ref to the internals to the TOC * Added a note on the batch size Co-authored-by: Andrey Zaytsev <andrey.zaytsev@intel.com> * [80085] New images for docs (#11114) * change doc structure * fix manager tools * fix manager tools 3 step * fix manager tools 3 step * new img * new img for OV Runtime * fix steps * steps * fix intendents * change list * fix space * fix space * code snippets fix * change display * Benchmarks 2022 1 (#11130) * Minor fixes * Updates for 2022.1 * Edits according to the review * Edits according to review comments * Edits according to review comments * Edits according to review comments * Fixed table * Edits according to review comments * Removed config for Intel® Core™ i7-11850HE * Removed forward-tacotron-duration-prediction-241 graph * Added resnet-18-pytorch * Add info about Docker images in Deployment guide (#11136) * Renamed user guides (#11137) * fix screenshot (#11140) * More conservative recommendations on dynamic shapes usage in docs (#11161) * More conservative recommendations about using dynamic shapes * Duplicated statement from C++ part to Python part of reshape doc (no semantical changes) * Update ShapeInference.md (#11168) * Benchmarks 2022 1 updates (#11180) * Updated graphs * Quick fix for TODO in Dynamic Shapes article * Anchor link fixes * Fixed DM config (#11199) * DOCS: doxy sphinxtabs (#11027) * initial implementation of doxy sphinxtabs * fixes * fixes * fixes * fixes * fixes * WA for ignored visibility attribute * Fixes Co-authored-by: Sergey Lyalin <sergey.lyalin@intel.com> Co-authored-by: Ivan Tikhonov <ivan.tikhonov@intel.com> Co-authored-by: Nikolay Tyukaev <nikolay.tyukaev@intel.com> Co-authored-by: Sergey Lyubimtsev <sergey.lyubimtsev@intel.com> Co-authored-by: Yuan Xu <yuan1.xu@intel.com> Co-authored-by: Maxim Shevtsov <maxim.y.shevtsov@intel.com> Co-authored-by: Andrey Zaytsev <andrey.zaytsev@intel.com> Co-authored-by: Tatiana Savina <tatiana.savina@intel.com> Co-authored-by: Ilya Naumov <ilya.naumov@intel.com> Co-authored-by: Evgenya Stepyreva <evgenya.stepyreva@intel.com>
2.8 KiB
Further Low-Level Implementation Details
Throughput on the CPU: Internals
As explained in the throughput-related section, the OpenVINO streams is a mean of running multiple requests in parallel.
In order to best serve multiple inference requests executed simultaneously, the inference threads are grouped/pinned to the particular CPU cores, constituting the "CPU" streams.
This provides much better performance for the networks than batching especially for the many-core machines:

Compared with the batching, the parallelism is somewhat transposed (i.e. performed over inputs, with much less synchronization within CNN ops):

Notice that high-level performance hints allows the implementation to select the optimal number of the streams, depending on the model compute demands and CPU capabilities (including int8 inference hardware acceleration, number of cores, etc).
Automatic Batching Internals
As explained in the section on the automatic batching, the feature performs on-the-fly grouping of the inference requests to improve device utilization.
The Automatic Batching relaxes the requirement for an application to saturate devices like GPU by explicitly using a large batch. It performs transparent inputs gathering from
individual inference requests followed by the actual batched execution, with no programming effort from the user:
Essentially, the Automatic Batching shifts the asynchronousity from the individual requests to the groups of requests that constitute the batches. Thus, for the execution to be efficient it is very important that the requests arrive timely, without causing a batching timeout. Normally, the timeout should never be hit. It is rather a graceful way to handle the application exit (when the inputs are not arriving anymore, so the full batch is not possible to collect).
So if your workload experiences the timeouts (resulting in the performance drop, as the timeout value adds itself to the latency of every request), consider balancing the timeout value vs the batch size. For example in many cases having smaller timeout value and batch size may yield better performance than large batch size, but coupled with the timeout value that cannot guarantee accommodating the full number of the required requests.
Finally, following the "get_tensor idiom" section from the general optimizations helps the Automatic Batching to save on inputs/outputs copies. Thus, in your application always prefer the "get" versions of the tensors' data access APIs.