2.7 KiB
RNNCell
Versioned name: RNNCell-3
Category: Sequence processing
Short description: RNNCell represents a single RNN cell that computes the output using the formula described in the article.
Attributes
-
hidden_size
- Description: hidden_size specifies hidden state size.
- Range of values: a positive integer
- Type:
int - Required: yes
-
activations
- Description: activation functions for gates
- Range of values: any combination of relu, sigmoid, tanh
- Type: a list of strings
- Default value: tanh
- Required: no
-
activations_alpha, activations_beta
- Description: activations_alpha, activations_beta functions attributes
- Range of values: a list of floating-point numbers
- Type:
float[] - Default value: None
- Required: no
-
clip
- Description: clip specifies value for tensor clipping to be in [-C, C] before activations
- Range of values: a positive floating-point number
- Type:
float - Default value: infinity that means that the clipping is not applied
- Required: no
Inputs
-
1:
X- 2D tensor of type T[batch_size, input_size], input data. Required. -
2:
initial_hidden_state- 2D tensor of type T[batch_size, hidden_size]. Required. -
3:
W- 2D tensor tensor of type T[hidden_size, input_size], the weights for matrix multiplication. Required. -
4:
R- 2D tensor tensor of type T[hidden_size, hidden_size], the recurrence weights for matrix multiplication. Required. -
5:
B1D tensor tensor of type T[hidden_size], the sum of biases (weights and recurrence weights). Required.
Outputs
- 1:
Ho- 2D tensor of type T[batch_size, hidden_size], the last output value of hidden state.
Types
- T: any supported floating point type.
Example
<layer ... type="RNNCell" ...>
<data hidden_size="128"/>
<input>
<port id="0">
<dim>1</dim>
<dim>16</dim>
</port>
<port id="1">
<dim>1</dim>
<dim>128</dim>
</port>
<port id="2">
<dim>128</dim>
<dim>16</dim>
</port>
<port id="3">
<dim>128</dim>
<dim>128</dim>
</port>
<port id="4">
<dim>128</dim>
</port>
</input>
<output>
<port id="5">
<dim>1</dim>
<dim>128</dim>
</port>
</output>
</layer>