* Added migration for deployment (#10800) * Added migration for deployment * Addressed comments * more info after the What's new Sessions' questions (#10803) * more info after the What's new Sessions' questions * generalizing the optimal_batch_size vs explicit value message * Update docs/OV_Runtime_UG/automatic_batching.md Co-authored-by: Tatiana Savina <tatiana.savina@intel.com> * Update docs/OV_Runtime_UG/automatic_batching.md Co-authored-by: Tatiana Savina <tatiana.savina@intel.com> * Update docs/OV_Runtime_UG/automatic_batching.md Co-authored-by: Tatiana Savina <tatiana.savina@intel.com> * Update docs/OV_Runtime_UG/automatic_batching.md Co-authored-by: Tatiana Savina <tatiana.savina@intel.com> * Update docs/OV_Runtime_UG/automatic_batching.md Co-authored-by: Tatiana Savina <tatiana.savina@intel.com> * Update docs/OV_Runtime_UG/automatic_batching.md Co-authored-by: Tatiana Savina <tatiana.savina@intel.com> Co-authored-by: Tatiana Savina <tatiana.savina@intel.com> * Perf Hints docs and General Opt Guide refactoring (#10815) * Brushed the general optimization page * Opt GUIDE, WIP * perf hints doc placeholder * WIP * WIP2 * WIP 3 * added streams and few other details * fixed titles, misprints etc * Perf hints * movin the runtime optimizations intro * fixed link * Apply suggestions from code review Co-authored-by: Tatiana Savina <tatiana.savina@intel.com> * some details on the FIL and other means when pure inference time is not the only factor * shuffled according to general->use-case->device-specifics flow, minor brushing * next iter * section on optimizing for tput and latency * couple of links to the features support matrix * Links, brushing, dedicated subsections for Latency/FIL/Tput * had to make the link less specific (otherwise docs compilations fails) * removing the Temp/Should be moved to the Opt Guide * shuffled the tput/latency/etc info into separated documents. also the following docs moved from the temp into specific feature, general product desc or corresponding plugins - openvino_docs_IE_DG_Model_caching_overview - openvino_docs_IE_DG_Int8Inference - openvino_docs_IE_DG_Bfloat16Inference - openvino_docs_OV_UG_NoDynamicShapes * fixed toc for ov_dynamic_shapes.md * referring the openvino_docs_IE_DG_Bfloat16Inference to avoid docs compilation errors * fixed main product TOC, removed ref from the second-level items * reviewers remarks * reverted the openvino_docs_OV_UG_NoDynamicShapes * reverting openvino_docs_IE_DG_Bfloat16Inference and openvino_docs_IE_DG_Int8Inference * "No dynamic shapes" to the "Dynamic shapes" as TOC * removed duplication * minor brushing * Caching to the next level in TOC * brushing * more on the perf counters ( for latency and dynamic cases) Co-authored-by: Tatiana Savina <tatiana.savina@intel.com> * Updated common IE pipeline infer-request section (#10844) * Updated common IE pipeline infer-reqest section * Update ov_infer_request.md * Apply suggestions from code review Co-authored-by: Karol Blaszczak <karol.blaszczak@intel.com> Co-authored-by: Maxim Shevtsov <maxim.y.shevtsov@intel.com> Co-authored-by: Karol Blaszczak <karol.blaszczak@intel.com> * DOCS: Removed useless 4 spaces in snippets (#10870) * Updated snippets * Added link to encryption * [DOCS] ARM CPU plugin docs (#10885) * initial commit ARM_CPU.md added ARM CPU is added to the list of supported devices * Update the list of supported properties * Update Device_Plugins.md * Update CODEOWNERS * Removed quotes in limitations section * NVIDIA and Android are added to the list of supported devices * Added See Also section and reg sign to arm * Added Preprocessing acceleration section * Update the list of supported layers * updated list of supported layers * fix typos * Added support disclaimer * update trade and reg symbols * fixed typos * fix typos * reg fix * add reg symbol back Co-authored-by: Vitaly Tuzov <vitaly.tuzov@intel.com> * Try to fix visualization (#10896) * Try to fix visualization * New try * Update Install&Deployment for migration guide to 22/1 (#10933) * updates * update * Getting started improvements (#10948) * Onnx updates (#10962) * onnx changes * onnx updates * onnx updates * fix broken anchors api reference (#10976) * add ote repo (#10979) * DOCS: Increase content width (#10995) * fixes * fix * Fixed compilation Co-authored-by: Maxim Shevtsov <maxim.y.shevtsov@intel.com> Co-authored-by: Tatiana Savina <tatiana.savina@intel.com> Co-authored-by: Karol Blaszczak <karol.blaszczak@intel.com> Co-authored-by: Aleksandr Voron <aleksandr.voron@intel.com> Co-authored-by: Vitaly Tuzov <vitaly.tuzov@intel.com> Co-authored-by: Ilya Churaev <ilya.churaev@intel.com> Co-authored-by: Yuan Xu <yuan1.xu@intel.com> Co-authored-by: Victoria Yashina <victoria.yashina@intel.com> Co-authored-by: Nikolay Tyukaev <nikolay.tyukaev@intel.com>
1.9 KiB
Model Optimization Guide
@sphinxdirective
.. toctree:: :maxdepth: 1 :hidden:
pot_README docs_nncf_introduction openvino_docs_IE_DG_Int8Inference
@endsphinxdirective
Model optimization assumes applying transformations to the model and relevant data flow to improve the inference performance. These transformations are basically offline and can require the availability of training and validation data. It includes such methods as quantization, pruning, preprocessing optimization, etc. OpenVINO provides several tools to optimize models at different steps of model development:
-
Post-training Optimization tool (POT) is designed to optimize the inference of deep learning models by applying post-training methods that do not require model retraining or fine-tuning, like post-training quantization.
-
Neural Network Compression Framework (NNCF) provides a suite of advanced algorithms for Neural Networks inference optimization with minimal accuracy drop, for example, quantization, pruning algorithms.
-
Model Optimizer implements optimization to a model, most of them added by default, but you can configure mean/scale values, batch size, RGB vs BGR input channels, and other parameters to speed-up preprocess of a model (Embedding Preprocessing Computation)
Detailed workflow:
To understand which development optimization tool you need, refer to the diagram:
POT is the easiest way to get optimized models, and usually takes several minutes depending on the model size and used HW. NNCF can be considered as an alternative or addition when the first one does not give accurate results.