* Added info on DockerHub CI Framework
* Feature/azaytsev/change layout (#3295)
* Changes according to feedback comments
* Replaced @ref's with html links
* Fixed links, added a title page for installing from repos and images, fixed formatting issues
* Added links
* minor fix
* Added DL Streamer to the list of components installed by default
* Link fixes
* Link fixes
* ovms doc fix (#2988)
* added OpenVINO Model Server
* ovms doc fixes
Co-authored-by: Trawinski, Dariusz <dariusz.trawinski@intel.com>
* Updated openvino_docs.xml
* Updated the link to software license agreements
* Revert "Updated the link to software license agreements"
This reverts commit 706dac500e.
* Docs to Sphinx (#8151)
* docs to sphinx
* Update GPU.md
* Update CPU.md
* Update AUTO.md
* Update performance_int8_vs_fp32.md
* update
* update md
* updates
* disable doc ci
* disable ci
* fix index.rst
Co-authored-by: Andrey Zaytsev <andrey.zaytsev@intel.com>
# Conflicts:
# .gitignore
# docs/CMakeLists.txt
# docs/IE_DG/Deep_Learning_Inference_Engine_DevGuide.md
# docs/IE_DG/Extensibility_DG/Custom_ONNX_Ops.md
# docs/IE_DG/Extensibility_DG/VPU_Kernel.md
# docs/IE_DG/InferenceEngine_QueryAPI.md
# docs/IE_DG/Int8Inference.md
# docs/IE_DG/Integrate_with_customer_application_new_API.md
# docs/IE_DG/Model_caching_overview.md
# docs/IE_DG/supported_plugins/GPU_RemoteBlob_API.md
# docs/IE_DG/supported_plugins/HETERO.md
# docs/IE_DG/supported_plugins/MULTI.md
# docs/MO_DG/prepare_model/convert_model/Convert_Model_From_Caffe.md
# docs/MO_DG/prepare_model/convert_model/Convert_Model_From_Kaldi.md
# docs/MO_DG/prepare_model/convert_model/Convert_Model_From_MxNet.md
# docs/MO_DG/prepare_model/convert_model/Convert_Model_From_ONNX.md
# docs/MO_DG/prepare_model/convert_model/Converting_Model.md
# docs/MO_DG/prepare_model/convert_model/Converting_Model_General.md
# docs/MO_DG/prepare_model/convert_model/Cutting_Model.md
# docs/MO_DG/prepare_model/convert_model/pytorch_specific/Convert_RNNT.md
# docs/MO_DG/prepare_model/convert_model/tf_specific/Convert_EfficientDet_Models.md
# docs/MO_DG/prepare_model/convert_model/tf_specific/Convert_WideAndDeep_Family_Models.md
# docs/MO_DG/prepare_model/convert_model/tf_specific/Convert_YOLO_From_Tensorflow.md
# docs/doxygen/Doxyfile.config
# docs/doxygen/ie_docs.xml
# docs/doxygen/ie_plugin_api.config
# docs/doxygen/ngraph_cpp_api.config
# docs/doxygen/openvino_docs.xml
# docs/get_started/get_started_macos.md
# docs/get_started/get_started_raspbian.md
# docs/get_started/get_started_windows.md
# docs/img/cpu_int8_flow.png
# docs/index.md
# docs/install_guides/VisionAcceleratorFPGA_Configure.md
# docs/install_guides/VisionAcceleratorFPGA_Configure_Windows.md
# docs/install_guides/deployment-manager-tool.md
# docs/install_guides/installing-openvino-linux.md
# docs/install_guides/installing-openvino-macos.md
# docs/install_guides/installing-openvino-windows.md
# docs/optimization_guide/dldt_optimization_guide.md
# inference-engine/ie_bridges/c/include/c_api/ie_c_api.h
# inference-engine/ie_bridges/python/docs/api_overview.md
# inference-engine/ie_bridges/python/sample/ngraph_function_creation_sample/README.md
# inference-engine/ie_bridges/python/sample/speech_sample/README.md
# inference-engine/ie_bridges/python/src/openvino/inference_engine/ie_api.pyx
# inference-engine/include/ie_api.h
# inference-engine/include/ie_core.hpp
# inference-engine/include/ie_version.hpp
# inference-engine/samples/benchmark_app/README.md
# inference-engine/samples/speech_sample/README.md
# inference-engine/src/plugin_api/exec_graph_info.hpp
# inference-engine/src/plugin_api/file_utils.h
# inference-engine/src/transformations/include/transformations_visibility.hpp
# inference-engine/tools/benchmark_tool/README.md
# ngraph/core/include/ngraph/ngraph.hpp
# ngraph/frontend/onnx_common/include/onnx_common/parser.hpp
# ngraph/python/src/ngraph/utils/node_factory.py
# openvino/itt/include/openvino/itt.hpp
# thirdparty/ade
# tools/benchmark/README.md
* Cherry-picked remove font-family (#8211)
* Cherry-picked: Update get_started_scripts.md (#8338)
* doc updates (#8268)
* Various doc changes
* theme changes
* remove font-family (#8211)
* fix css
* Update uninstalling-openvino.md
* fix css
* fix
* Fixes for Installation Guides
Co-authored-by: Andrey Zaytsev <andrey.zaytsev@intel.com>
Co-authored-by: kblaszczak-intel <karol.blaszczak@intel.com>
# Conflicts:
# docs/IE_DG/Bfloat16Inference.md
# docs/IE_DG/InferenceEngine_QueryAPI.md
# docs/IE_DG/OnnxImporterTutorial.md
# docs/IE_DG/supported_plugins/AUTO.md
# docs/IE_DG/supported_plugins/HETERO.md
# docs/IE_DG/supported_plugins/MULTI.md
# docs/MO_DG/prepare_model/convert_model/Convert_Model_From_Kaldi.md
# docs/MO_DG/prepare_model/convert_model/tf_specific/Convert_YOLO_From_Tensorflow.md
# docs/install_guides/installing-openvino-macos.md
# docs/install_guides/installing-openvino-windows.md
# docs/ops/opset.md
# inference-engine/samples/benchmark_app/README.md
# inference-engine/tools/benchmark_tool/README.md
# thirdparty/ade
* Cherry-picked: doc script changes (#8568)
* fix openvino-sphinx-theme
* add linkcheck target
* fix
* change version
* add doxygen-xfail.txt
* fix
* AA
* fix
* fix
* fix
* fix
* fix
# Conflicts:
# thirdparty/ade
* Cherry-pick: Feature/azaytsev/doc updates gna 2021 4 2 (#8567)
* Various doc changes
* Reformatted C++/Pythob sections. Updated with info from PR8490
* additional fix
* Gemini Lake replaced with Elkhart Lake
* Fixed links in IGs, Added 12th Gen
# Conflicts:
# docs/IE_DG/supported_plugins/GNA.md
# thirdparty/ade
* Cherry-pick: Feature/azaytsev/doc fixes (#8897)
* Various doc changes
* Removed the empty Learning path topic
* Restored the Gemini Lake CPIU list
# Conflicts:
# docs/IE_DG/supported_plugins/GNA.md
# thirdparty/ade
* Cherry-pick: sphinx copybutton doxyrest code blocks (#8992)
# Conflicts:
# thirdparty/ade
* Cherry-pick: iframe video enable fullscreen (#9041)
# Conflicts:
# thirdparty/ade
* Cherry-pick: fix untitled titles (#9213)
# Conflicts:
# thirdparty/ade
* Cherry-pick: perf bench graph animation (#9045)
* animation
* fix
# Conflicts:
# thirdparty/ade
* Cherry-pick: doc pytest (#8888)
* docs pytest
* fixes
# Conflicts:
# docs/doxygen/doxygen-ignore.txt
# docs/scripts/ie_docs.xml
# thirdparty/ade
* Cherry-pick: restore deleted files (#9215)
* Added new operations to the doc structure (from removed ie_docs.xml)
* Additional fixes
* Update docs/IE_DG/InferenceEngine_QueryAPI.md
Co-authored-by: Helena Kloosterman <helena.kloosterman@intel.com>
* Update docs/IE_DG/Int8Inference.md
Co-authored-by: Helena Kloosterman <helena.kloosterman@intel.com>
* Update Custom_Layers_Guide.md
* Changes according to review comments
* doc scripts fixes
* Update docs/IE_DG/Int8Inference.md
Co-authored-by: Helena Kloosterman <helena.kloosterman@intel.com>
* Update Int8Inference.md
* update xfail
* clang format
* updated xfail
Co-authored-by: Trawinski, Dariusz <dariusz.trawinski@intel.com>
Co-authored-by: Nikolay Tyukaev <nikolay.tyukaev@intel.com>
Co-authored-by: kblaszczak-intel <karol.blaszczak@intel.com>
Co-authored-by: Yury Gorbachev <yury.gorbachev@intel.com>
Co-authored-by: Helena Kloosterman <helena.kloosterman@intel.com>
8.0 KiB
DetectionOutput
Versioned name: DetectionOutput-1
Category: Object detection
Short description: DetectionOutput performs non-maximum suppression to generate the detection output using information on location and confidence predictions.
Detailed description: Reference. The layer has 3 mandatory inputs: tensor with box logits, tensor with confidence predictions and tensor with box coordinates (proposals). It can have 2 additional inputs with additional confidence predictions and box coordinates described in the article. The output tensor contains information about filtered detections described with 7 element tuples: [batch_id, class_id, confidence, x_1, y_1, x_2, y_2]. The first tuple with batch_id equal to -1 means end of output.
At each feature map cell, DetectionOutput predicts the offsets relative to the default box shapes in the cell, as well as the per-class scores that indicate the presence of a class instance in each of those boxes. Specifically, for each box out of k at a given location, DetectionOutput computes class scores and the four offsets relative to the original default box shape. This results in a total of \f$(c + 4)k\f$ filters that are applied around each location in the feature map, yielding \f$(c + 4)kmn\f$ outputs for a m * n feature map.
Attributes:
-
num_classes
- Description: number of classes to be predicted
- Range of values: positive integer number
- Type: int
- Required: yes
-
background_label_id
- Description: background label id. If there is no background class, set it to -1.
- Range of values: integer values
- Type: int
- Default value: 0
- Required: no
-
top_k
- Description: maximum number of results to be kept per batch after NMS step. -1 means keeping all bounding boxes.
- Range of values: integer values
- Type: int
- Default value: -1
- Required: no
-
variance_encoded_in_target
- Description: variance_encoded_in_target is a flag that denotes if variance is encoded in target. If flag is false then it is necessary to adjust the predicted offset accordingly.
- Range of values: false or true
- Type: boolean
- Default value: false
- Required: no
-
keep_top_k
- Description: maximum number of bounding boxes per batch to be kept after NMS step. -1 means keeping all bounding boxes after NMS step.
- Range of values: integer values
- Type: int[]
- Required: yes
-
code_type
- Description: type of coding method for bounding boxes
- Range of values: "caffe.PriorBoxParameter.CENTER_SIZE", "caffe.PriorBoxParameter.CORNER"
- Type: string
- Default value: "caffe.PriorBoxParameter.CORNER"
- Required: no
-
share_location
- Description: share_location is a flag that denotes if bounding boxes are shared among different classes.
- Range of values: false or true
- Type: boolean
- Default value: true
- Required: no
-
nms_threshold
- Description: threshold to be used in the NMS stage
- Range of values: floating-point values
- Type: float
- Required: yes
-
confidence_threshold
- Description: only consider detections whose confidences are larger than a threshold. If not provided, consider all boxes.
- Range of values: floating-point values
- Type: float
- Default value: 0
- Required: no
-
clip_after_nms
- Description: clip_after_nms flag that denotes whether to perform clip bounding boxes after non-maximum suppression or not.
- Range of values: false or true
- Type: boolean
- Default value: false
- Required: no
-
clip_before_nms
- Description: clip_before_nms flag that denotes whether to perform clip bounding boxes before non-maximum suppression or not.
- Range of values: false or true
- Type: boolean
- Default value: false
- Required: no
-
decrease_label_id
- Description: decrease_label_id flag that denotes how to perform NMS.
- Range of values:
- false - perform NMS like in Caffe*.
- true - perform NMS like in MxNet*.
- Type: boolean
- Default value: false
- Required: no
-
normalized
- Description: normalized flag that denotes whether input tensor with proposal boxes is normalized. If tensor is not normalized then input_height and input_width attributes are used to normalize box coordinates.
- Range of values: false or true
- Type: boolean
- Default value: false
- Required: no
-
input_height (input_width)
- Description: input image height (width). If the normalized is 1 then these attributes are not used.
- Range of values: positive integer number
- Type: int
- Default value: 1
- Required: no
-
objectness_score
- Description: threshold to sort out confidence predictions. Used only when the DetectionOutput layer has 5 inputs.
- Range of values: non-negative float number
- Type: float
- Default value: 0
- Required: no
Inputs
- 1: 2D input tensor with box logits with shape
[N, num_prior_boxes * num_loc_classes * 4]and type T.num_loc_classesis equal tonum_classeswhenshare_locationis 0 or it's equal to 1 otherwise. Required. - 2: 2D input tensor with class predictions with shape
[N, num_prior_boxes * num_classes]and type T. Required. - 3: 3D input tensor with proposals with shape
[priors_batch_size, 1, num_prior_boxes * prior_box_size]or[priors_batch_size, 2, num_prior_boxes * prior_box_size].priors_batch_sizeis either 1 orN. Size of the second dimension depends onvariance_encoded_in_target. Ifvariance_encoded_in_targetis equal to 0, the second dimension equals to 2 and variance values are provided for each boxes coordinates. Ifvariance_encoded_in_targetis equal to 1, the second dimension equals to 1 and this tensor contains proposals boxes only.prior_box_sizeis equal to 4 whennormalizedis set to 1 or it's equal to 5 otherwise. Required. - 4: 2D input tensor with additional class predictions information described in the article. Its shape must be equal to
[N, num_prior_boxes * 2]. Optional. - 5: 2D input tensor with additional box predictions information described in the article. Its shape must be equal to first input tensor shape. Optional.
Outputs
- 1: 4D output tensor with type T. Its shape depends on
keep_top_kortop_kbeing set. Itkeep_top_k[0]is greater than zero, then the shape is[1, 1, N * keep_top_k[0], 7]. Ifkeep_top_k[0]is set to -1 andtop_kis greater than zero, then the shape is[1, 1, N * top_k * num_classes, 7]. Otherwise, the output shape is equal to[1, 1, N * num_classes * num_prior_boxes, 7].
Types
- T: any supported floating-point type.
Example
<layer ... type="DetectionOutput" ... >
<data background_label_id="1" code_type="caffe.PriorBoxParameter.CENTER_SIZE" confidence_threshold="0.019999999552965164" input_height="1" input_width="1" keep_top_k="200" nms_threshold="0.44999998807907104" normalized="true" num_classes="2" share_location="true" top_k="200" variance_encoded_in_target="false" clip_after_nms="false" clip_before_nms="false" objectness_score="0" decrease_label_id="false"/>
<input>
<port id="0">
<dim>1</dim>
<dim>5376</dim>
</port>
<port id="1">
<dim>1</dim>
<dim>2688</dim>
</port>
<port id="2">
<dim>1</dim>
<dim>2</dim>
<dim>5376</dim>
</port>
</input>
<output>
<port id="3" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>200</dim>
<dim>7</dim>
</port>
</output>
</layer>