4.2 KiB
ExperimentalDetectronPriorGridGenerator
Versioned name: ExperimentalDetectronPriorGridGenerator-6
Category: Object detection
Short description: The ExperimentalDetectronPriorGridGenerator operation generates prior grids of specified sizes.
Detailed description: The operation takes coordinates of centres of boxes and adds strides with offset 0.5 to them to
calculate coordinates of prior grids.
Numbers of generated cells is featmap_height and featmap_width if h and w are zeroes; otherwise, h and w,
respectively. Steps of generated grid are image_height / layer_height and image_width / layer_width if
stride_h and stride_w are zeroes; otherwise, stride_h and stride_w, respectively.
featmap_height, featmap_width, image_height and image_width are spatial dimensions values from second and third
inputs, respectively.
Attributes:
-
flatten
- Description: The flatten attribute specifies whether the output tensor should be 2D or 4D.
- Range of values:
true- the output tensor should be a 2D tensorfalse- the output tensor should be a 4D tensor
- Type: boolean
- Default value: true
- Required: no
-
h
- Description: The h attribute specifies number of cells of the generated grid with respect to height.
- Range of values: non-negative integer number less or equal than
featmap_height - Type: int
- Default value: 0
- Required: no
-
w
- Description: The w attribute specifies number of cells of the generated grid with respect to width.
- Range of values: non-negative integer number less or equal than
featmap_width - Type: int
- Default value: 0
- Required: no
-
stride_x
- Description: The stride_x attribute specifies the step of generated grid with respect to x coordinate.
- Range of values: non-negative float number
- Type: float
- Default value: 0.0
- Required: no
-
stride_y
- Description: The stride_y attribute specifies the step of generated grid with respect to y coordinate.
- Range of values: non-negative float number
- Type: float
- Default value: 0.0
- Required: no
Inputs
-
1: A 2D tensor of type T with shape
[number_of_priors, 4]contains priors. Required. -
2: A 4D tensor of type T with input feature map
[1, number_of_channels, featmap_height, featmap_width]. This operation uses only sizes of this input tensor, not its data.Required. -
3: A 4D tensor of type T with input image
[1, number_of_channels, image_height, image_width]. The number of channels of both feature map and input image tensors must match. This operation uses only sizes of this input tensor, not its data. Required.
Outputs
- 1: A tensor of type T with priors grid with shape
[featmap_height * featmap_width * number_of_priors, 4]if flatten istrueor[featmap_height, featmap_width, number_of_priors, 4], otherwise. If 0 < h <featmap_heightand/or 0 < w <featmap_widththe output data size is less thanfeatmap_height*featmap_width*number_of_priors* 4 and the output tensor is filled with undefined values for rest output tensor elements.
Types
- T: any supported floating point type.
Example
<layer ... type="ExperimentalDetectronPriorGridGenerator" version="opset6">
<data flatten="true" h="0" stride_x="32.0" stride_y="32.0" w="0"/>
<input>
<port id="0">
<dim>3</dim>
<dim>4</dim>
</port>
<port id="1">
<dim>1</dim>
<dim>256</dim>
<dim>25</dim>
<dim>42</dim>
</port>
<port id="2">
<dim>1</dim>
<dim>3</dim>
<dim>800</dim>
<dim>1344</dim>
</port>
</input>
<output>
<port id="3" precision="FP32">
<dim>3150</dim>
<dim>4</dim>
</port>
</output>
</layer>