* Added info on DockerHub CI Framework
* Feature/azaytsev/change layout (#3295)
* Changes according to feedback comments
* Replaced @ref's with html links
* Fixed links, added a title page for installing from repos and images, fixed formatting issues
* Added links
* minor fix
* Added DL Streamer to the list of components installed by default
* Link fixes
* Link fixes
* ovms doc fix (#2988)
* added OpenVINO Model Server
* ovms doc fixes
Co-authored-by: Trawinski, Dariusz <dariusz.trawinski@intel.com>
* Updated openvino_docs.xml
* Updated the link to software license agreements
* Revert "Updated the link to software license agreements"
This reverts commit 706dac500e.
* Docs to Sphinx (#8151)
* docs to sphinx
* Update GPU.md
* Update CPU.md
* Update AUTO.md
* Update performance_int8_vs_fp32.md
* update
* update md
* updates
* disable doc ci
* disable ci
* fix index.rst
Co-authored-by: Andrey Zaytsev <andrey.zaytsev@intel.com>
# Conflicts:
# .gitignore
# docs/CMakeLists.txt
# docs/IE_DG/Deep_Learning_Inference_Engine_DevGuide.md
# docs/IE_DG/Extensibility_DG/Custom_ONNX_Ops.md
# docs/IE_DG/Extensibility_DG/VPU_Kernel.md
# docs/IE_DG/InferenceEngine_QueryAPI.md
# docs/IE_DG/Int8Inference.md
# docs/IE_DG/Integrate_with_customer_application_new_API.md
# docs/IE_DG/Model_caching_overview.md
# docs/IE_DG/supported_plugins/GPU_RemoteBlob_API.md
# docs/IE_DG/supported_plugins/HETERO.md
# docs/IE_DG/supported_plugins/MULTI.md
# docs/MO_DG/prepare_model/convert_model/Convert_Model_From_Caffe.md
# docs/MO_DG/prepare_model/convert_model/Convert_Model_From_Kaldi.md
# docs/MO_DG/prepare_model/convert_model/Convert_Model_From_MxNet.md
# docs/MO_DG/prepare_model/convert_model/Convert_Model_From_ONNX.md
# docs/MO_DG/prepare_model/convert_model/Converting_Model.md
# docs/MO_DG/prepare_model/convert_model/Converting_Model_General.md
# docs/MO_DG/prepare_model/convert_model/Cutting_Model.md
# docs/MO_DG/prepare_model/convert_model/pytorch_specific/Convert_RNNT.md
# docs/MO_DG/prepare_model/convert_model/tf_specific/Convert_EfficientDet_Models.md
# docs/MO_DG/prepare_model/convert_model/tf_specific/Convert_WideAndDeep_Family_Models.md
# docs/MO_DG/prepare_model/convert_model/tf_specific/Convert_YOLO_From_Tensorflow.md
# docs/doxygen/Doxyfile.config
# docs/doxygen/ie_docs.xml
# docs/doxygen/ie_plugin_api.config
# docs/doxygen/ngraph_cpp_api.config
# docs/doxygen/openvino_docs.xml
# docs/get_started/get_started_macos.md
# docs/get_started/get_started_raspbian.md
# docs/get_started/get_started_windows.md
# docs/img/cpu_int8_flow.png
# docs/index.md
# docs/install_guides/VisionAcceleratorFPGA_Configure.md
# docs/install_guides/VisionAcceleratorFPGA_Configure_Windows.md
# docs/install_guides/deployment-manager-tool.md
# docs/install_guides/installing-openvino-linux.md
# docs/install_guides/installing-openvino-macos.md
# docs/install_guides/installing-openvino-windows.md
# docs/optimization_guide/dldt_optimization_guide.md
# inference-engine/ie_bridges/c/include/c_api/ie_c_api.h
# inference-engine/ie_bridges/python/docs/api_overview.md
# inference-engine/ie_bridges/python/sample/ngraph_function_creation_sample/README.md
# inference-engine/ie_bridges/python/sample/speech_sample/README.md
# inference-engine/ie_bridges/python/src/openvino/inference_engine/ie_api.pyx
# inference-engine/include/ie_api.h
# inference-engine/include/ie_core.hpp
# inference-engine/include/ie_version.hpp
# inference-engine/samples/benchmark_app/README.md
# inference-engine/samples/speech_sample/README.md
# inference-engine/src/plugin_api/exec_graph_info.hpp
# inference-engine/src/plugin_api/file_utils.h
# inference-engine/src/transformations/include/transformations_visibility.hpp
# inference-engine/tools/benchmark_tool/README.md
# ngraph/core/include/ngraph/ngraph.hpp
# ngraph/frontend/onnx_common/include/onnx_common/parser.hpp
# ngraph/python/src/ngraph/utils/node_factory.py
# openvino/itt/include/openvino/itt.hpp
# thirdparty/ade
# tools/benchmark/README.md
* Cherry-picked remove font-family (#8211)
* Cherry-picked: Update get_started_scripts.md (#8338)
* doc updates (#8268)
* Various doc changes
* theme changes
* remove font-family (#8211)
* fix css
* Update uninstalling-openvino.md
* fix css
* fix
* Fixes for Installation Guides
Co-authored-by: Andrey Zaytsev <andrey.zaytsev@intel.com>
Co-authored-by: kblaszczak-intel <karol.blaszczak@intel.com>
# Conflicts:
# docs/IE_DG/Bfloat16Inference.md
# docs/IE_DG/InferenceEngine_QueryAPI.md
# docs/IE_DG/OnnxImporterTutorial.md
# docs/IE_DG/supported_plugins/AUTO.md
# docs/IE_DG/supported_plugins/HETERO.md
# docs/IE_DG/supported_plugins/MULTI.md
# docs/MO_DG/prepare_model/convert_model/Convert_Model_From_Kaldi.md
# docs/MO_DG/prepare_model/convert_model/tf_specific/Convert_YOLO_From_Tensorflow.md
# docs/install_guides/installing-openvino-macos.md
# docs/install_guides/installing-openvino-windows.md
# docs/ops/opset.md
# inference-engine/samples/benchmark_app/README.md
# inference-engine/tools/benchmark_tool/README.md
# thirdparty/ade
* Cherry-picked: doc script changes (#8568)
* fix openvino-sphinx-theme
* add linkcheck target
* fix
* change version
* add doxygen-xfail.txt
* fix
* AA
* fix
* fix
* fix
* fix
* fix
# Conflicts:
# thirdparty/ade
* Cherry-pick: Feature/azaytsev/doc updates gna 2021 4 2 (#8567)
* Various doc changes
* Reformatted C++/Pythob sections. Updated with info from PR8490
* additional fix
* Gemini Lake replaced with Elkhart Lake
* Fixed links in IGs, Added 12th Gen
# Conflicts:
# docs/IE_DG/supported_plugins/GNA.md
# thirdparty/ade
* Cherry-pick: Feature/azaytsev/doc fixes (#8897)
* Various doc changes
* Removed the empty Learning path topic
* Restored the Gemini Lake CPIU list
# Conflicts:
# docs/IE_DG/supported_plugins/GNA.md
# thirdparty/ade
* Cherry-pick: sphinx copybutton doxyrest code blocks (#8992)
# Conflicts:
# thirdparty/ade
* Cherry-pick: iframe video enable fullscreen (#9041)
# Conflicts:
# thirdparty/ade
* Cherry-pick: fix untitled titles (#9213)
# Conflicts:
# thirdparty/ade
* Cherry-pick: perf bench graph animation (#9045)
* animation
* fix
# Conflicts:
# thirdparty/ade
* Cherry-pick: doc pytest (#8888)
* docs pytest
* fixes
# Conflicts:
# docs/doxygen/doxygen-ignore.txt
# docs/scripts/ie_docs.xml
# thirdparty/ade
* Cherry-pick: restore deleted files (#9215)
* Added new operations to the doc structure (from removed ie_docs.xml)
* Additional fixes
* Update docs/IE_DG/InferenceEngine_QueryAPI.md
Co-authored-by: Helena Kloosterman <helena.kloosterman@intel.com>
* Update docs/IE_DG/Int8Inference.md
Co-authored-by: Helena Kloosterman <helena.kloosterman@intel.com>
* Update Custom_Layers_Guide.md
* Changes according to review comments
* doc scripts fixes
* Update docs/IE_DG/Int8Inference.md
Co-authored-by: Helena Kloosterman <helena.kloosterman@intel.com>
* Update Int8Inference.md
* update xfail
* clang format
* updated xfail
Co-authored-by: Trawinski, Dariusz <dariusz.trawinski@intel.com>
Co-authored-by: Nikolay Tyukaev <nikolay.tyukaev@intel.com>
Co-authored-by: kblaszczak-intel <karol.blaszczak@intel.com>
Co-authored-by: Yury Gorbachev <yury.gorbachev@intel.com>
Co-authored-by: Helena Kloosterman <helena.kloosterman@intel.com>
10 KiB
Getting Started with Demo Scripts
Introduction
A set of demo scripts in the openvino_2021/deployment_tools/demo directory give you a starting point for learning the OpenVINO™ workflow. These scripts automatically perform the workflow steps to demonstrate running inference pipelines for different scenarios. The demo steps let you see how to:
- Compile several samples from the source files delivered as part of the OpenVINO™ toolkit.
- Download trained models.
- Convert the models to IR (Intermediate Representation format used by OpenVINO™) with Model Optimizer.
- Perform pipeline steps and see the output on the console.
This guide assumes you completed all installation and configuration steps. If you have not yet installed and configured the toolkit:
@sphinxdirective .. tab:: Linux
See :doc:Install Intel® Distribution of OpenVINO™ toolkit for Linux* <openvino_docs_install_guides_installing_openvino_linux>
.. tab:: Windows
See :doc:Install Intel® Distribution of OpenVINO™ toolkit for Windows* <openvino_docs_install_guides_installing_openvino_windows>
.. tab:: macOS
See :doc:Install Intel® Distribution of OpenVINO™ toolkit for macOS* <openvino_docs_install_guides_installing_openvino_macos>
@endsphinxdirective
The demo scripts can run inference on any supported target device. Although the default inference device (i.e., processor) is the CPU, you can add the -d parameter to specify a different inference device. The general command to run a demo script is as follows:
@sphinxdirective .. tab:: Linux
.. code-block:: sh
#If you installed in a location other than /opt/intel, substitute that path.
cd /opt/intel/openvino_2021/deployment_tools/demo/
./<script_name> -d [CPU, GPU, MYRIAD, HDDL]
.. tab:: Windows
.. code-block:: sh
rem If you installed in a location other than the default, substitute that path.
cd "C:\Program Files (x86)\Intel\openvino_2021\deployment_tools\demo"
.\<script_name> -d [CPU, GPU, MYRIAD, HDDL]
.. tab:: macOS
.. code-block:: sh
#If you installed in a location other than /opt/intel, substitute that path.
cd /opt/intel/openvino_2021/deployment_tools/demo/
./<script_name> -d [CPU, MYRIAD]
@endsphinxdirective
Before running the demo applications on Intel® Processor Graphics or on an Intel® Neural Compute Stick 2 device, you must complete additional configuration steps.
@sphinxdirective .. tab:: Linux
For details, see the following sections in the :doc:installation instructions <openvino_docs_install_guides_installing_openvino_linux>:
- Steps for Intel® Processor Graphics (GPU)
- Steps for Intel® Neural Compute Stick 2
.. tab:: Windows
For details, see the following sections in the :doc:installation instructions <openvino_docs_install_guides_installing_openvino_windows>:
- Additional Installation Steps for Intel® Processor Graphics (GPU)
- Additional Installation Steps for Intel® Vision Accelerator Design with Intel® Movidius™ VPUs
.. tab:: macOS
For details, see the following sections in the :doc:installation instructions <openvino_docs_install_guides_installing_openvino_macos>:
- Steps for Intel® Neural Compute Stick 2
@endsphinxdirective
The following sections describe each demo script.
Image Classification Demo Script
The demo_squeezenet_download_convert_run script illustrates the image classification pipeline.
The script:
- Downloads a SqueezeNet model.
- Runs the Model Optimizer to convert the model to the IR format used by OpenVINO™.
- Builds the Image Classification Sample Async application.
- Runs the compiled sample with the
car.pngimage located in thedemodirectory.
Example of Running the Image Classification Demo Script
@sphinxdirective .. raw:: html
@endsphinxdirective Click for an example of running the Image Classification demo script
To preview the image that the script will classify:
@sphinxdirective .. tab:: Linux
.. code-block:: sh
cd /opt/intel/openvino_2021/deployment_tools/demo
eog car.png
.. tab:: Windows
.. code-block:: sh
car.png
.. tab:: macOS
.. code-block:: sh
cd /opt/intel/openvino_2021/deployment_tools/demo
open car.png
@endsphinxdirective
To run the script and perform inference on the CPU:
@sphinxdirective .. tab:: Linux
.. code-block:: sh
./demo_squeezenet_download_convert_run.sh
.. tab:: Windows
.. code-block:: bat
.\demo_squeezenet_download_convert_run.bat
.. tab:: macOS
.. code-block:: sh
./demo_squeezenet_download_convert_run.sh
@endsphinxdirective
When the script completes, you see the label and confidence for the top 10 categories:
@sphinxdirective .. tab:: Linux
.. code-block:: sh
Top 10 results:
Image /opt/intel/openvino_2021/deployment_tools/demo/car.png
classid probability label
------- ----------- -----
817 0.8363345 sports car, sport car
511 0.0946488 convertible
479 0.0419131 car wheel
751 0.0091071 racer, race car, racing car
436 0.0068161 beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon
656 0.0037564 minivan
586 0.0025741 half track
717 0.0016069 pickup, pickup truck
864 0.0012027 tow truck, tow car, wrecker
581 0.0005882 grille, radiator grille
[ INFO ] Execution successful
[ INFO ] This sample is an API example, for any performance measurements please use the dedicated benchmark_app tool
.. tab:: Windows
.. code-block:: bat
Top 10 results:
Image C:\Program Files (x86)\Intel\openvino_2021\deployment_tools\demo\car.png
classid probability label
------- ----------- -----
817 0.8363345 sports car, sport car
511 0.0946488 convertible
479 0.0419131 car wheel
751 0.0091071 racer, race car, racing car
436 0.0068161 beach wagon, station wagon, wagon, estate car, beach wagon, station wagon, wagon
656 0.0037564 minivan
586 0.0025741 half track
717 0.0016069 pickup, pickup truck
864 0.0012027 tow truck, tow car, wrecker
581 0.0005882 grille, radiator grille
[ INFO ] Execution successful
[ INFO ] This sample is an API example, for any performance measurements please use the dedicated benchmark_app tool
.. tab:: macOS
.. code-block:: sh
Top 10 results:
Image /Users/colin/intel/openvino_2021/deployment_tools/demo/car.png
classid probability label
------- ----------- -----
817 0.8363345 sports car, sport car
511 0.0946488 convertible
479 0.0419131 car wheel
751 0.0091071 racer, race car, racing car
436 0.0068161 beach wagon, station wagon, wagon, estate car, beach wagon, station wagon, wagon
656 0.0037564 minivan
586 0.0025741 half track
717 0.0016069 pickup, pickup truck
864 0.0012027 tow truck, tow car, wrecker
581 0.0005882 grille, radiator grille
[ INFO ] Execution successful
[ INFO ] This sample is an API example, for any performance measurements please use the dedicated benchmark_app tool
@endsphinxdirective
@sphinxdirective .. raw:: html
</div>
@endsphinxdirective
Inference Pipeline Demo Script
The demo_security_barrier_camera application uses vehicle recognition in which vehicle attributes build on each other to narrow in on a specific attribute.
The script:
- Downloads three pre-trained models, already converted to IR format.
- Builds the Security Barrier Camera Demo application.
- Runs the application with the three models and the
car_1.bmpimage from thedemodirectory to show an inference pipeline.
This application:
- Gets the boundaries an object identified as a vehicle with the first model.
- Uses the vehicle identification as input to the second model, which identifies specific vehicle attributes, including the license plate.
- Uses the license plate as input to the third model, which recognizes specific characters in the license plate.
Example of Running the Pipeline Demo Script
@sphinxdirective .. raw:: html
@endsphinxdirective Click for an example of Running the Pipeline demo script
To run the script performing inference on Intel® Processor Graphics: @sphinxdirective .. tab:: Linux
.. code-block:: sh
./demo_security_barrier_camera.sh -d GPU
.. tab:: Windows
.. code-block:: bat
.\demo_security_barrier_camera.bat -d GPU
@endsphinxdirective
When the verification script is complete, you see an image that displays the resulting frame with detections rendered as bounding boxes and overlaid text:
@sphinxdirective .. tab:: Linux
.. image:: ../img/inference_pipeline_script_lnx.png
.. tab:: Windows
.. image:: ../img/inference_pipeline_script_win.png
.. tab:: macOS
.. image:: ../img/inference_pipeline_script_mac.png
@endsphinxdirective
@sphinxdirective .. raw:: html
@endsphinxdirective
Benchmark Demo Script
The demo_benchmark_app script illustrates how to use the Benchmark Application to estimate deep learning inference performance on supported devices.
The script:
- Downloads a SqueezeNet model.
- Runs the Model Optimizer to convert the model to IR format.
- Builds the Inference Engine Benchmark tool.
- Runs the tool with the
car.pngimage located in thedemodirectory.
Example of Running the Benchmark Demo Script
@sphinxdirective .. raw:: html
@endsphinxdirective Click for an example of running the Benchmark demo script
To run the script that performs measures inference performance: @sphinxdirective .. tab:: Linux
.. code-block:: sh
./demo_benchmark_app.sh
.. tab:: Windows
.. code-block:: bat
.\demo_benchmark_app.bat
.. tab:: macOS
.. code-block:: sh
./demo_benchmark_app.sh
@endsphinxdirective
When the verification script is complete, you see the performance counters, resulting latency, and throughput values displayed on the screen. @sphinxdirective .. raw:: html
@endsphinxdirective
Other Get Started Documents
For more get started documents, visit the pages below: