8.2 KiB
DetectionOutput
Versioned name: DetectionOutput-8
Category: Object detection
Short description: DetectionOutput performs non-maximum suppression to generate the detection output using information on location and confidence predictions.
Detailed description: Reference. The layer has 3 mandatory inputs: tensor with box logits,
tensor with confidence predictions and tensor with box coordinates (proposals). It can have 2 additional inputs with additional confidence
predictions and box coordinates described in the article. The output tensor contains information
about filtered detections described with 7 element tuples: [batch_id, class_id, confidence, x_1, y_1, x_2, y_2]. The first tuple
with batch_id equal to -1 means end of output.
At each feature map cell, DetectionOutput predicts the offsets relative to the default box shapes in the cell, as well as the per-class scores that indicate the presence of a class instance in each of those boxes. Specifically, for each box out of k at a given location, DetectionOutput computes class scores and the four offsets relative to the original default box shape. This results in a total of \f$(c + 4)k\f$ filters that are applied around each location in the feature map, yielding \f$(c + 4)kmn\f$ outputs for a m * n feature map.
Attributes:
NOTE: num_classes, a number of classes attribute, presents in DetectionOutput_1 has been removed.
It can be computed as cls_pred_shape[-1] // num_prior_boxes where cls_pred_shape and num_prior_boxes are class predictions tensor shape and
a number of prior boxes.
-
background_label_id
- Description: background label id. If there is no background class, set it to -1.
- Range of values: integer values
- Type: int
- Default value: 0
- Required: no
-
top_k
- Description: maximum number of results to be kept per batch after NMS step. -1 means keeping all bounding boxes.
- Range of values: integer values
- Type: int
- Default value: -1
- Required: no
-
variance_encoded_in_target
- Description: variance_encoded_in_target is a flag that denotes if variance is encoded in target. If flag is false then it is necessary to adjust the predicted offset accordingly.
- Range of values: false or true
- Type: boolean
- Default value: false
- Required: no
-
keep_top_k
- Description: maximum number of bounding boxes per batch to be kept after NMS step. -1 means keeping all bounding boxes after NMS step.
- Range of values: integer values
- Type: int[]
- Required: yes
-
code_type
- Description: type of coding method for bounding boxes
- Range of values: "caffe.PriorBoxParameter.CENTER_SIZE", "caffe.PriorBoxParameter.CORNER"
- Type: string
- Default value: "caffe.PriorBoxParameter.CORNER"
- Required: no
-
share_location
- Description: share_location is a flag that denotes if bounding boxes are shared among different classes.
- Range of values: false or true
- Type: boolean
- Default value: true
- Required: no
-
nms_threshold
- Description: threshold to be used in the NMS stage
- Range of values: floating-point values
- Type: float
- Required: yes
-
confidence_threshold
- Description: only consider detections whose confidences are larger than a threshold. If not provided, consider all boxes.
- Range of values: floating-point values
- Type: float
- Default value: 0
- Required: no
-
clip_after_nms
- Description: clip_after_nms flag that denotes whether to perform clip bounding boxes after non-maximum suppression or not.
- Range of values: false or true
- Type: boolean
- Default value: false
- Required: no
-
clip_before_nms
- Description: clip_before_nms flag that denotes whether to perform clip bounding boxes before non-maximum suppression or not.
- Range of values: false or true
- Type: boolean
- Default value: false
- Required: no
-
decrease_label_id
- Description: decrease_label_id flag that denotes how to perform NMS.
- Range of values:
- false - perform NMS like in Caffe.
- true - perform NMS like in Apache MxNet.
- Type: boolean
- Default value: false
- Required: no
-
normalized
- Description: normalized flag that denotes whether input tensor with proposal boxes is normalized. If tensor is not normalized then input_height and input_width attributes are used to normalize box coordinates.
- Range of values: false or true
- Type: boolean
- Default value: false
- Required: no
-
input_height (input_width)
- Description: input image height (width). If the normalized is 1 then these attributes are not used.
- Range of values: positive integer number
- Type: int
- Default value: 1
- Required: no
-
objectness_score
- Description: threshold to sort out confidence predictions. Used only when the DetectionOutput layer has 5 inputs.
- Range of values: non-negative float number
- Type: float
- Default value: 0
- Required: no
Inputs
- 1: 2D input tensor with box logits with shape
[N, num_prior_boxes * num_loc_classes * 4]and type T.num_loc_classesis equal tonum_classeswhenshare_locationis 0 or it's equal to 1 otherwise. Required. - 2: 2D input tensor with class predictions with shape
[N, num_prior_boxes * num_classes]and type T. Required. - 3: 3D input tensor with proposals with shape
[priors_batch_size, 1, num_prior_boxes * prior_box_size]or[priors_batch_size, 2, num_prior_boxes * prior_box_size].priors_batch_sizeis either 1 orN. Size of the second dimension depends onvariance_encoded_in_target. Ifvariance_encoded_in_targetis equal to 0, the second dimension equals to 2 and variance values are provided for each boxes coordinates. Ifvariance_encoded_in_targetis equal to 1, the second dimension equals to 1 and this tensor contains proposals boxes only.prior_box_sizeis equal to 4 whennormalizedis set to 1 or it's equal to 5 otherwise. Required. - 4: 2D input tensor with additional class predictions information described in the article.
Its shape must be equal to
[N, num_prior_boxes * 2]. Optional. - 5: 2D input tensor with additional box predictions information described in the article. Its shape must be equal to first input tensor shape. Optional.
Outputs
- 1: 4D output tensor with type T. Its shape depends on
keep_top_kortop_kbeing set. Itkeep_top_k[0]is greater than zero, then the shape is[1, 1, N * keep_top_k[0], 7]. Ifkeep_top_k[0]is set to -1 andtop_kis greater than zero, then the shape is[1, 1, N * top_k * num_classes, 7]. Otherwise, the output shape is equal to[1, 1, N * num_classes * num_prior_boxes, 7].
Types
- T: any supported floating-point type.
Example
<layer ... type="DetectionOutput" version="opset8">
<data background_label_id="1" code_type="caffe.PriorBoxParameter.CENTER_SIZE" confidence_threshold="0.019999999552965164" input_height="1" input_width="1" keep_top_k="200" nms_threshold="0.44999998807907104" normalized="true" share_location="true" top_k="200" variance_encoded_in_target="false" clip_after_nms="false" clip_before_nms="false" objectness_score="0" decrease_label_id="false"/>
<input>
<port id="0">
<dim>1</dim>
<dim>5376</dim>
</port>
<port id="1">
<dim>1</dim>
<dim>2688</dim>
</port>
<port id="2">
<dim>1</dim>
<dim>2</dim>
<dim>5376</dim>
</port>
</input>
<output>
<port id="3" precision="FP32">
<dim>1</dim>
<dim>1</dim>
<dim>200</dim>
<dim>7</dim>
</port>
</output>
</layer>