Added regression tests for Kirchhoff-Love plate problems

git-svn-id: http://svn.sintef.no/trondheim/IFEM/trunk@1210 e10b68d5-8a6e-419e-a041-bce267b0401d
This commit is contained in:
kmo 2011-09-25 20:51:32 +00:00 committed by Knut Morten Okstad
parent ace1672700
commit 1426daa802
5 changed files with 267 additions and 0 deletions

View File

@ -0,0 +1,52 @@
NavierPart_p2.inp -KL -nGauss 2
Input file: NavierPart_p2.inp
Equation solver: 2
Number of Gauss points: 2
Reading input file NavierPart_p2.inp
Reading data file plate_10x8.g2
Reading patch 1
Number of patch refinements: 1
Refining P1 4 4
Number of constraints: 4
Constraining P1 E1 in direction(s) 1
Constraining P1 E2 in direction(s) 1
Constraining P1 E3 in direction(s) 1
Constraining P1 E4 in direction(s) 1
Number of isotropic materials: 1
Material code 0: 2.1e+11 0.3 1000 0.1
Number of pressures: 1
Pressure code 0: (1000\*StepXY(\[4,6]x\[3.2,4.8]))
Analytic solution: NavierPlate a=10 b=8 t=0.1 E=2.1e+11 nu=0.3 pz=1000 xi=0.5 eta=0.5 c=2 d=1.6
NavierPlate: w_centre = 0.0001386811746
Number of result points: 1
Point 1: P1 xi = 0.5 0.5
Reading input file succeeded.
Problem definition:
KirchhoffLovePlate: thickness = 0.1, gravity = 0
LinIsotropic: plane stress, E = 2.1e+11, nu = 0.3, rho = 1000
Resolving Dirichlet boundary conditions
Result point #1: patch #1 (u,v)=(0.5,0.5), node #25, X = 5 4 0
>>> SAM model summary <<<
Number of elements 25
Number of nodes 49
Number of dofs 49
Number of unknowns 25
Assembling interior matrix terms for P1
Solving the equation system ...
>>> Solution summary <<<
L2-norm : 4.89273e-05
Max displacement : 0.0001558 node 25
Projecting secondary solution ...
Energy norm |u^h| = a(u^h,u^h)^0.5 : 0.640802
External energy ((f,u^h)+(t,u^h)^0.5 : 0.640802
Exact norm |u| = a(u,u)^0.5 : 0.648876
Exact error a(e,e)^0.5, e=u-u^h : 0.101001
Exact relative error (%) : 15.5656
Energy norm |u^r| = a(u^r,u^r)^0.5 : 0.630481
Error norm a(e,e)^0.5, e=u^r-u^h : 0.104126
relative error (% of |u^r|) : 16.5154
Exact error a(e,e)^0.5, e=u-u^r : 0.0544198
relative error (% of |u|) : 8.38678
Node #25: sol1 = 1.348059e-04
sol2 = 5.775019e+02 6.698790e+02 0.000000e+00

View File

@ -0,0 +1,54 @@
NavierPart_p3.inp -KL -nGauss 3
Input file: NavierPart_p3.inp
Equation solver: 2
Number of Gauss points: 3
Reading input file NavierPart_p3.inp
Reading data file plate_10x8.g2
Reading patch 1
Number of order raise: 1
Raising order of P1 1 1
Number of patch refinements: 1
Refining P1 4 4
Number of constraints: 4
Constraining P1 E1 in direction(s) 1
Constraining P1 E2 in direction(s) 1
Constraining P1 E3 in direction(s) 1
Constraining P1 E4 in direction(s) 1
Number of isotropic materials: 1
Material code 0: 2.1e+11 0.3 1000 0.1
Number of pressures: 1
Pressure code 0: (1000\*StepXY(\[4,6]x\[3.2,4.8]))
Analytic solution: NavierPlate a=10 b=8 t=0.1 E=2.1e+11 nu=0.3 pz=1000 xi=0.5 eta=0.5 c=2 d=1.6
NavierPlate: w_centre = 0.0001386811746
Number of result points: 1
Point 1: P1 xi = 0.5 0.5
Reading input file succeeded.
Problem definition:
KirchhoffLovePlate: thickness = 0.1, gravity = 0
LinIsotropic: plane stress, E = 2.1e+11, nu = 0.3, rho = 1000
Resolving Dirichlet boundary conditions
Result point #1: patch #1 (u,v)=(0.5,0.5), X = 5 4 0
>>> SAM model summary <<<
Number of elements 25
Number of nodes 64
Number of dofs 64
Number of unknowns 36
Assembling interior matrix terms for P1
Solving the equation system ...
>>> Solution summary <<<
L2-norm : 4.62009e-05
Max displacement : 0.000141437 node 28
Projecting secondary solution ...
Energy norm |u^h| = a(u^h,u^h)^0.5 : 0.645651
External energy ((f,u^h)+(t,u^h)^0.5 : 0.645651
Exact norm |u| = a(u,u)^0.5 : 0.649635
Exact error a(e,e)^0.5, e=u-u^h : 0.0718695
Exact relative error (%) : 11.063
Energy norm |u^r| = a(u^r,u^r)^0.5 : 0.667282
Error norm a(e,e)^0.5, e=u^r-u^h : 0.0492384
relative error (% of |u^r|) : 7.37895
Exact error a(e,e)^0.5, e=u-u^r : 0.0621404
relative error (% of |u|) : 9.56543
Point #1: sol1 = 1.357858e-04
sol2 = 4.832184e+02 5.758909e+02 0.000000e+00

View File

@ -0,0 +1,55 @@
NavierPoint_p3.inp -KL -nGauss 3
Input file: NavierPoint_p3.inp
Equation solver: 2
Number of Gauss points: 3
Reading input file NavierPoint_p3.inp
Reading data file plate_10x8.g2
Reading patch 1
Number of order raise: 1
Raising order of P1 1 1
Number of patch refinements: 1
Refining P1 9 9
Number of constraints: 4
Constraining P1 E1 in direction(s) 1
Constraining P1 E2 in direction(s) 1
Constraining P1 E3 in direction(s) 1
Constraining P1 E4 in direction(s) 1
Number of isotropic materials: 1
Material code 0: 2.1e+11 0.3 1000 0.1
Number of point loads: 1
Point 1: P1 xi = 0.5 0.5 load = 1000
Analytic solution: NavierPlate a=10 b=8 t=0.1 E=2.1e+11 nu=0.3 pz=1000 xi=0.5 eta=0.5
NavierPlate: w_centre = 4.638247666e-05
Number of result points: 1
Point 1: P1 xi = 0.5 0.5
Reading input file succeeded.
Problem definition:
KirchhoffLovePlate: thickness = 0.1, gravity = 0
LinIsotropic: plane stress, E = 2.1e+11, nu = 0.3, rho = 1000
Resolving Dirichlet boundary conditions
Result point #1: patch #1 (u,v)=(0.5,0.5), node #85, X = 5 4 0
>>> SAM model summary <<<
Number of elements 100
Number of nodes 169
Number of dofs 169
Number of unknowns 121
Load point #1: patch #1 (u,v)=(0.5,0.5), node #85, X = 5 4 0
Assembling interior matrix terms for P1
Solving the equation system ...
>>> Solution summary <<<
L2-norm : 1.68431e-05
Max displacement : 5.92196e-05 node 85
Projecting secondary solution ...
Energy norm |u^h| = a(u^h,u^h)^0.5 : 0.243351
External energy ((f,u^h)+(t,u^h)^0.5 : 0.243351
Exact norm |u| = a(u,u)^0.5 : 0.215493
Exact error a(e,e)^0.5, e=u-u^h : 0.0690236
Exact relative error (%) : 32.0305
Energy norm |u^r| = a(u^r,u^r)^0.5 : 0.252337
Error norm a(e,e)^0.5, e=u^r-u^h : 0.0426949
relative error (% of |u^r|) : 16.9198
Exact error a(e,e)^0.5, e=u-u^r : 0.0860584
relative error (% of |u|) : 39.9356
Node #85: sol1 = 5.039916e-05
sol2 = 6.413154e+02 6.945948e+02 0.000000e+00

View File

@ -0,0 +1,52 @@
NavierPress_p2.inp -KL -nGauss 2
Input file: NavierPress_p2.inp
Equation solver: 2
Number of Gauss points: 2
Reading input file NavierPress_p2.inp
Reading data file plate_10x8.g2
Reading patch 1
Number of patch refinements: 1
Refining P1 4 3
Number of constraints: 4
Constraining P1 E1 in direction(s) 1
Constraining P1 E2 in direction(s) 1
Constraining P1 E3 in direction(s) 1
Constraining P1 E4 in direction(s) 1
Number of isotropic materials: 1
Material code 0: 2.1e+11 0.3 1000 0.1
Number of pressures: 1
Pressure code 0: 1000
Analytic solution: NavierPlate a=10 b=8 t=0.1 E=2.1e+11 nu=0.3 pz=1000
NavierPlate: w_max = 0.001283712087
Number of result points: 1
Point 1: P1 xi = 0.5 0.5
Reading input file succeeded.
Problem definition:
KirchhoffLovePlate: thickness = 0.1, gravity = 0
LinIsotropic: plane stress, E = 2.1e+11, nu = 0.3, rho = 1000
Resolving Dirichlet boundary conditions
Result point #1: patch #1 (u,v)=(0.5,0.5), X = 5 4 0
>>> SAM model summary <<<
Number of elements 20
Number of nodes 42
Number of dofs 42
Number of unknowns 20
Assembling interior matrix terms for P1
Solving the equation system ...
>>> Solution summary <<<
L2-norm : 0.000504337
Max displacement : 0.00131415 node 25
Projecting secondary solution ...
Energy norm |u^h| = a(u^h,u^h)^0.5 : 6.4908
External energy ((f,u^h)+(t,u^h)^0.5 : 6.4908
Exact norm |u| = a(u,u)^0.5 : 6.56837
Exact error a(e,e)^0.5, e=u-u^h : 0.99864
Exact relative error (%) : 15.203
Energy norm |u^r| = a(u^r,u^r)^0.5 : 6.45206
Error norm a(e,e)^0.5, e=u^r-u^h : 0.51988
relative error (% of |u^r|) : 8.0576
Exact error a(e,e)^0.5, e=u-u^r : 0.77931
relative error (% of |u|) : 11.864
Point #1: sol1 = 1.258638e-03
sol2 = 3.172751e+03 4.099352e+03 0.000000e+00

View File

@ -0,0 +1,54 @@
NavierPress_p3.inp -KL -nGauss 3
Input file: NavierPress_p3.inp
Equation solver: 2
Number of Gauss points: 3
Reading input file NavierPress_p3.inp
Reading data file plate_10x8.g2
Reading patch 1
Number of order raise: 1
Raising order of P1 1 1
Number of patch refinements: 1
Refining P1 3 2
Number of constraints: 4
Constraining P1 E1 in direction(s) 1
Constraining P1 E2 in direction(s) 1
Constraining P1 E3 in direction(s) 1
Constraining P1 E4 in direction(s) 1
Number of isotropic materials: 1
Material code 0: 2.1e+11 0.3 1000 0.1
Number of pressures: 1
Pressure code 0: 1000
Analytic solution: NavierPlate a=10 b=8 t=0.1 E=2.1e+11 nu=0.3 pz=1000
NavierPlate: w_max = 0.001283712087
Number of result points: 1
Point 1: P1 xi = 0.5 0.5
Reading input file succeeded.
Problem definition:
KirchhoffLovePlate: thickness = 0.1, gravity = 0
LinIsotropic: plane stress, E = 2.1e+11, nu = 0.3, rho = 1000
Resolving Dirichlet boundary conditions
Result point #1: patch #1 (u,v)=(0.5,0.5), X = 5 4 0
>>> SAM model summary <<<
Number of elements 12
Number of nodes 42
Number of dofs 42
Number of unknowns 20
Assembling interior matrix terms for P1
Solving the equation system ...
>>> Solution summary <<<
L2-norm : 0.000508856
Max displacement : 0.0014589 node 25
Projecting secondary solution ...
Energy norm |u^h| = a(u^h,u^h)^0.5 : 6.56416
External energy ((f,u^h)+(t,u^h)^0.5 : 6.56416
Exact norm |u| = a(u,u)^0.5 : 6.57123
Exact error a(e,e)^0.5, e=u-u^h : 0.30438
Exact relative error (%) : 4.632
Energy norm |u^r| = a(u^r,u^r)^0.5 : 6.81129
Error norm a(e,e)^0.5, e=u^r-u^h : 0.37524
relative error (% of |u^r|) : 5.509
Exact error a(e,e)^0.5, e=u-u^r : 0.47238
relative error (% of |u|) : 7.188
Point #1: sol1 = 1.284960e-03
sol2 = 3.174105e+03 4.176018e+03 0.000000e+00