Added regression tests for Kirchhoff-Love plate problems
git-svn-id: http://svn.sintef.no/trondheim/IFEM/trunk@1210 e10b68d5-8a6e-419e-a041-bce267b0401d
This commit is contained in:
parent
ace1672700
commit
1426daa802
52
Apps/LinearElasticity/Test/NavierPart_p2.reg
Normal file
52
Apps/LinearElasticity/Test/NavierPart_p2.reg
Normal file
@ -0,0 +1,52 @@
|
||||
NavierPart_p2.inp -KL -nGauss 2
|
||||
|
||||
Input file: NavierPart_p2.inp
|
||||
Equation solver: 2
|
||||
Number of Gauss points: 2
|
||||
Reading input file NavierPart_p2.inp
|
||||
Reading data file plate_10x8.g2
|
||||
Reading patch 1
|
||||
Number of patch refinements: 1
|
||||
Refining P1 4 4
|
||||
Number of constraints: 4
|
||||
Constraining P1 E1 in direction(s) 1
|
||||
Constraining P1 E2 in direction(s) 1
|
||||
Constraining P1 E3 in direction(s) 1
|
||||
Constraining P1 E4 in direction(s) 1
|
||||
Number of isotropic materials: 1
|
||||
Material code 0: 2.1e+11 0.3 1000 0.1
|
||||
Number of pressures: 1
|
||||
Pressure code 0: (1000\*StepXY(\[4,6]x\[3.2,4.8]))
|
||||
Analytic solution: NavierPlate a=10 b=8 t=0.1 E=2.1e+11 nu=0.3 pz=1000 xi=0.5 eta=0.5 c=2 d=1.6
|
||||
NavierPlate: w_centre = 0.0001386811746
|
||||
Number of result points: 1
|
||||
Point 1: P1 xi = 0.5 0.5
|
||||
Reading input file succeeded.
|
||||
Problem definition:
|
||||
KirchhoffLovePlate: thickness = 0.1, gravity = 0
|
||||
LinIsotropic: plane stress, E = 2.1e+11, nu = 0.3, rho = 1000
|
||||
Resolving Dirichlet boundary conditions
|
||||
Result point #1: patch #1 (u,v)=(0.5,0.5), node #25, X = 5 4 0
|
||||
>>> SAM model summary <<<
|
||||
Number of elements 25
|
||||
Number of nodes 49
|
||||
Number of dofs 49
|
||||
Number of unknowns 25
|
||||
Assembling interior matrix terms for P1
|
||||
Solving the equation system ...
|
||||
>>> Solution summary <<<
|
||||
L2-norm : 4.89273e-05
|
||||
Max displacement : 0.0001558 node 25
|
||||
Projecting secondary solution ...
|
||||
Energy norm |u^h| = a(u^h,u^h)^0.5 : 0.640802
|
||||
External energy ((f,u^h)+(t,u^h)^0.5 : 0.640802
|
||||
Exact norm |u| = a(u,u)^0.5 : 0.648876
|
||||
Exact error a(e,e)^0.5, e=u-u^h : 0.101001
|
||||
Exact relative error (%) : 15.5656
|
||||
Energy norm |u^r| = a(u^r,u^r)^0.5 : 0.630481
|
||||
Error norm a(e,e)^0.5, e=u^r-u^h : 0.104126
|
||||
relative error (% of |u^r|) : 16.5154
|
||||
Exact error a(e,e)^0.5, e=u-u^r : 0.0544198
|
||||
relative error (% of |u|) : 8.38678
|
||||
Node #25: sol1 = 1.348059e-04
|
||||
sol2 = 5.775019e+02 6.698790e+02 0.000000e+00
|
54
Apps/LinearElasticity/Test/NavierPart_p3.reg
Normal file
54
Apps/LinearElasticity/Test/NavierPart_p3.reg
Normal file
@ -0,0 +1,54 @@
|
||||
NavierPart_p3.inp -KL -nGauss 3
|
||||
|
||||
Input file: NavierPart_p3.inp
|
||||
Equation solver: 2
|
||||
Number of Gauss points: 3
|
||||
Reading input file NavierPart_p3.inp
|
||||
Reading data file plate_10x8.g2
|
||||
Reading patch 1
|
||||
Number of order raise: 1
|
||||
Raising order of P1 1 1
|
||||
Number of patch refinements: 1
|
||||
Refining P1 4 4
|
||||
Number of constraints: 4
|
||||
Constraining P1 E1 in direction(s) 1
|
||||
Constraining P1 E2 in direction(s) 1
|
||||
Constraining P1 E3 in direction(s) 1
|
||||
Constraining P1 E4 in direction(s) 1
|
||||
Number of isotropic materials: 1
|
||||
Material code 0: 2.1e+11 0.3 1000 0.1
|
||||
Number of pressures: 1
|
||||
Pressure code 0: (1000\*StepXY(\[4,6]x\[3.2,4.8]))
|
||||
Analytic solution: NavierPlate a=10 b=8 t=0.1 E=2.1e+11 nu=0.3 pz=1000 xi=0.5 eta=0.5 c=2 d=1.6
|
||||
NavierPlate: w_centre = 0.0001386811746
|
||||
Number of result points: 1
|
||||
Point 1: P1 xi = 0.5 0.5
|
||||
Reading input file succeeded.
|
||||
Problem definition:
|
||||
KirchhoffLovePlate: thickness = 0.1, gravity = 0
|
||||
LinIsotropic: plane stress, E = 2.1e+11, nu = 0.3, rho = 1000
|
||||
Resolving Dirichlet boundary conditions
|
||||
Result point #1: patch #1 (u,v)=(0.5,0.5), X = 5 4 0
|
||||
>>> SAM model summary <<<
|
||||
Number of elements 25
|
||||
Number of nodes 64
|
||||
Number of dofs 64
|
||||
Number of unknowns 36
|
||||
Assembling interior matrix terms for P1
|
||||
Solving the equation system ...
|
||||
>>> Solution summary <<<
|
||||
L2-norm : 4.62009e-05
|
||||
Max displacement : 0.000141437 node 28
|
||||
Projecting secondary solution ...
|
||||
Energy norm |u^h| = a(u^h,u^h)^0.5 : 0.645651
|
||||
External energy ((f,u^h)+(t,u^h)^0.5 : 0.645651
|
||||
Exact norm |u| = a(u,u)^0.5 : 0.649635
|
||||
Exact error a(e,e)^0.5, e=u-u^h : 0.0718695
|
||||
Exact relative error (%) : 11.063
|
||||
Energy norm |u^r| = a(u^r,u^r)^0.5 : 0.667282
|
||||
Error norm a(e,e)^0.5, e=u^r-u^h : 0.0492384
|
||||
relative error (% of |u^r|) : 7.37895
|
||||
Exact error a(e,e)^0.5, e=u-u^r : 0.0621404
|
||||
relative error (% of |u|) : 9.56543
|
||||
Point #1: sol1 = 1.357858e-04
|
||||
sol2 = 4.832184e+02 5.758909e+02 0.000000e+00
|
55
Apps/LinearElasticity/Test/NavierPoint_p3.reg
Normal file
55
Apps/LinearElasticity/Test/NavierPoint_p3.reg
Normal file
@ -0,0 +1,55 @@
|
||||
NavierPoint_p3.inp -KL -nGauss 3
|
||||
|
||||
Input file: NavierPoint_p3.inp
|
||||
Equation solver: 2
|
||||
Number of Gauss points: 3
|
||||
Reading input file NavierPoint_p3.inp
|
||||
Reading data file plate_10x8.g2
|
||||
Reading patch 1
|
||||
Number of order raise: 1
|
||||
Raising order of P1 1 1
|
||||
Number of patch refinements: 1
|
||||
Refining P1 9 9
|
||||
Number of constraints: 4
|
||||
Constraining P1 E1 in direction(s) 1
|
||||
Constraining P1 E2 in direction(s) 1
|
||||
Constraining P1 E3 in direction(s) 1
|
||||
Constraining P1 E4 in direction(s) 1
|
||||
Number of isotropic materials: 1
|
||||
Material code 0: 2.1e+11 0.3 1000 0.1
|
||||
Number of point loads: 1
|
||||
Point 1: P1 xi = 0.5 0.5 load = 1000
|
||||
Analytic solution: NavierPlate a=10 b=8 t=0.1 E=2.1e+11 nu=0.3 pz=1000 xi=0.5 eta=0.5
|
||||
NavierPlate: w_centre = 4.638247666e-05
|
||||
Number of result points: 1
|
||||
Point 1: P1 xi = 0.5 0.5
|
||||
Reading input file succeeded.
|
||||
Problem definition:
|
||||
KirchhoffLovePlate: thickness = 0.1, gravity = 0
|
||||
LinIsotropic: plane stress, E = 2.1e+11, nu = 0.3, rho = 1000
|
||||
Resolving Dirichlet boundary conditions
|
||||
Result point #1: patch #1 (u,v)=(0.5,0.5), node #85, X = 5 4 0
|
||||
>>> SAM model summary <<<
|
||||
Number of elements 100
|
||||
Number of nodes 169
|
||||
Number of dofs 169
|
||||
Number of unknowns 121
|
||||
Load point #1: patch #1 (u,v)=(0.5,0.5), node #85, X = 5 4 0
|
||||
Assembling interior matrix terms for P1
|
||||
Solving the equation system ...
|
||||
>>> Solution summary <<<
|
||||
L2-norm : 1.68431e-05
|
||||
Max displacement : 5.92196e-05 node 85
|
||||
Projecting secondary solution ...
|
||||
Energy norm |u^h| = a(u^h,u^h)^0.5 : 0.243351
|
||||
External energy ((f,u^h)+(t,u^h)^0.5 : 0.243351
|
||||
Exact norm |u| = a(u,u)^0.5 : 0.215493
|
||||
Exact error a(e,e)^0.5, e=u-u^h : 0.0690236
|
||||
Exact relative error (%) : 32.0305
|
||||
Energy norm |u^r| = a(u^r,u^r)^0.5 : 0.252337
|
||||
Error norm a(e,e)^0.5, e=u^r-u^h : 0.0426949
|
||||
relative error (% of |u^r|) : 16.9198
|
||||
Exact error a(e,e)^0.5, e=u-u^r : 0.0860584
|
||||
relative error (% of |u|) : 39.9356
|
||||
Node #85: sol1 = 5.039916e-05
|
||||
sol2 = 6.413154e+02 6.945948e+02 0.000000e+00
|
52
Apps/LinearElasticity/Test/NavierPress_p2.reg
Normal file
52
Apps/LinearElasticity/Test/NavierPress_p2.reg
Normal file
@ -0,0 +1,52 @@
|
||||
NavierPress_p2.inp -KL -nGauss 2
|
||||
|
||||
Input file: NavierPress_p2.inp
|
||||
Equation solver: 2
|
||||
Number of Gauss points: 2
|
||||
Reading input file NavierPress_p2.inp
|
||||
Reading data file plate_10x8.g2
|
||||
Reading patch 1
|
||||
Number of patch refinements: 1
|
||||
Refining P1 4 3
|
||||
Number of constraints: 4
|
||||
Constraining P1 E1 in direction(s) 1
|
||||
Constraining P1 E2 in direction(s) 1
|
||||
Constraining P1 E3 in direction(s) 1
|
||||
Constraining P1 E4 in direction(s) 1
|
||||
Number of isotropic materials: 1
|
||||
Material code 0: 2.1e+11 0.3 1000 0.1
|
||||
Number of pressures: 1
|
||||
Pressure code 0: 1000
|
||||
Analytic solution: NavierPlate a=10 b=8 t=0.1 E=2.1e+11 nu=0.3 pz=1000
|
||||
NavierPlate: w_max = 0.001283712087
|
||||
Number of result points: 1
|
||||
Point 1: P1 xi = 0.5 0.5
|
||||
Reading input file succeeded.
|
||||
Problem definition:
|
||||
KirchhoffLovePlate: thickness = 0.1, gravity = 0
|
||||
LinIsotropic: plane stress, E = 2.1e+11, nu = 0.3, rho = 1000
|
||||
Resolving Dirichlet boundary conditions
|
||||
Result point #1: patch #1 (u,v)=(0.5,0.5), X = 5 4 0
|
||||
>>> SAM model summary <<<
|
||||
Number of elements 20
|
||||
Number of nodes 42
|
||||
Number of dofs 42
|
||||
Number of unknowns 20
|
||||
Assembling interior matrix terms for P1
|
||||
Solving the equation system ...
|
||||
>>> Solution summary <<<
|
||||
L2-norm : 0.000504337
|
||||
Max displacement : 0.00131415 node 25
|
||||
Projecting secondary solution ...
|
||||
Energy norm |u^h| = a(u^h,u^h)^0.5 : 6.4908
|
||||
External energy ((f,u^h)+(t,u^h)^0.5 : 6.4908
|
||||
Exact norm |u| = a(u,u)^0.5 : 6.56837
|
||||
Exact error a(e,e)^0.5, e=u-u^h : 0.99864
|
||||
Exact relative error (%) : 15.203
|
||||
Energy norm |u^r| = a(u^r,u^r)^0.5 : 6.45206
|
||||
Error norm a(e,e)^0.5, e=u^r-u^h : 0.51988
|
||||
relative error (% of |u^r|) : 8.0576
|
||||
Exact error a(e,e)^0.5, e=u-u^r : 0.77931
|
||||
relative error (% of |u|) : 11.864
|
||||
Point #1: sol1 = 1.258638e-03
|
||||
sol2 = 3.172751e+03 4.099352e+03 0.000000e+00
|
54
Apps/LinearElasticity/Test/NavierPress_p3.reg
Normal file
54
Apps/LinearElasticity/Test/NavierPress_p3.reg
Normal file
@ -0,0 +1,54 @@
|
||||
NavierPress_p3.inp -KL -nGauss 3
|
||||
|
||||
Input file: NavierPress_p3.inp
|
||||
Equation solver: 2
|
||||
Number of Gauss points: 3
|
||||
Reading input file NavierPress_p3.inp
|
||||
Reading data file plate_10x8.g2
|
||||
Reading patch 1
|
||||
Number of order raise: 1
|
||||
Raising order of P1 1 1
|
||||
Number of patch refinements: 1
|
||||
Refining P1 3 2
|
||||
Number of constraints: 4
|
||||
Constraining P1 E1 in direction(s) 1
|
||||
Constraining P1 E2 in direction(s) 1
|
||||
Constraining P1 E3 in direction(s) 1
|
||||
Constraining P1 E4 in direction(s) 1
|
||||
Number of isotropic materials: 1
|
||||
Material code 0: 2.1e+11 0.3 1000 0.1
|
||||
Number of pressures: 1
|
||||
Pressure code 0: 1000
|
||||
Analytic solution: NavierPlate a=10 b=8 t=0.1 E=2.1e+11 nu=0.3 pz=1000
|
||||
NavierPlate: w_max = 0.001283712087
|
||||
Number of result points: 1
|
||||
Point 1: P1 xi = 0.5 0.5
|
||||
Reading input file succeeded.
|
||||
Problem definition:
|
||||
KirchhoffLovePlate: thickness = 0.1, gravity = 0
|
||||
LinIsotropic: plane stress, E = 2.1e+11, nu = 0.3, rho = 1000
|
||||
Resolving Dirichlet boundary conditions
|
||||
Result point #1: patch #1 (u,v)=(0.5,0.5), X = 5 4 0
|
||||
>>> SAM model summary <<<
|
||||
Number of elements 12
|
||||
Number of nodes 42
|
||||
Number of dofs 42
|
||||
Number of unknowns 20
|
||||
Assembling interior matrix terms for P1
|
||||
Solving the equation system ...
|
||||
>>> Solution summary <<<
|
||||
L2-norm : 0.000508856
|
||||
Max displacement : 0.0014589 node 25
|
||||
Projecting secondary solution ...
|
||||
Energy norm |u^h| = a(u^h,u^h)^0.5 : 6.56416
|
||||
External energy ((f,u^h)+(t,u^h)^0.5 : 6.56416
|
||||
Exact norm |u| = a(u,u)^0.5 : 6.57123
|
||||
Exact error a(e,e)^0.5, e=u-u^h : 0.30438
|
||||
Exact relative error (%) : 4.632
|
||||
Energy norm |u^r| = a(u^r,u^r)^0.5 : 6.81129
|
||||
Error norm a(e,e)^0.5, e=u^r-u^h : 0.37524
|
||||
relative error (% of |u^r|) : 5.509
|
||||
Exact error a(e,e)^0.5, e=u-u^r : 0.47238
|
||||
relative error (% of |u|) : 7.188
|
||||
Point #1: sol1 = 1.284960e-03
|
||||
sol2 = 3.174105e+03 4.176018e+03 0.000000e+00
|
Loading…
Reference in New Issue
Block a user