LBPM/models/ColorModel.cpp

553 lines
20 KiB
C++
Raw Normal View History

2018-05-16 13:40:38 -05:00
/*
color lattice boltzmann model
*/
2018-05-16 13:50:40 -05:00
#include "models/ColorModel.h"
2018-05-16 13:40:38 -05:00
2018-05-18 16:24:17 -05:00
ScaLBL_ColorModel::ScaLBL_ColorModel(int RANK, int NP, MPI_Comm COMM):
2018-05-19 13:02:45 -05:00
rank(RANK), nprocs(NP), Restart(0),timestep(0),timestepMax(0),tauA(0),tauB(0),rhoA(0),rhoB(0),alpha(0),beta(0),
Fx(0),Fy(0),Fz(0),flux(0),din(0),dout(0),inletA(0),inletB(0),outletA(0),outletB(0),
Nx(0),Ny(0),Nz(0),N(0),Np(0),nprocx(0),nprocy(0),nprocz(0),BoundaryCondition(0),Lx(0),Ly(0),Lz(0),comm(COMM)
2018-05-16 14:08:47 -05:00
{
2018-05-16 13:54:16 -05:00
}
ScaLBL_ColorModel::~ScaLBL_ColorModel(){
2018-05-19 13:02:45 -05:00
2018-05-16 13:54:16 -05:00
}
2018-05-16 14:08:47 -05:00
void ScaLBL_ColorModel::ReadParams(string filename){
2018-05-16 13:40:38 -05:00
// read the input database
2018-05-19 13:02:45 -05:00
db = std::make_shared<Database>( filename );
domain_db = db->getDatabase( "Domain" );
color_db = db->getDatabase( "Color" );
analysis_db = db->getDatabase( "Analysis" );
// Color Model parameters
timestepMax = color_db->getScalar<int>( "timestepMax" );
tauA = color_db->getScalar<double>( "tauA" );
tauB = color_db->getScalar<double>( "tauB" );
rhoA = color_db->getScalar<double>( "rhoA" );
rhoB = color_db->getScalar<double>( "rhoB" );
Fx = color_db->getVector<double>( "F" )[0];
Fy = color_db->getVector<double>( "F" )[1];
Fz = color_db->getVector<double>( "F" )[2];
alpha = color_db->getScalar<double>( "alpha" );
beta = color_db->getScalar<double>( "beta" );
Restart = color_db->getScalar<bool>( "Restart" );
din = color_db->getScalar<double>( "din" );
dout = color_db->getScalar<double>( "dout" );
flux = color_db->getScalar<double>( "flux" );
inletA=1.f;
inletB=0.f;
outletA=0.f;
outletB=1.f;
2018-05-19 16:28:39 -05:00
if (BoundaryCondition==4) flux = din*rhoA; // mass flux must adjust for density (see formulation for details)
2018-05-19 13:02:45 -05:00
// Read domain parameters
auto L = domain_db->getVector<double>( "L" );
auto size = domain_db->getVector<int>( "n" );
auto nproc = domain_db->getVector<int>( "nproc" );
BoundaryCondition = domain_db->getScalar<int>( "BC" );
Nx = size[0];
Ny = size[1];
Nz = size[2];
Lx = L[0];
Ly = L[1];
Lz = L[2];
nprocx = nproc[0];
nprocy = nproc[1];
nprocz = nproc[2];
2018-05-19 16:28:39 -05:00
}
void ScaLBL_ColorModel::SetDomain(){
2018-05-19 13:02:45 -05:00
Dm = std::shared_ptr<Domain>(new Domain(domain_db,comm)); // full domain for analysis
Mask = std::shared_ptr<Domain>(new Domain(domain_db,comm)); // mask domain removes immobile phases
Nx+=2; Ny+=2; Nz += 2;
N = Nx*Ny*Nz;
for (int i=0; i<Nx*Ny*Nz; i++) Dm->id[i] = 1; // initialize this way
Averages = std::shared_ptr<TwoPhase> ( new TwoPhase(Dm) ); // TwoPhase analysis object
MPI_Barrier(comm);
Dm->CommInit();
MPI_Barrier(comm);
2018-05-16 13:40:38 -05:00
}
void ScaLBL_ColorModel::ReadInput(){
2018-05-16 19:54:37 -05:00
int rank=Dm->rank();
2018-05-19 06:14:37 -05:00
size_t readID;
2018-05-16 13:40:38 -05:00
//.......................................................................
if (rank == 0) printf("Read input media... \n");
//.......................................................................
2018-05-19 16:28:39 -05:00
Mask->ReadIDs();
2018-05-19 06:01:09 -05:00
2018-05-16 19:54:37 -05:00
sprintf(LocalRankString,"%05d",Dm->rank());
2018-05-16 13:40:38 -05:00
sprintf(LocalRankFilename,"%s%s","ID.",LocalRankString);
sprintf(LocalRestartFile,"%s%s","Restart.",LocalRankString);
2018-05-19 05:39:44 -05:00
2018-05-16 13:40:38 -05:00
// .......... READ THE INPUT FILE .......................................
//...........................................................................
2018-05-18 19:53:49 -05:00
if (rank == 0) cout << "Reading in signed distance function..." << endl;
2018-05-16 13:40:38 -05:00
//.......................................................................
sprintf(LocalRankString,"%05d",rank);
sprintf(LocalRankFilename,"%s%s","SignDist.",LocalRankString);
ReadBinaryFile(LocalRankFilename, Averages->SDs.data(), N);
MPI_Barrier(comm);
if (rank == 0) cout << "Domain set." << endl;
// Read restart file
if (Restart == true){
2018-05-16 19:54:37 -05:00
if (Dm->rank()==0){
2018-05-18 19:53:49 -05:00
size_t readID;
2018-05-16 13:40:38 -05:00
printf("Reading restart file! \n");
ifstream restart("Restart.txt");
if (restart.is_open()){
restart >> timestep;
printf("Restarting from timestep =%i \n",timestep);
}
else{
printf("WARNING:No Restart.txt file, setting timestep=0 \n");
timestep=0;
}
}
MPI_Bcast(&timestep,1,MPI_INT,0,comm);
FILE *RESTART = fopen(LocalRestartFile,"rb");
2018-05-19 06:14:37 -05:00
if (RESTART==NULL) ERROR("lbpm_color_simulator: Error opening file: Restart.xxxxx");
2018-05-16 13:40:38 -05:00
readID=fread(id,1,N,RESTART);
if (readID != size_t(N)) printf("lbpm_color_simulator: Error reading Restart (rank=%i) \n",rank);
fclose(RESTART);
MPI_Barrier(comm);
}
}
2018-05-19 06:01:09 -05:00
void ScaLBL_ColorModel::AssignComponentLabels(double *phase)
2018-05-18 19:53:49 -05:00
{
2018-05-19 06:14:37 -05:00
int rank=Dm->rank();
2018-05-18 19:53:49 -05:00
int NLABELS=0;
char VALUE=0;
double AFFINITY=0.f;
vector <char> Label;
vector <double> Affinity;
// Read the labels
2018-05-19 06:14:37 -05:00
if (rank==0){
2018-05-18 19:53:49 -05:00
printf("Component labels:\n");
ifstream iFILE("ComponentLabels.csv");
if (iFILE.good()){
int value;
while (!iFILE.eof()){
iFILE>>value;
iFILE>>AFFINITY;
VALUE=char(value);
Label.push_back(value);
Affinity.push_back(AFFINITY);
NLABELS++;
printf("%i %f\n",VALUE,AFFINITY);
}
}
else{
printf("Using default labels: Solid (0 --> -1.0), NWP (1 --> 1.0), WP (2 --> -1.0)\n");
// Set default values
VALUE=0; AFFINITY=-1.0;
Label.push_back(VALUE);
Affinity.push_back(AFFINITY);
NLABELS++;
VALUE=1; AFFINITY=1.0;
Label.push_back(VALUE);
Affinity.push_back(AFFINITY);
NLABELS++;
VALUE=2; AFFINITY=-1.0;
Label.push_back(VALUE);
Affinity.push_back(AFFINITY);
NLABELS++;
}
}
2018-05-19 06:14:37 -05:00
MPI_Barrier(comm);
2018-05-18 19:53:49 -05:00
// Broadcast the list
2018-05-19 06:14:37 -05:00
MPI_Bcast(&NLABELS,1,MPI_INT,0,comm);
2018-05-18 19:53:49 -05:00
//printf("rank=%i, NLABELS=%i \n ",rank(),NLABELS);
// Copy into contiguous buffers
char *LabelList;
double * AffinityList;
LabelList=new char[NLABELS];
AffinityList=new double[NLABELS];
2018-05-19 06:14:37 -05:00
if (rank==0){
2018-05-18 19:53:49 -05:00
for (int idx=0; idx < NLABELS; idx++){
VALUE=Label[idx];
AFFINITY=Affinity[idx];
2018-05-19 06:14:37 -05:00
printf("rank=%i, idx=%i, value=%d, affinity=%f \n",rank,idx,VALUE,AFFINITY);
2018-05-18 19:53:49 -05:00
LabelList[idx]=VALUE;
AffinityList[idx]=AFFINITY;
}
}
2018-05-19 06:14:37 -05:00
MPI_Barrier(comm);
2018-05-18 19:53:49 -05:00
2018-05-19 06:14:37 -05:00
MPI_Bcast(LabelList,NLABELS,MPI_CHAR,0,comm);
MPI_Bcast(AffinityList,NLABELS,MPI_DOUBLE,0,comm);
2018-05-18 19:53:49 -05:00
// Assign the labels
for (int k=0;k<Nz;k++){
for (int j=0;j<Ny;j++){
for (int i=0;i<Nx;i++){
int n = k*Nx*Ny+j*Nx+i;
2018-05-19 16:28:39 -05:00
VALUE=Mask->id[n];
2018-05-18 19:53:49 -05:00
// Assign the affinity from the paired list
for (int idx=0; idx < NLABELS; idx++){
//printf("rank=%i, idx=%i, value=%i, %i, \n",rank(),idx, VALUE,LabelList[idx]);
if (VALUE == LabelList[idx]){
AFFINITY=AffinityList[idx];
idx = NLABELS;
}
}
phase[n] = AFFINITY;
}
}
}
}
2018-05-16 13:40:38 -05:00
void ScaLBL_ColorModel::Create(){
/*
* This function creates the variables needed to run a LBM
*/
2018-05-18 19:53:49 -05:00
int rank=Dm->rank();
//.........................................................
// don't perform computations at the eight corners
2018-05-21 09:13:23 -05:00
//id[0] = id[Nx-1] = id[(Ny-1)*Nx] = id[(Ny-1)*Nx + Nx-1] = 0;
//id[(Nz-1)*Nx*Ny] = id[(Nz-1)*Nx*Ny+Nx-1] = id[(Nz-1)*Nx*Ny+(Ny-1)*Nx] = id[(Nz-1)*Nx*Ny+(Ny-1)*Nx + Nx-1] = 0;
2018-05-19 06:01:09 -05:00
2018-05-18 19:53:49 -05:00
//.........................................................
// Initialize communication structures in averaging domain
2018-05-19 16:28:39 -05:00
for (int i=0; i<Nx*Ny*Nz; i++) Dm->id[i] = Mask->id[i];
2018-05-19 06:01:09 -05:00
Mask->CommInit();
2018-05-19 06:14:37 -05:00
Np=Mask->PoreCount();
2018-05-18 19:53:49 -05:00
//...........................................................................
if (rank==0) printf ("Create ScaLBL_Communicator \n");
// Create a communicator for the device (will use optimized layout)
// ScaLBL_Communicator ScaLBL_Comm(Mask); // original
ScaLBL_Comm = std::shared_ptr<ScaLBL_Communicator>(new ScaLBL_Communicator(Mask));
2018-05-16 14:15:01 -05:00
2018-05-18 19:53:49 -05:00
int Npad=(Np/16 + 2)*16;
if (rank==0) printf ("Set up memory efficient layout \n");
Map.resize(Nx,Ny,Nz); Map.fill(-2);
auto neighborList= new int[18*Npad];
Np = ScaLBL_Comm->MemoryOptimizedLayoutAA(Map,neighborList,Mask->id,Np);
MPI_Barrier(comm);
2018-05-16 13:40:38 -05:00
2018-05-18 19:53:49 -05:00
//...........................................................................
// MAIN VARIABLES ALLOCATED HERE
//...........................................................................
// LBM variables
if (rank==0) printf ("Allocating distributions \n");
//......................device distributions.................................
int dist_mem_size = Np*sizeof(double);
int neighborSize=18*(Np*sizeof(int));
2018-05-16 13:40:38 -05:00
2018-05-18 19:53:49 -05:00
//...........................................................................
ScaLBL_AllocateDeviceMemory((void **) &NeighborList, neighborSize);
ScaLBL_AllocateDeviceMemory((void **) &dvcMap, sizeof(int)*Np);
ScaLBL_AllocateDeviceMemory((void **) &fq, 19*dist_mem_size);
ScaLBL_AllocateDeviceMemory((void **) &Aq, 7*dist_mem_size);
ScaLBL_AllocateDeviceMemory((void **) &Bq, 7*dist_mem_size);
ScaLBL_AllocateDeviceMemory((void **) &Den, 2*dist_mem_size);
ScaLBL_AllocateDeviceMemory((void **) &Phi, sizeof(double)*Np);
ScaLBL_AllocateDeviceMemory((void **) &Pressure, sizeof(double)*Np);
ScaLBL_AllocateDeviceMemory((void **) &Velocity, 3*sizeof(double)*Np);
ScaLBL_AllocateDeviceMemory((void **) &Gradient, 3*sizeof(double)*Np);
ScaLBL_AllocateDeviceMemory((void **) &SolidPotential, 3*sizeof(double)*Np);
//...........................................................................
// Update GPU data structures
if (rank==0) printf ("Setting up device map and neighbor list \n");
2018-05-16 19:54:37 -05:00
// copy the neighbor list
ScaLBL_CopyToDevice(NeighborList, neighborList, neighborSize);
2018-05-18 19:53:49 -05:00
int *TmpMap;
TmpMap=new int[Np];
for (int k=1; k<Nz-1; k++){
for (int j=1; j<Ny-1; j++){
for (int i=1; i<Nx-1; i++){
int idx=Map(i,j,k);
if (!(idx < 0))
TmpMap[idx] = k*Nx*Ny+j*Nx+i;
}
}
}
ScaLBL_CopyToDevice(dvcMap, TmpMap, sizeof(int)*Np);
ScaLBL_DeviceBarrier();
delete [] TmpMap;
2018-05-16 13:40:38 -05:00
}
2018-05-18 19:53:49 -05:00
/********************************************************
* AssignComponentLabels *
********************************************************/
2018-05-19 16:32:24 -05:00
void ScaLBL_ColorModel::AssignSolidPotential(){
2018-05-16 13:40:38 -05:00
if (rank==0) printf("Computing solid interaction potential \n");
2018-05-16 19:54:37 -05:00
double *PhaseLabel;
PhaseLabel=new double [Nx*Ny*Nz];
2018-05-19 06:14:37 -05:00
AssignComponentLabels(PhaseLabel);
2018-05-16 13:40:38 -05:00
double *Tmp;
Tmp=new double[3*Np];
//Averages->UpdateMeshValues(); // this computes the gradient of distance field (among other things)
// Create the distance stencil
// Compute solid forces based on mean field approximation
double *Dst;
Dst = new double [5*5*5];
for (int kk=0; kk<5; kk++){
for (int jj=0; jj<5; jj++){
for (int ii=0; ii<5; ii++){
int index = kk*25+jj*5+ii;
Dst[index] = sqrt(double(ii-2)*double(ii-2) + double(jj-2)*double(jj-2)+ double(kk-2)*double(kk-2));
}
}
}
for (int k=1; k<Nz-1; k++){
for (int j=1; j<Ny-1; j++){
for (int i=1; i<Nx-1; i++){
int idx=Map(i,j,k);
if (!(idx < 0)){
double phi_x = 0.f;
double phi_y = 0.f;
double phi_z = 0.f;
for (int kk=0; kk<5; kk++){
for (int jj=0; jj<5; jj++){
for (int ii=0; ii<5; ii++){
int index = kk*25+jj*5+ii;
double distval= Dst[index];
int idi=i+ii-2;
int idj=j+jj-2;
int idk=k+kk-2;
if (idi < 0) idi=0;
if (idj < 0) idj=0;
if (idk < 0) idk=0;
if (!(idi < Nx)) idi=Nx-1;
if (!(idj < Ny)) idj=Ny-1;
if (!(idk < Nz)) idk=Nz-1;
int nn = idk*Nx*Ny + idj*Nx + idi;
2018-05-16 14:37:07 -05:00
if (!(Mask->id[nn] > 0)){
2018-05-16 13:40:38 -05:00
double vec_x = double(ii-2);
double vec_y = double(jj-2);
double vec_z = double(kk-2);
double ALPHA=PhaseLabel[nn];
double GAMMA=-2.f;
if (distval > 2.f) ALPHA=0.f; // symmetric cutoff distance
phi_x += ALPHA*exp(GAMMA*distval)*vec_x/distval;
phi_y += ALPHA*exp(GAMMA*distval)*vec_y/distval;
phi_z += ALPHA*exp(GAMMA*distval)*vec_z/distval;
}
}
}
}
Tmp[idx] = phi_x;
Tmp[idx+Np] = phi_y;
Tmp[idx+2*Np] = phi_z;
/* double d = Averages->SDs(n);
double dx = Averages->SDs_x(n);
double dy = Averages->SDs_y(n);
double dz = Averages->SDs_z(n);
double value=cns*exp(-bns*fabs(d))-cws*exp(-bns*fabs(d));
Tmp[idx] = value*dx;
Tmp[idx+Np] = value*dy;
Tmp[idx+2*Np] = value*dz;
*/
}
}
}
}
ScaLBL_CopyToDevice(SolidPotential, Tmp, 3*sizeof(double)*Np);
ScaLBL_DeviceBarrier();
delete [] Tmp;
delete [] Dst;
DoubleArray Psx(Nx,Ny,Nz);
DoubleArray Psy(Nx,Ny,Nz);
DoubleArray Psz(Nx,Ny,Nz);
DoubleArray Psnorm(Nx,Ny,Nz);
2018-05-16 19:54:37 -05:00
ScaLBL_Comm->RegularLayout(Map,&SolidPotential[0],Psx);
ScaLBL_Comm->RegularLayout(Map,&SolidPotential[Np],Psy);
ScaLBL_Comm->RegularLayout(Map,&SolidPotential[2*Np],Psz);
2018-05-16 13:40:38 -05:00
for (int n=0; n<N; n++) Psnorm(n) = Psx(n)*Psx(n)+Psy(n)*Psy(n)+Psz(n)*Psz(n);
FILE *PFILE;
sprintf(LocalRankFilename,"Potential.%05i.raw",rank);
PFILE = fopen(LocalRankFilename,"wb");
fwrite(Psnorm.data(),8,N,PFILE);
fclose(PFILE);
2018-05-19 16:28:39 -05:00
}
void ScaLBL_ColorModel::Initialize(){
/*
* This function initializes model
*/
2018-05-21 09:13:23 -05:00
int rank=Dm->rank();
2018-05-16 13:40:38 -05:00
double count_wet=0.f;
2018-05-19 16:28:39 -05:00
double *PhaseLabel;
PhaseLabel=new double [Nx*Ny*Nz];
2018-05-16 13:40:38 -05:00
for (int k=1; k<Nz-1; k++){
for (int j=1; j<Ny-1; j++){
for (int i=1; i<Nx-1; i++){
int idx=Map(i,j,k);
int n = k*Nx*Ny+j*Nx+i;
if (!(idx < 0)){
2018-05-16 14:37:07 -05:00
if (Mask->id[n] == 1)
2018-05-16 13:40:38 -05:00
PhaseLabel[idx] = 1.0;
else {
PhaseLabel[idx] = -1.0;
count_wet+=1.f;
}
}
}
}
}
//printf("sw=%f \n",count_wet/double(Np));
// initialize phi based on PhaseLabel (include solid component labels)
ScaLBL_CopyToDevice(Phi, PhaseLabel, Np*sizeof(double));
//...........................................................................
2018-05-21 09:13:23 -05:00
if (rank==0) printf ("Initializing distributions \n");
ScaLBL_D3Q19_Init(fq, Np);
if (rank==0) printf ("Initializing phase field \n");
ScaLBL_DFH_Init(Phi, Den, Aq, Bq, 0, ScaLBL_Comm->LastExterior(), Np);
ScaLBL_DFH_Init(Phi, Den, Aq, Bq, ScaLBL_Comm->FirstInterior(), ScaLBL_Comm->LastInterior(), Np);
2018-05-16 13:40:38 -05:00
}
void ScaLBL_ColorModel::Run(){
2018-05-16 19:54:37 -05:00
int nprocs=nprocx*nprocy*nprocz;
int rank=Dm->rank();
const RankInfoStruct rank_info(rank,nprocx,nprocy,nprocz);
2018-05-16 13:40:38 -05:00
if (rank==0) printf("********************************************************\n");
if (rank==0) printf("No. of timesteps: %i \n", timestepMax);
//.......create and start timer............
double starttime,stoptime,cputime;
ScaLBL_DeviceBarrier();
MPI_Barrier(comm);
starttime = MPI_Wtime();
//.........................................
//************ MAIN ITERATION LOOP ***************************************/
2018-05-16 19:54:37 -05:00
2018-05-16 13:40:38 -05:00
PROFILE_START("Loop");
2018-05-19 13:07:52 -05:00
runAnalysis analysis( analysis_db, rank_info, ScaLBL_Comm, Dm, Np, pBC, beta, Map );
2018-05-16 13:40:38 -05:00
while (timestep < timestepMax ) {
//if ( rank==0 ) { printf("Running timestep %i (%i MB)\n",timestep+1,(int)(Utilities::getMemoryUsage()/1048576)); }
PROFILE_START("Update");
// *************ODD TIMESTEP*************
timestep++;
// Compute the Phase indicator field
// Read for Aq, Bq happens in this routine (requires communication)
2018-05-16 19:54:37 -05:00
ScaLBL_Comm->BiSendD3Q7AA(Aq,Bq); //READ FROM NORMAL
ScaLBL_D3Q7_AAodd_DFH(NeighborList, Aq, Bq, Den, Phi, ScaLBL_Comm->first_interior, ScaLBL_Comm->last_interior, Np);
ScaLBL_Comm->BiRecvD3Q7AA(Aq,Bq); //WRITE INTO OPPOSITE
ScaLBL_D3Q7_AAodd_DFH(NeighborList, Aq, Bq, Den, Phi, 0, ScaLBL_Comm->next, Np);
2018-05-16 13:40:38 -05:00
// compute the gradient
2018-05-16 19:54:37 -05:00
ScaLBL_D3Q19_Gradient_DFH(NeighborList, Phi, Gradient, SolidPotential, ScaLBL_Comm->first_interior, ScaLBL_Comm->last_interior, Np);
ScaLBL_Comm->SendHalo(Phi);
ScaLBL_D3Q19_Gradient_DFH(NeighborList, Phi, Gradient, SolidPotential, 0, ScaLBL_Comm->next, Np);
ScaLBL_Comm->RecvGrad(Phi,Gradient);
2018-05-16 13:40:38 -05:00
// Perform the collision operation
2018-05-16 19:54:37 -05:00
ScaLBL_Comm->SendD3Q19AA(fq); //READ FROM NORMAL
2018-05-16 13:40:38 -05:00
ScaLBL_D3Q19_AAodd_DFH(NeighborList, fq, Aq, Bq, Den, Phi, Gradient, rhoA, rhoB, tauA, tauB,
2018-05-16 19:54:37 -05:00
alpha, beta, Fx, Fy, Fz, ScaLBL_Comm->first_interior, ScaLBL_Comm->last_interior, Np);
ScaLBL_Comm->RecvD3Q19AA(fq); //WRITE INTO OPPOSITE
2018-05-16 13:40:38 -05:00
// Set BCs
if (BoundaryCondition > 0){
2018-05-16 19:54:37 -05:00
ScaLBL_Comm->Color_BC_z(dvcMap, Phi, Den, inletA, inletB);
ScaLBL_Comm->Color_BC_Z(dvcMap, Phi, Den, outletA, outletB);
2018-05-16 13:40:38 -05:00
}
if (BoundaryCondition == 3){
2018-05-16 19:54:37 -05:00
ScaLBL_Comm->D3Q19_Pressure_BC_z(NeighborList, fq, din, timestep);
ScaLBL_Comm->D3Q19_Pressure_BC_Z(NeighborList, fq, dout, timestep);
2018-05-16 13:40:38 -05:00
}
if (BoundaryCondition == 4){
2018-05-16 19:54:37 -05:00
din = ScaLBL_Comm->D3Q19_Flux_BC_z(NeighborList, fq, flux, timestep);
ScaLBL_Comm->D3Q19_Pressure_BC_Z(NeighborList, fq, dout, timestep);
2018-05-16 13:40:38 -05:00
}
ScaLBL_D3Q19_AAodd_DFH(NeighborList, fq, Aq, Bq, Den, Phi, Gradient, rhoA, rhoB, tauA, tauB,
2018-05-16 19:54:37 -05:00
alpha, beta, Fx, Fy, Fz, 0, ScaLBL_Comm->next, Np);
2018-05-16 13:40:38 -05:00
ScaLBL_DeviceBarrier(); MPI_Barrier(comm);
// *************EVEN TIMESTEP*************
timestep++;
// Compute the Phase indicator field
2018-05-16 19:54:37 -05:00
ScaLBL_Comm->BiSendD3Q7AA(Aq,Bq); //READ FROM NORMAL
ScaLBL_D3Q7_AAeven_DFH(Aq, Bq, Den, Phi, ScaLBL_Comm->first_interior, ScaLBL_Comm->last_interior, Np);
ScaLBL_Comm->BiRecvD3Q7AA(Aq,Bq); //WRITE INTO OPPOSITE
ScaLBL_D3Q7_AAeven_DFH(Aq, Bq, Den, Phi, 0, ScaLBL_Comm->next, Np);
2018-05-16 13:40:38 -05:00
// compute the gradient
2018-05-16 19:54:37 -05:00
ScaLBL_D3Q19_Gradient_DFH(NeighborList, Phi, Gradient, SolidPotential, ScaLBL_Comm->first_interior, ScaLBL_Comm->last_interior, Np);
ScaLBL_Comm->SendHalo(Phi);
ScaLBL_D3Q19_Gradient_DFH(NeighborList, Phi, Gradient, SolidPotential, 0, ScaLBL_Comm->next, Np);
ScaLBL_Comm->RecvGrad(Phi,Gradient);
2018-05-16 13:40:38 -05:00
// Perform the collision operation
2018-05-16 19:54:37 -05:00
ScaLBL_Comm->SendD3Q19AA(fq); //READ FORM NORMAL
2018-05-16 13:40:38 -05:00
ScaLBL_D3Q19_AAeven_DFH(NeighborList, fq, Aq, Bq, Den, Phi, Gradient, rhoA, rhoB, tauA, tauB,
2018-05-16 19:54:37 -05:00
alpha, beta, Fx, Fy, Fz, ScaLBL_Comm->first_interior, ScaLBL_Comm->last_interior, Np);
ScaLBL_Comm->RecvD3Q19AA(fq); //WRITE INTO OPPOSITE
2018-05-16 13:40:38 -05:00
// Set boundary conditions
if (BoundaryCondition > 0){
2018-05-16 19:54:37 -05:00
ScaLBL_Comm->Color_BC_z(dvcMap, Phi, Den, inletA, inletB);
ScaLBL_Comm->Color_BC_Z(dvcMap, Phi, Den, outletA, outletB);
2018-05-16 13:40:38 -05:00
}
if (BoundaryCondition == 3){
2018-05-16 19:54:37 -05:00
ScaLBL_Comm->D3Q19_Pressure_BC_z(NeighborList, fq, din, timestep);
ScaLBL_Comm->D3Q19_Pressure_BC_Z(NeighborList, fq, dout, timestep);
2018-05-16 13:40:38 -05:00
}
else if (BoundaryCondition == 4){
2018-05-16 19:54:37 -05:00
din = ScaLBL_Comm->D3Q19_Flux_BC_z(NeighborList, fq, flux, timestep);
ScaLBL_Comm->D3Q19_Pressure_BC_Z(NeighborList, fq, dout, timestep);
2018-05-16 13:40:38 -05:00
}
ScaLBL_D3Q19_AAeven_DFH(NeighborList, fq, Aq, Bq, Den, Phi, Gradient, rhoA, rhoB, tauA, tauB,
2018-05-16 19:54:37 -05:00
alpha, beta, Fx, Fy, Fz, 0, ScaLBL_Comm->next, Np);
2018-05-16 13:40:38 -05:00
ScaLBL_DeviceBarrier(); MPI_Barrier(comm);
//************************************************************************
MPI_Barrier(comm);
PROFILE_STOP("Update");
// Run the analysis
2018-05-19 13:07:52 -05:00
analysis.run( timestep, *Averages, Phi, Pressure, Velocity, fq, Den );
2018-05-16 13:40:38 -05:00
}
2018-05-19 13:07:52 -05:00
analysis.finish();
2018-05-16 13:40:38 -05:00
PROFILE_STOP("Loop");
PROFILE_SAVE("lbpm_color_simulator",1);
//************************************************************************
ScaLBL_DeviceBarrier();
MPI_Barrier(comm);
stoptime = MPI_Wtime();
if (rank==0) printf("-------------------------------------------------------------------\n");
// Compute the walltime per timestep
cputime = (stoptime - starttime)/timestep;
// Performance obtained from each node
double MLUPS = double(Np)/cputime/1000000;
if (rank==0) printf("********************************************************\n");
if (rank==0) printf("CPU time = %f \n", cputime);
if (rank==0) printf("Lattice update rate (per core)= %f MLUPS \n", MLUPS);
MLUPS *= nprocs;
if (rank==0) printf("Lattice update rate (total)= %f MLUPS \n", MLUPS);
if (rank==0) printf("********************************************************\n");
// ************************************************************************
}
2018-05-18 16:24:17 -05:00
void ScaLBL_ColorModel::WriteDebug(){
// Copy back final phase indicator field and convert to regular layout
DoubleArray PhaseField(Nx,Ny,Nz);
ScaLBL_Comm->RegularLayout(Map,Phi,PhaseField);
FILE *OUTFILE;
sprintf(LocalRankFilename,"Phase.%05i.raw",rank);
OUTFILE = fopen(LocalRankFilename,"wb");
fwrite(PhaseField.data(),8,N,OUTFILE);
fclose(OUTFILE);
2018-05-19 05:39:44 -05:00
}