update docs
This commit is contained in:
parent
0b183a98ed
commit
06c01dd843
@ -140,10 +140,10 @@ terms to account for the interfacial stresses
|
||||
:nowrap:
|
||||
|
||||
$$
|
||||
f_q(\bm{x}_i + \bm{\xi}_q \delta t,t + \delta t) - f_q(\bm{x}_i,t) = \sum^{Q-1}_{k=0} M^{-1}_{qk} \lambda_{k} (m_k^{eq}-m_k) + t_q \bm{\xi}_q \cdot \frac{\bm{F}}{c_s^2} \;,
|
||||
f_q(\bm{x}_i + \bm{\xi}_q \delta t,t + \delta t) - f_q(\bm{x}_i,t) = \sum^{Q-1}_{k=0} M^{-1}_{qk} \lambda_{k} (m_k^{eq}-m_k) + w_q \bm{\xi}_q \cdot \frac{\bm{F}}{c_s^2} \;,
|
||||
$$
|
||||
|
||||
|
||||
Where :math:`\bm{F}` is an external body force and :math:`c_s^2 = 1/3` is the speed of sound for the LB model.
|
||||
The moments are linearly indepdendent:
|
||||
|
||||
.. math::
|
||||
|
@ -26,6 +26,15 @@ The essential model parameters for the color model are
|
||||
|
||||
- ``tau`` -- control the fluid viscosity -- :math:`0.7 < \tau < 1.5`
|
||||
|
||||
The kinematic viscosity is given by
|
||||
|
||||
.. math::
|
||||
:nowrap:
|
||||
|
||||
$$
|
||||
\nu = \frac{1}{3} \Big( \tau - \frac 12 \Big)
|
||||
$$
|
||||
|
||||
****************************
|
||||
Model Formulation
|
||||
****************************
|
||||
@ -37,10 +46,10 @@ velocity set, which determines the values :math:`\bm{\xi}_q`
|
||||
:nowrap:
|
||||
|
||||
$$
|
||||
f_q(\bm{x}_i + \bm{\xi}_q \delta t,t + \delta t) - f_q(\bm{x}_i,t) = \sum^{Q-1}_{k=0} M^{-1}_{qk} \lambda_{k} (m_k^{eq}-m_k) + t_q \bm{\xi}_q \cdot \frac{\bm{F}}{c_s^2} \;,
|
||||
f_q(\bm{x}_i + \bm{\xi}_q \delta t,t + \delta t) - f_q(\bm{x}_i,t) = \sum^{Q-1}_{k=0} M^{-1}_{qk} \lambda_{k} (m_k^{eq}-m_k) + w_q \bm{\xi}_q \cdot \frac{\bm{F}}{c_s^2} \;,
|
||||
$$
|
||||
|
||||
Where :math:`\bm{F}` an external body force and :math:`c_s^2 = 1/3` is the speed of sound for the LB model.
|
||||
Where :math:`\bm{F}` is an external body force and :math:`c_s^2 = 1/3` is the speed of sound for the LB model.
|
||||
The moments are linearly indepdendent functions of the distributions:
|
||||
|
||||
.. math::
|
||||
|
Loading…
Reference in New Issue
Block a user